Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (138)

Search Parameters:
Keywords = clonal complex (CC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1591 KiB  
Article
Molecular and Drug Resistance Characteristics of Haemophilus influenzae Carried by Pediatric Patients with Adenoid Hypertrophy
by Nan Xiao, Jia-Hao Qin, Xiu-Ying Zhao and Lin Liu
Microorganisms 2025, 13(8), 1764; https://doi.org/10.3390/microorganisms13081764 - 29 Jul 2025
Viewed by 205
Abstract
Purpose: The adenoid microbiota plays a key role in adenoid hypertrophy (AH). This study explored the molecular epidemiology and antimicrobial resistance of Haemophilus. Influenzae (H. influenzae) strains in pediatric AH patients. Methods: Retrospective analysis of pediatric AH patients undergoing endoscopic adenoidectomy. [...] Read more.
Purpose: The adenoid microbiota plays a key role in adenoid hypertrophy (AH). This study explored the molecular epidemiology and antimicrobial resistance of Haemophilus. Influenzae (H. influenzae) strains in pediatric AH patients. Methods: Retrospective analysis of pediatric AH patients undergoing endoscopic adenoidectomy. Adenoid tissue samples were cultured to screen for pathogens. H. influenzae strains were identified by 16S rRNA sequencing and serotyped via q-PCR. Multilocus sequence typing (MLST) and ftsI gene analysis were conducted using PubMLST. β-lactamase genes (blaTEM-1, blaROB-1) were detected by PCR, and antibiotic susceptibility testing (AST) was performed using the Etest method. For imipenem-resistant strains, the acrRAB efflux pump gene cluster and ompP2 porin gene were sequenced and compared with those of the wild-type strain Rd KW20. Results: Over 8 months, 56 non-duplicate H. influenzae strains were isolated from 386 patients. The detection rate was highest in children under 5 years (30.5%) compared to those aged 5–10 years (13.4%) and 10–15 years (8.7%). Of 49 sub-cultured strains, all were non-typeable H. influenzae (NTHi). MLST identified 22 sequence types (STs) and 13 clonal complexes (CCs), with CC11 (26.5%), CC3 (14.3%), and CC107 (14.3%) being predominant. Common STs included ST103 (22.4%), ST57 (10.2%), and ST107 (10.2%). Most strains belonged to the ftsI group III-like+ (57.1%). β-lactamase positivity was 98.0% (48/49), with blaTEM-1 (95.9%) and blaROB-1 (18.4%) detected. AST showed low susceptibility to ampicillin (10.2%), amoxicillin–clavulanate (34.7%), azithromycin (12.2%), and trimethoprim–sulfamethoxazole (14.3%). Among the β-lactamase-positive strains, 44/48 were β-lactamase-positive ampicillin-resistant (BLPAR); none were β-lactamase-negative ampicillin-resistant (BLNAR). Imipenem susceptibility was 91.8% (45/49). No carbapenemases were found in the imipenem-resistant strains, but mutations in acrRAB (88.12–94.94% identity) and ompP2 (77.10–82.94% identity) were observed. Conclusions: BLPAR NTHi strains of CC11 are major epidemic strains in pediatric AH. Imipenem resistance in H. influenzae likely results from porin mutations rather than carbapenemase activity. Enhanced surveillance of H. influenzae’s role in AH and its resistance patterns is warranted. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

25 pages, 1360 KiB  
Article
Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and High-Risk Escherichia coli CC131, with the First Report of ST1193 as a Causative Agent of Urinary Tract Infections in Human Patients in Algeria
by Hajer Ziadi, Fadela Chougrani, Abderrahim Cheriguene, Leticia Carballeira, Vanesa García and Azucena Mora
Antibiotics 2025, 14(5), 485; https://doi.org/10.3390/antibiotics14050485 - 9 May 2025
Viewed by 1267
Abstract
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal [...] Read more.
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal diversity, and antibiotic resistance profiles of extended-spectrum cephalosporin (ESC)-E. coli and K. pneumoniae causing UTIs in humans in the Tebessa region of Algeria. Methods: Forty E. coli and 17 K. pneumoniae isolates exhibiting ESC-resistance were recovered (July 2022–January 2024) from urine samples of patients at three healthcare facilities to be phenotypically and genotypically characterized. Whole genome sequencing (WGS) was performed on the ST1193 clone. Results: Among K. pneumoniae isolates, all except one harbored CTX-M-15, with a single isolate carrying blaCTX-M-194. Additionally, two K. pneumoniae isolates co-harboring blaCTX-M-15 and blaNDM exhibited phenotypic and genotypic hypervirulence traits. Fluoroquinolone resistance (FQR) was detected in 94.1% of K. pneumoniae isolates. The E. coli isolates carried diverse ESC-resistance genes, including CTX-M-15 (87.5%), CTX-M-27 (5%), CTX-M-1, CMY-59, and CMY-166 (2.5% each). Co-carriage of blaESC and blaOXA-48 was identified in three E. coli isolates, while 62.5% exhibited FQR. Phylogenetic analysis revealed that 52.5% of E. coli belonged to phylogroup B2, including the high-risk clonal complex (CC)131 CH40-30 (17 isolates) and ST1193 (one isolate). In silico analysis of the ST1193 genome determined O75:H5-B2 (CH14-64), and the carriage of IncI1-I(Alpha) and IncF [F-:A1:B10] plasmids. Notably, core genome single-nucleotide polymorphism (SNP) analysis demonstrated high similarity between the Algerian ST1193 isolate and a previously annotated genome from a hospital in Northwest Spain. Conclusions: This study highlights the spread and genetic diversity of E. coli CC131 CH40-30 and hypervirulent K. pneumoniae clones in Algeria. It represents the first report of a CTX-M-15-carrying E. coli ST1193 in the region. The findings emphasize the urgent need for antibiotic optimization programs and enhanced surveillance to curb the dissemination of high-risk clones that pose an increasing public health threat in Algeria. A simplified method based on virulence traits for E. coli and K. pneumoniae is proposed here for antimicrobial resistance (AMR) monitoring. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

16 pages, 6026 KiB  
Article
Molecular Characterization and Antimicrobial Resistance Evaluation of Listeria monocytogenes Strains from Food and Human Samples
by Annamaria Castello, Vincenzina Alio, Marina Torresi, Gabriella Centorotola, Alexandra Chiaverini, Francesco Pomilio, Ignazio Arrigo, Anna Giammanco, Teresa Fasciana, Marco Francesco Ortoffi, Antonietta Gattuso, Giuseppa Oliveri, Cinzia Cardamone and Antonella Costa
Pathogens 2025, 14(3), 294; https://doi.org/10.3390/pathogens14030294 - 18 Mar 2025
Cited by 1 | Viewed by 804
Abstract
Listeria monocytogenes is an important foodborne pathogen, markedly persistent even in harsh environments and responsible for high hospitalization and mortality rates. The aim of the present study was to detect the strains circulating in Sicily over a five-year period and characterize their antimicrobial [...] Read more.
Listeria monocytogenes is an important foodborne pathogen, markedly persistent even in harsh environments and responsible for high hospitalization and mortality rates. The aim of the present study was to detect the strains circulating in Sicily over a five-year period and characterize their antimicrobial resistance profiles. The key element of this study was the sharing of data among various entities involved in food control and clinical surveillance of listeriosis in order to develop an integrated approach for this pathogen. A total of 128 isolates were analyzed, including 87 food-source strains and 41 clinical specimens. Whole-genome sequencing (WGS) was performed for sequence type (ST) and clonal complex (CC) identification through multilocus sequence typing (MLST) analysis. Antimicrobial resistance was assessed using the Kirby–Bauer method. The majority of strains belonged to serotype IVb (34/41 and 53/87 of clinical and food-source isolates, respectively) and were subtyped as CC2-ST2 (28/34 and 41/53 of clinical and food-source isolates respectively). Most of the isolates were susceptible to the main antimicrobials recommended for treatment of listeriosis. Resistance (R) and intermediate resistance (I) percentages worthy of attention were found against oxacillin (R: 85.9%) and clindamycin (I: 34.6%) in the food-source isolates and trimethoprim/sulfamethoxazole (R: 29.23%) in the clinical isolates. Also, 7.7% of the food-source isolates were multidrug resistant. Our results highlight how the punctual comparison between food and clinical strains is an essential tool for effectively tracking and preventing foodborne outbreaks. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

24 pages, 4006 KiB  
Review
Molecular Epidemiology of Streptococcus pneumoniae Serotype 1: A Systematic Review of Circulating Clones and Clonal Clusters
by Onyansaniba K. Ntim and Eric S. Donkor
Int. J. Mol. Sci. 2025, 26(5), 2266; https://doi.org/10.3390/ijms26052266 - 4 Mar 2025
Cited by 1 | Viewed by 1267
Abstract
Streptococcus pneumoniae serotype 1 is one of the most prevalent serotypes commonly associated with invasive pneumococcal disease cases and outbreaks worldwide. Several sequence types of this serotype have been identified globally, including those exhibiting both high virulence potential and antimicrobial resistance profiles. This [...] Read more.
Streptococcus pneumoniae serotype 1 is one of the most prevalent serotypes commonly associated with invasive pneumococcal disease cases and outbreaks worldwide. Several sequence types of this serotype have been identified globally, including those exhibiting both high virulence potential and antimicrobial resistance profiles. This systematic review presents the global distribution of clones of pneumococcal serotype 1, describing their circulating patterns in various regions in the world. A database search was conducted in Google Scholar, PubMed, Scopus, ScienceDirect, and Web of Science using keywords related to Streptococcus pneumoniae serotype 1. The inclusion criteria entailed peer-reviewed studies published in English describing the utilization of at least one molecular genotyping tool to identify S. pneumoniae serotype 1 clones based on their sequence types. Data extracted were managed and analyzed using Microsoft Excel 365 (Version 2108). Forty-three studies were finally included in the systematic review. A total of 103 MLST serotype 1 sequence types were identified in 48 countries. These clones were widely reported to be associated with invasive pneumococcal diseases. Globally, ST217 and ST306 clonal complexes (CC217 and CC306) were the predominant lineages of serotype 1 sequence types, exhibiting distinct continental distribution patterns. CC217, characterized by ST217, ST303, ST612, ST618, and ST3081, was predominant in Africa and Asia. ST306 clonal complex, which is grouped into ST306, ST304, and ST227 were mostly found in Europe, Oceania, North America, and some countries in South America. ST615 was predominant in Chile, Peru, and Argentina. The hypervirulence nature of serotype 1, coupled with its complex genetic diversity, poses a significant public health threat. Our findings emphasize the need for enhanced surveillance and targeted interventions to mitigate the spread of these hypervirulent clones, ultimately informing evidence-based strategies for disease prevention and control. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 520 KiB  
Article
Rapid Detection of Panton–Valentine Leukocidin Production in Clinical Isolates of Staphylococcus aureus from Saxony and Brandenburg and Their Molecular Characterisation
by Elke Müller, Stefan Monecke, Marc Armengol Porta, Marco Vinicio Narvaez Encalada, Annett Reissig, Lukas Rüttiger, Percy Schröttner, Ilona Schwede, Hans-Herman Söffing, Alexander Thürmer and Ralf Ehricht
Pathogens 2025, 14(3), 238; https://doi.org/10.3390/pathogens14030238 - 1 Mar 2025
Viewed by 1441
Abstract
Panton–Valentine leukocidin (PVL) is a staphylococcal toxin associated with chronic/recurrent skin and soft tissue infections (SSTIs) and necrotizing pneumonia. Its detection in clinical isolates of Staphylococcus aureus warrants aggressive therapy and infection control measures. However, PVL detection relies on molecular methods of limited [...] Read more.
Panton–Valentine leukocidin (PVL) is a staphylococcal toxin associated with chronic/recurrent skin and soft tissue infections (SSTIs) and necrotizing pneumonia. Its detection in clinical isolates of Staphylococcus aureus warrants aggressive therapy and infection control measures. However, PVL detection relies on molecular methods of limited use, especially in outpatient or resource-poor settings. In order to aid the development of a lateral flow (LF) test for PVL, clinical isolates from SSTIs were collected in 2020/21 at three laboratories in two cities in the Eastern part of Germany. After the exclusion of duplicate and serial isolates, 83 isolates were eligible. These were tested using an experimental LF test for PVL production. They were also characterized using DNA microarrays, facilitating the detection of virulence and resistance markers as well as the assignment to clonal complexes and epidemic/pandemic strains. Thirty-nine isolates (47%) were PVL-positive, and the LF results were in 81 cases (97.6%) concordant with genotyping. One false-positive and one false-negative case were observed. This translated into a diagnostic sensitivity of 0.974 and a diagnostic specificity of 0.977. The most common PVL-positive MSSA lineages were CC152 (n = 6), CC121 (n = 4), and CC5 and CC30 (each n = 2). Thirty isolates (36%) were mecA-positive. The MRSA rate among PVL-negatives was 20% (nine isolates), but among the PVL-positives, it was as high as 54% (n = 21). The most common PVL-MRSA strains were CC398-MRSA-VT (n = 5), CC5-MRSA-IV “Sri Lanka Clone” (n = 4), CC8-MRSA-[mec IV+Hg] “Latin American USA300” (n = 4), and CC22-MRSA-IV (PVL+/tst+) (n = 2). While the PVL rate was similar just like the German isolates from a previous study a decade before, the MRSA rate among PVL-positives was clearly higher. All PVL-MRSA strains detected, as well as the most common methicillin-susceptible lineage (CC152), are known to be common locally in other parts of the world, and might, thus, be regarded as travel-associated. Therefore, patients with suspected PVL-associated disease should be asked for their history of travel or migration, and, in case of hospitalization, they should be treated as MRSA cases until proven otherwise. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

11 pages, 1938 KiB  
Article
Novel Variants of SCCmec Type IX Identified in Clonal Complex 398 Livestock-Associated Methicillin-Resistant Staphylococcus aureus from Pork Production Systems in Korea
by Gi Yong Lee, Soo In Lee, Hoon Je Seong and Soo-Jin Yang
Antibiotics 2025, 14(3), 217; https://doi.org/10.3390/antibiotics14030217 - 21 Feb 2025
Cited by 2 | Viewed by 771
Abstract
Background/Objectives: The occurrence of novel variants of staphylococcal cassette chromosome mec (SCCmec) in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has frequently been reported, posing significant zoonotic concern worldwide. In this study, the occurrence of novel types of SCCmec IX elements [...] Read more.
Background/Objectives: The occurrence of novel variants of staphylococcal cassette chromosome mec (SCCmec) in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has frequently been reported, posing significant zoonotic concern worldwide. In this study, the occurrence of novel types of SCCmec IX elements was identified in two clonal complex (CC) 398 LA-MRSA strains derived from a pig farm and a slaughterhouse in Korea. Methods: Whole-genome sequence analysis of the two CC398 MRSA-SCCmec IX strains, designated KF1A-1172 and JS1E-122, revealed that these strains are most closely related to previously characterized strains of CC398 LA-MRSA carrying SCCmec V isolated from pig farms in Korea. Results: Further structural analysis of the SCCmec IX in KF1A-1172 and JS1E-122 revealed the presence of multiple ccr gene complexes (ccrA5B3, ccrAB3, and a truncated ccrA1), including ccrA1B1 genes for SCCmec type IX. In addition, the pseudo-SCC (ΨSCC) elements, genes associated with the type 1 restriction–modification (RM) system, and zinc resistance gene czrC, were identified in the SCCmec IX. Conclusions: These findings suggest that the multiple recombination events of elements derived from various SCCmec types contributed to the emergence of the novel SCCmec IX variant. The identification of these novel SCCmec IX types in CC398 LA-MRSA also suggests that epidemiological diversification of SCCmec IX in CC398 LA-MRSA is an ongoing event, necessitating continued surveillance on the emergence of novel SCCmec variants. This study is the first to report the complete genome sequences of CC398 MRSA carrying SCCmec IX in Korea. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Veterinary Science, 2nd Edition)
Show Figures

Figure 1

12 pages, 1621 KiB  
Article
Prophage ϕSA169 Enhances Vancomycin Persistence in Methicillin-Resistant Staphylococcus aureus (MRSA)
by Yi Li, Andrew D. Berti, Wessam Abdelhady and Yan Q. Xiong
Antibiotics 2025, 14(2), 191; https://doi.org/10.3390/antibiotics14020191 - 13 Feb 2025
Viewed by 800
Abstract
Background: Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections present a significant clinical therapeutic challenge. Prophages are increasingly recognized as important genetic factors influencing the pathogenicity of S. aureus, yet their role in antibiotic persistence in MRSA remains underexplored. Our previous work demonstrated [...] Read more.
Background: Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections present a significant clinical therapeutic challenge. Prophages are increasingly recognized as important genetic factors influencing the pathogenicity of S. aureus, yet their role in antibiotic persistence in MRSA remains underexplored. Our previous work demonstrated that prophage ϕSA169 promotes vancomycin (VAN) persistence in an experimental model of endocarditis caused by MRSA strains with a clonal complex (CC) 45 genetic background. However, it is unknown whether this persistence-promoting effect of ϕSA169 extends to other clinically relevant MRSA lineages. This study aims to elucidate the role of ϕSA169 in influencing VAN persistence across diverse MRSA genetic backgrounds. Methods: A pilot analysis of clinical data suggested that patients infected by MRSA containing ϕSA169-like prophage appear to have worse clinical outcomes. Thus, we lysogenized representative clinical resolving bacteremia (RB) MRSA strains with ϕSA169 and evaluated phenotypes closely associated with VAN persistence, including VAN susceptibility, biofilm formation, and the efficacy of VAN treatment in an experimental infective endocarditis (IE) model. Each ϕSA169 lysogenic strain was compared to its isogenic MRSA parental counterpart. Results: ϕSA169 lysogeny significantly promotes biofilm formation and enhances survival to VAN exposure under human-mimicking conditions for RB strains from CC5 and CC30. ϕSA169 lysogeny significantly reduces VAN effectiveness in the IE model due to RB lysogen from CC5 despite no detectable impact on VAN MICs. Conclusions: These results indicate that ϕSA169 promotes VAN persistence across clonal backgrounds, likely through biofilm formation and VAN tolerance. Targeting prophage could provide new strategies to combat persistent MRSA infections. Full article
Show Figures

Figure 1

30 pages, 4295 KiB  
Article
Characterisation of Staphylococcus aureus Strains and Their Prophages That Carry Horse-Specific Leukocidin Genes lukP/Q
by Stefan Monecke, Sindy Burgold-Voigt, Andrea T. Feßler, Martina Krapf, Igor Loncaric, Elisabeth M. Liebler-Tenorio, Sascha D. Braun, Celia Diezel, Elke Müller, Martin Reinicke, Annett Reissig, Adriana Cabal Rosel, Werner Ruppitsch, Helmut Hotzel, Dennis Hanke, Christiane Cuny, Wolfgang Witte, Stefan Schwarz and Ralf Ehricht
Toxins 2025, 17(1), 20; https://doi.org/10.3390/toxins17010020 - 3 Jan 2025
Cited by 2 | Viewed by 1452
Abstract
Leukocidins of Staphylococcus (S.) aureus are bicomponent toxins that form polymeric pores in host leukocyte membranes, leading to cell death and/or triggering apoptosis. Some of these toxin genes are located on prophages and are associated with specific hosts. The genes lukP/Q [...] Read more.
Leukocidins of Staphylococcus (S.) aureus are bicomponent toxins that form polymeric pores in host leukocyte membranes, leading to cell death and/or triggering apoptosis. Some of these toxin genes are located on prophages and are associated with specific hosts. The genes lukP/Q have been described from equine S. aureus isolates. We examined the genomes, including the lukP/Q prophages, of S. aureus strains belonging to clonal complexes CC1, CC350, CC816, and CC8115. In addition to sequencing, phages were characterised by mitomycin C induction and transmission electron microscopy (TEM). All lukP/Q prophages integrated into the lip2=geh gene, and all included also the gene scn-eq encoding an equine staphylococcal complement inhibitor. The lukP/Q prophages clustered, based on gene content and allelic variants, into three groups. One was found in CC1 and CC97 sequences; one was present mainly in CC350 but also in other lineages (CC1, CC97, CC133, CC398); and a third one was exclusively observed in CC816 and CC8115. Prophages of the latter group additionally included a rare enterotoxin A allele (sea320E). Moreover, a prophage from a CC522 goat isolate was found to harbour lukP. Its lukF component could be regarded as chimaera comprising parts of lukQ and of lukF-P83. A putative kinase gene of 1095 basepairs was found to be associated with equine strains of S. aureus. It was also localised on prophages. However, these prophages were different from the ones that carried lukP/Q, and three different integration sites of kinase-carrying phages were identified. These observations confirmed the presence of prophage-located important virulence-associated genes in equine S. aureus and that certain prophages might determine the host specificity of the staphylococcal strains they reside in. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

13 pages, 505 KiB  
Article
Methicillin-Resistant Staphylococcus aureus: The Shifting Landscape in the United Arab Emirates
by Syrine Boucherabine, Rania Nassar, Lobna Mohamed, Maya Habous, Anju Nabi, Riyaz Amirali Husain, Mubarak Alfaresi, Seema Oommen, Hamda Hassan Khansaheb, Mouza Al Sharhan, Handan Celiloglu, Mubarak Hussain Raja, Eman Abdelkarim, Nishi Ali, Salman Tausif, Victory Olowoyeye, Nelson Cruz Soares, Mahmood Hachim, Danesh Moradigaravand, Dean Everett, Elke Mueller, Stefan Monecke, Ralf Ehricht and Abiola Senokadd Show full author list remove Hide full author list
Antibiotics 2025, 14(1), 24; https://doi.org/10.3390/antibiotics14010024 - 2 Jan 2025
Cited by 3 | Viewed by 2459
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant burden globally, particularly in the Arabian Gulf region. The United Arab Emirates (UAE) has experienced rising MRSA prevalence, with increasing diversity in the clonal complexes (CCs) identified. The COVID-19 pandemic, with its increased hospitalization rates [...] Read more.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant burden globally, particularly in the Arabian Gulf region. The United Arab Emirates (UAE) has experienced rising MRSA prevalence, with increasing diversity in the clonal complexes (CCs) identified. The COVID-19 pandemic, with its increased hospitalization rates and antibiotic use, may have further influenced MRSA’s genetic evolution and epidemiology in the country. Methods: To investigate this influence, genomic profiling of 310 MRSA clinical isolates collected between February and November 2022 was performed using a DNA microarray-based assay. Results: Isolates were assigned to 22 clonal complexes and 72 distinct strain assignments. The predominant clonal complexes were CC5, CC6, CC361, CC22, CC1, and CC8. Community-acquired MRSA lineages were dominant, with only one healthcare-associated MRSA lineage isolate identified. Upward trends of CC1153 were observed along with rare CCs, such as CC121-MRSA and CC7-MRSA, with the latter being reported for the first time in the Arabian Gulf region. The presence of pandemic strains USA300 CC8-MRSA-[IVa + ACME1] and CC8-MRSA-IV strains were also observed, including variants lacking Panton–Valentine leukocidin (pvl) genes and missing tst1 or enterotoxin genes. The PVL-negative CC772-MRSA-V/VT was identified, representing its first report in the UAE. A novel variant, CC361-MRSA-IV (tst1+/PVL+), was identified. Pvl genes were observed in 36% of the isolates, primarily from skin and soft tissue infections, while fusC (SCC-borne fusidic acid resistance) was identified in 13% of the isolates. Conclusions: The findings highlight the ongoing evolution of MRSA in the UAE, with the persistence and emergence of diverse and rare clonal complexes, driving the need for continuous genomic surveillance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology and Antimicrobial Resistance of MRSA)
Show Figures

Figure 1

13 pages, 561 KiB  
Article
Elimination of Methicillin-Resistant Staphylococcus aureus from Mammary Glands of Dairy Cows by an Additional Antibiotic Treatment Prior to Dry Cow Treatment
by Bernd-Alois Tenhagen, Mirka Elisabeth Wörmann, Anja Gretzschel, Mirjam Grobbel, Sven Maurischat and Tobias Lienen
Microorganisms 2024, 12(12), 2651; https://doi.org/10.3390/microorganisms12122651 - 20 Dec 2024
Viewed by 881
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) have been isolated from quarter milk samples of dairy cows, raising concerns over transmission to consumers of raw milk. This study investigates whether pre-treatment before dry-off can increase the success rate of dry cow treatment against MRSA. MRSA positive [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) have been isolated from quarter milk samples of dairy cows, raising concerns over transmission to consumers of raw milk. This study investigates whether pre-treatment before dry-off can increase the success rate of dry cow treatment against MRSA. MRSA positive cows were assigned to two treatment groups. Both groups received dry cow treatment with a licensed product. The test group was additionally treated intramammarily with pirlimycin over seven days prior to the dry-off treatment. The use of pirlimycin increased the elimination of MRSA from previously MRSA positive udder quarters significantly (96.0 vs. 53.3%). However, MRSA were still present in noses and udder clefts of cows in MRSA negative quarter milk samples. New infections were observed in some quarters in both groups. Quarters that remained positive carried the same strain as prior to treatment. All MRSA isolates were associated with clonal complex CC398. Resistance to pirlimycin associated with the genes erm(C) or lnu(B) was observed in one isolate each from new infections after calving. Pretreatment supported the elimination of MRSA from the udder but did not eliminate MRSA from other body sites. Using the treatment will not eliminate the bacteria from the herd. Full article
(This article belongs to the Special Issue Bacterial Infections and Antimicrobial Resistance in Animals)
Show Figures

Figure 1

12 pages, 799 KiB  
Communication
Analysis of Genetic Determinants Encoding Resistance to Heavy Metals and Disinfectants in Listeria monocytogenes
by Elżbieta Maćkiw, Joanna Kowalska, Dorota Korsak and Jacek Postupolski
Foods 2024, 13(23), 3936; https://doi.org/10.3390/foods13233936 - 6 Dec 2024
Viewed by 1102
Abstract
Listeria monocytogenes is an important foodborne pathogen causing listeriosis. L. monocytogenes, existing in the natural environment, can also contaminate food products, which poses a serious threat to human health and life, especially for high-risk groups: pregnant women, newborn babies, and the elderly. [...] Read more.
Listeria monocytogenes is an important foodborne pathogen causing listeriosis. L. monocytogenes, existing in the natural environment, can also contaminate food products, which poses a serious threat to human health and life, especially for high-risk groups: pregnant women, newborn babies, and the elderly. Environmental adaptation of L. monocytogenes refers to the various strategies and mechanisms used by this bacterium to survive and thrive in diverse and often hostile environments that include, among others, toxic heavy metals and disinfectants. The aim of this study was to analyze WGS (whole-genome sequencing) data of 45 L. monocytogenes strains isolated from food to compare the prevalence and types of genetic determinants encoding resistance to toxic metals, such as arsenic and cadmium, as well as quaternary ammonium compounds, like benzalkonium chloride. In L. monocytogenes strains, resistance genes were detected for disinfectants, such as benzalkonium chloride (4.4%), as well as for toxic heavy metals, like cadmium (28.9%) and arsenic (24.4%). The bcrABC cassette was found together with the cadA2C2 genes in two strains: 3855-D (IIc, ST9, CC9) and 4315 (IVb, ST6, CC6). The arsenic cassette, encoded by the genes arsR1D2R2A2B1B2, was co-selected with the cadA4C4 genes. The arsenic cassette was prevalent in nine strains of clonal complex CC2 (82%), one strain of CC3 (9%), and one strain of CC11 (9%). In contrast, the benzalkonium chloride cassette was detected in one strain of CC6 and one strain of CC9. The results of the present study demonstrate the need for further research into the characteristics of L. monocytogenes isolated from other sources in order to understand their spread throughout the food chain. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 737 KiB  
Article
Multilocus Sequence Typing and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Foods Surveyed in Kosovo
by Besart Jashari, Beatrix Stessl, Benjamin Félix, Armend Cana, Bledar Bisha, Dean Jankuloski, Katerina Blagoevska and Adeoye J. Kayode
Microorganisms 2024, 12(12), 2441; https://doi.org/10.3390/microorganisms12122441 - 27 Nov 2024
Viewed by 1593
Abstract
In the absence of data on the reporting of L. monocytogenes resistance to antibiotics, we sought to determine which clonal complexes (CCs)/sequence types (STs) circulate in the food chain in Kosovo and to determine their antibiogram profiles to a panel of 18 antibiotics. [...] Read more.
In the absence of data on the reporting of L. monocytogenes resistance to antibiotics, we sought to determine which clonal complexes (CCs)/sequence types (STs) circulate in the food chain in Kosovo and to determine their antibiogram profiles to a panel of 18 antibiotics. From a total of 114 isolates, 21 different typical STs were identified by multilocus sequence typing (MLST). Each isolate derived from the food categories was subjected to tests to verify its susceptibility to the selected antibiotics according to the designed Sensititre GPN3F panel. Among the different STs that were identified, CC9-ST9 was more abundant in meat products (38.75%) while CC29-ST29 was more abundant (24.0%) in dairy products. Moreover, these isolates showed marked resistance against levofloxacin (22.8%), gentamicin and rifampicin (17.5%), quinupristin/dalfopristin (14.9%), erythromycin (11.4%), penicillin (7.89%), tetracycline (1.75%), and streptomycin (0.88%). A total of 27 multiple antibiotic resistance (MAR) phenotypes were observed amongst the isolates, which ranged from 3 to 12. The ARI of the food category including meat and meat products (MMP, 0.22) and fish meat products (FMP, 0.26) were >0.2, the permissible Krumperman threshold. The number of strains with MAR values >0.2 was 34, (29.8%). The identification of typical multidrug-resistant STs among L. monocytogenes isolates in Kosovo constitutes a potential threat to food safety and public health, which requires a continuous and expanded surveillance system to prevent the further spread of antimicrobial resistant (AMR) isolates. Full article
(This article belongs to the Special Issue An Update on Listeria monocytogenes, Third Edition)
Show Figures

Figure 1

18 pages, 962 KiB  
Review
ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents
by Alice Slotfeldt Viana, Laís Pires do Valle Tótola and Agnes Marie Sá Figueiredo
Antibiotics 2024, 13(9), 893; https://doi.org/10.3390/antibiotics13090893 - 18 Sep 2024
Cited by 3 | Viewed by 2121
Abstract
Sequence-type 5 (ST5) of methicillin-resistant Staphylococcus aureus (MRSA), harboring the staphylococcal chromosomal cassette mec type IV (SCCmecIV), was first detected in Portugal. It emerged as a significant cause of healthcare-associated (HA) infection in pediatric units and was hence named the pediatric [...] Read more.
Sequence-type 5 (ST5) of methicillin-resistant Staphylococcus aureus (MRSA), harboring the staphylococcal chromosomal cassette mec type IV (SCCmecIV), was first detected in Portugal. It emerged as a significant cause of healthcare-associated (HA) infection in pediatric units and was hence named the pediatric clone. Another ST5 lineage, which carries SCCmecII, also prevailed in the USA and Japan for multiple years. More recently, another MRSA lineage, ST105-SCCmecII, part of the evolution of clonal complex 5 (CC5) MRSA, has emerged as the cause of hospital-acquired bloodstream infection outbreaks in countries including Portugal, the USA, and Brazil. This article reviews studies on the epidemiology and evolution of these newly emerging pathogens. To this end, a search of PUBMED from inception to 2024 was performed to find articles reporting the occurrence of ST105 MRSA in epidemiologic studies. A second search was performed to find studies on MRSA, CC5, ST5, and SCCmecII. A search of PUBMED from 1999 to 2024 was also performed to identify studies on the genomics and evolution of ST5, CC5, and ST105 MRSA. Further studies were identified by analyzing the references of the previously selected articles from PUBMED. Most articles on ST105 MRSA were included in this review. Only articles written in English were included. Furthermore, only studies that used a reliable genotyping method (e.g., whole genome sequencing, or MLST) to classify the CC5 lineages were selected. The quality and selection of articles were based on the consensus assessment of the three authors in independent evaluations. In conclusion, ST105-SCCmecII is an emerging MRSA in several countries, being the second/third most important CC5 lineage, with a relatively high frequency in bloodstream infections. Of concern is the increased mortality from BSI in patients older than 15 years and the higher prevalence of ST105-SCCmecII in the blood of patients older than 60 years reported in some studies. Full article
Show Figures

Figure 1

13 pages, 1490 KiB  
Article
Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022
by Besart Jashari, Karine Capitaine, Bledar Bisha, Beatrix Stessl, Katerina Blagoevska, Armend Cana, Dean Jankuloski and Benjamin Félix
Foods 2024, 13(18), 2883; https://doi.org/10.3390/foods13182883 - 12 Sep 2024
Cited by 3 | Viewed by 2001
Abstract
The present study describes the genetic characterization of L. monocytogenes strains found in the Republic of Kosovo’s food chain. From 2016 to 2022, 995 samples were collected. Overall, 648 samples were from ready-to-eat (RTE) food products, 281 from food products consumed cooked (FPCC), [...] Read more.
The present study describes the genetic characterization of L. monocytogenes strains found in the Republic of Kosovo’s food chain. From 2016 to 2022, 995 samples were collected. Overall, 648 samples were from ready-to-eat (RTE) food products, 281 from food products consumed cooked (FPCC), 60 from raw materials, and 6 from environmental samples. Overall, 11.76% (117 out of 995) of the samples were contaminated by L. monocytogenes, comprising 6.33% (41 out of 648) from RTE products, 14.95% (42 out of 281) from FPCC, 55.00% (33 out of 60) from raw materials, and 16.66% (1 out of 6) from environmental samples. All isolates were subjected to molecular serotyping and clonal complex (CC) identification by using real-time PCR, as well as multilocus sequence typing. All isolates were grouped into four molecular serotypes, IIa (34.19%), IIb (3.48%), IIc (32.48%), and IVb (29.91%), as well as Lineage I (33.33%) and Lineage II (66.66%). In total, 14 CCs were identified from 41 RTE isolates; however, CC29 (7), CC2 (6), and CC6 (6) were the most dominant. By contrast, CC9 was by far the most represented CC in both FPCC (21) and RM (14). Moreover, 30 isolates expressed CC1, CC2, CC4, or CC6, which are particularly associated with severe human infections. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 712 KiB  
Article
Phylogenetic Lineages and Diseases Associated with Moraxella catarrhalis Isolates Recovered from Bulgarian Patients
by Alexandra S. Alexandrova, Vasil S. Boyanov, Kalina Y. Mihova and Raina T. Gergova
Int. J. Mol. Sci. 2024, 25(18), 9769; https://doi.org/10.3390/ijms25189769 - 10 Sep 2024
Cited by 2 | Viewed by 1524
Abstract
Moraxella catarrhalis has been recognized as an important cause of upper respiratory tract and middle ear infections in children, as well as chronic obstructive pulmonary disease and chronic bronchitis in adults. We aim to study the clonal structure, antimicrobial resistance, and serotypes of [...] Read more.
Moraxella catarrhalis has been recognized as an important cause of upper respiratory tract and middle ear infections in children, as well as chronic obstructive pulmonary disease and chronic bronchitis in adults. We aim to study the clonal structure, antimicrobial resistance, and serotypes of M. catarrhalis strains recovered from patients of different ages. Nasopharyngeal swabs, middle ear fluid, and sputum samples were collected. In vitro susceptibility testing was performed according to EUCAST criteria. The monoclonal Ab hybridoma technique was used for serotyping. All strains were subjected to MLST. The studied population demonstrated susceptibility to all tested antimicrobials M. catarrhalis strains, with the majority being serotype A (90.4%), followed by B (6.8%), and C (2.7%). We observed a predominant clonal complex CC224 (21.9%) along with other clusters including CC141 (8.2%), CC184 (8.2%), CC449 (6.8%), CC390 (5.5%), and CC67 (2.7%). Two primary founders, namely, ST224 and ST141, were identified. The analyzed genetic lineages displayed diversity but revealed the predominance of two main clusters, CC224 and CC141, encompassing multidrug-resistant sequence types distributed in other regions. These data underscore the need for ongoing epidemiological monitoring of successfully circulating clones and the implementation of adequate antibiotic policies to limit or delay the spread of multidrug-resistant strains in our region. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop