Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Detection and Isolation
2.3. Biochemical Identification
2.4. DNA Extraction
2.5. DNA Concentration
2.6. Detection of Lineages, Molecular Serogroups, and Clonal Complexes
3. Results
3.1. L. monocytogenes in Food Products
3.2. Genetic Diversity of L. monocytogenes
3.2.1. Lineages
3.2.2. Molecular Serotypes
3.2.3. Clonal Complexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, S.J.; Archer, P.; Banks, J.G. Growth of Listeria monocytogenes at refrigeration temperatures. J. Appl. Bacteriol. 1990, 68, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.B.; Jones, M.V.; Holyoak, C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J. Appl. Bacteriol. 1990, 69, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Moretro, T. In-depth longitudinal study of Listeria monocytogenes ST9 isolates from the meat processing industry: Resolving diversity and transmission patterns using whole-genome sequencing. Appl. Environ. Microbiol. 2020, 86, e00579-20. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention, and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Mishra, S.; Tuglo, L.S.; Sarangi, A.K.; Kandi, V.; Al Ibrahim, A.A.; Alsaif, H.A.; Rabaan, A.A.; Zahan, M.K. Recurring food source-based Listeria outbreaks in the United States: An unsolved puzzle of concern? Health Sci. Rep. 2024, 7, e1863. [Google Scholar] [CrossRef]
- Gilmour, M.W.; Graham, M.; Van Domselaar, G.; Tyler, S.; Kent, H.; Trout-Yakel, K.M.; Larios, O.; Allen, V.; Lee, B.; Nadon, C. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genom. 2010, 11, 120. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef]
- Olanya, O.M.; Hoshide, A.K.; Ijabadeniyi, O.A.; Ukuku, D.O.; Mukhopadhyay, S.; Niemira, B.A.; Ayeni, O. Cost estimation of listeriosis (Listeria monocytogenes) occurrence in South Africa in 2017 and its food safety implications. Food Control 2019, 102, 231–239. [Google Scholar] [CrossRef]
- Thomas, M.K.; Vriezen, R.; Farber, J.M.; Currie, A.; Schlech, W.; Fazil, A. Economic cost of a Listeria monocytogenes outbreak in Canada, 2008. Foodborne Pathog. Dis. 2015, 12, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Goulet, V.; de Valk, H.; Pierre, O.; Stainer, F.; Rocourt, J.; Vaillant, V.; Jacquet, C.; Desenclos, J.C. Effect of prevention measures on incidence of human listeriosis, France, 1987–1997. Emerg. Infect. Dis. 2001, 7, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.; Tourdjman, M.; Leclercq, A.; Hamelin, E.; Laurent, E.; Fredriksen, N.; Van Cauteren, D.; Bracq-Dieye, H.; Thouvenot, P.; Vales, G.; et al. Real-time whole-genome sequencing for surveillance of Listeria monocytogenes, France. Emerg. Infect. Dis. 2017, 23, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Jankuloski, D.; Sekulovski, P.; Angelovski, L.; Kostova, S.; Ratkova, M.; Prodanov, M. Detection of antimicrobial sensitiveness of isolates of Listeria monocytogenes from food chain using Vitek 2 Compact Biomerieux. Maced. Vet. Rev. 2010, 33, 13–18. [Google Scholar]
- Jovanović, N.; Pustahija, T.; Vuković, V.; Rajčević, S.; Dragovac, G. Epidemiological characteristics of human listeriosis in Vojvodina, Serbia, in the period 2005–2020. Arch. Vet. Med. 2022, 15, 73–86. [Google Scholar] [CrossRef]
- Hamidi, A.; Bisha, B.; Goga, I.; Wang, B.; Robaj, A.; Sylejmani, D.S. A case report of sporadic ovine listerial meningoencephalitis in Kosovo. Vet. Ital. 2020, 56, 205–211. [Google Scholar] [CrossRef]
- Mehmeti, I.; Bytyqi, H.; Muji, S.; Nes, I.F.; Diep, D.B. The prevalence of Listeria monocytogenes and Staphylococcus aureus and their virulence genes in bulk tank milk in Kosovo. J. Infect. Dev. Ctries. 2017, 11, 247–254. [Google Scholar] [CrossRef]
- Studenica, A.; Märtlbauer, E.; Mulliqi-Osmani, G. The prevalence of bacterial contaminants in artisanal cheese sold in informal markets. The case of Kosovo. Food Sci. Appl. Biotechnol. 2022, 5, 77–786. [Google Scholar] [CrossRef]
- Kukleci, E.; Smulders, F.J.M.; Hamidi, A.; Bauer, S.; Paulsen, P. Prevalence of foodborne pathogenic bacteria, microbial levels of hygiene indicator bacteria, and concentrations of biogenic amines in ready-to-eat meat products at retail in the Republic of Kosovo. J. Food Prot. 2019, 82, 1135–1140. [Google Scholar] [CrossRef]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Kathariou, S. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 2002, 65, 1811–1829. [Google Scholar] [CrossRef] [PubMed]
- Vitullo, M.; Grant, K.A.; Sammarco, M.L.; Tamburro, M.; Ripabelli, G.; Amar, C.F. Real-time PCRs assay for serogrouping Listeria monocytogenes and differentiation from other Listeria spp. Mol. Cell Probes 2013, 27, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, C.; Arreaza, L.; Alcala, B.; de la Fuente, L.; Vazquez, J.A. Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. J. Clin. Microbiol. 2003, 41, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Ragon, M.; Wirth, T.; Hollandt, F.; Lavenir, R.; Lecuit, M.; Le Monnier, A.; Brisse, S. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 2008, 4, e1000146. [Google Scholar] [CrossRef]
- Pietzka, A.; Allerberger, F.; Murer, A.; Lennkh, A.; Stoger, A.; Rosel, A.C.; Huhulescu, S.; Maritschnik, S.; Springer, B.; Lepuschitz, S. Whole genome sequencing based surveillance of L. monocytogenes for early detection and investigations of listeriosis outbreaks. Front. Public Health 2019, 7, 139. [Google Scholar] [CrossRef]
- Painset, A.; Bjorkman, J.T.; Kiil, K.; Guillier, L.; Mariet, J.F.; Felix, B.; Amar, C.; Rotariu, O.; Roussel, S.; Perez-Reche, F.; et al. LiSEQ—Whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb. Genom. 2019, 5, e000257. [Google Scholar] [CrossRef]
- Felix, B.; Capitaine, K.; Te, S.; Felten, A.; Gillot, G.; Feurer, C.; van den Bosch, T.; Torresi, M.; Sreterne Lancz, Z.; Delannoy, S.; et al. Identification by high-throughput real-time PCR of 30 major circulating Listeria monocytogenes clonal complexes in Europe. Microbiol. Spectr. 2023, 11, e0395422. [Google Scholar] [CrossRef]
- EN ISO 11290-1/2017; Microbiology of Food and Feeding Stuffs. Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and Listeria spp.—Part 1. Detection Method. International Association for Standardization: Geneva, Switzerland, 2017; pp. 1–35.
- Gnanou Besse, N.; Lombard, B.; Guillier, L.; Francois, D.; Romero, K.; Pierru, S.; Bouhier, L.; Rollier, P. Validation of standard method EN ISO 11290—Part 1—Detection of Listeria monocytogenes in food. Int. J. Food Microbiol. 2019, 288, 13–21. [Google Scholar] [CrossRef]
- Bille, J.; Catimel, B.; Bannerman, E.; Jacquet, C.; Yersin, M.N.; Caniaux, I.; Monget, D.; Rocourt, J. API Listeria, a new and promising one-day system to identify Listeria isolates. Appl. Environ. Microbiol. 1992, 58, 1857–1860. [Google Scholar] [CrossRef]
- Roussel, S.; Michelon, D.; Lombard, B.; Lailler, R. Molecular typing of Listeria monocytogenes strains isolated from food, feed and animals: State of play and standard operating procedures for pulsed field gel electrophoresis (PFGE) typing, profile interpretation and curation. EFSA Support. Publ. 2014, 11, 702E. [Google Scholar] [CrossRef]
- Kerouanton, A.; Marault, M.; Petit, L.; Grout, J.; Dao, T.T.; Brisabois, A. Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping. J. Microbiol. Methods 2010, 80, 134–137. [Google Scholar] [CrossRef]
- Felix, B.; Feurer, C.; Maillet, A.; Guillier, L.; Boscher, E.; Kerouanton, A.; Denis, M.; Roussel, S. Population genetic structure of Listeria monocytogenes strains isolated from the pig and pork production chain in France. Front. Microbiol. 2018, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef]
- Ebner, R.; Stephan, R.; Althaus, D.; Brisse, S.; Maury, M.; Tasara, T. Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011–2014 from different food matrices in Switzerland. Food Control 2015, 57, 321–326. [Google Scholar] [CrossRef]
- Kubicova, Z.; Roussel, S.; Felix, B.; Cabanova, L. Genomic diversity of Listeria monocytogenes isolates from Slovakia (2010 to 2020). Front. Microbiol. 2021, 12, 729050. [Google Scholar] [CrossRef] [PubMed]
- Korsak, D.; Borek, A.; Daniluk, S.; Grabowska, A.; Pappelbaum, K. Antimicrobial susceptibilities of Listeria monocytogenes strains isolated from food and food processing environment in Poland. Int. J. Food Microbiol. 2012, 158, 203–208. [Google Scholar] [CrossRef]
- Maćkiw, E.; Stasiak, M.; Kowalska, J.; Kucharek, K.; Korsak, D.; Postupolski, J. Occurrence and characteristics of Listeria monocytogenes in ready-to-eat meat products in Poland. J. Food Prot. 2020, 83, 1002–1009. [Google Scholar] [CrossRef]
- Daza, P.B.; Pietzka, A.; Martinovic, A.; Ruppitsch, W.; Zuber, B.I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014–2022. Front. Microbiol. 2024, 15, 1418333. [Google Scholar] [CrossRef]
- Thévenot, D.; Delignette-Muller, M.L.; Christieans, S.; Vernozy-Rozand, C. Fate of Listeria monocytogenes in experimentally contaminated French sausages. Int. J. Food Microbiol. 2005, 101, 189–200. [Google Scholar] [CrossRef]
- Meloni, D.; Piras, F.; Mureddu, A.; Fois, F.; Consolati, S.G.; Lamon, S.; Mazzette, R. Listeria monocytogenes in five Sardinian swine slaughterhouses: Prevalence, Serotype and Genotype Characterization. J. Food Prot. 2013, 76, 1863–1867. [Google Scholar] [CrossRef] [PubMed]
- Kramarenko, T.; Roasto, M.; Meremäe, K.; Kuningas, M.; Põltsama, P.; Elias, T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013, 30, 24–29. [Google Scholar] [CrossRef]
- Wagner, M.; Eliskases-Lechner, F.; Rieck, P.; Hein, I.; Allerberger, F. Characterization of Listeria monocytogenes isolates from 50 small-scale Austrian cheese factories. J. Food Prot. 2006, 69, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Kiss, R.; Tirczka, T.; Szita, G.; Bernáth, S.; Csikó, G. Listeria monocytogenes food monitoring data and incidence of human listeriosis in Hungary, 2004. Int. J. Food Microbiol. 2006, 112, 71–74. [Google Scholar] [CrossRef]
- Maury, M.M.; Bracq-Dieye, H.; Huang, L.; Vales, G.; Lavina, M.; Thouvenot, P.; Disson, O.; Leclercq, A.; Brisse, S.; Lecuit, M. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 2019, 10, 2488. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Costa, G.; Di Piazza, G.; Koevoets, P.; Iacono, G.; Liebana, E.; Pasinato, L.; Rizzi, V.; Rossi, M. Guidelines for reporting Whole Genome Sequencing-based typing data through the EFSA One Health WGS System. EFSA Support. Publ. 2022, 19, 7413E. [Google Scholar] [CrossRef]
Food Category | No. of Tested Samples | No. of Positive Samples/No. of Tested Samples (%) | Ready-to-Eat Food | Food Products Consumed Cooked | Food Processing Environment | Raw Material |
---|---|---|---|---|---|---|
Meat and meat products | 574 | 82/574 (14.29%) | 20/286 (6.99%) | 42/249 (16.87%) | - | 20/39 (51.28%) |
Milk and milk products | 407 | 26/407 (6.39%) | 21/361 (5.82%) | 0/32 (0) | 1/6 (16.66%) | 4/8 (50.00%) |
Fish and fishery products | 9 | 4/9 (44.44%) | 0/1 (0) | - | - | 4/8 (50.00%) |
Combined food products (meat, dairy) | 5 | 5/5 (100.00%) | - | - | - | 5/5 (100.00%) |
Total | 995 | 117/995 (11.76%) | 41/648 (6.33%) | 42/281 (14.95%) | 1/6 (16.66%) | 33/60 (55.00%) |
Food Chain | Food Category | Lineage | Molecular Serotype | Clonal Complex |
---|---|---|---|---|
Ready-to-eat food (n = 41) | Meat and meat products (20) | I (10) | IIb (1) | CC3 (1) |
IVb (9) | CC2 (1), CC4 (1), CC6 (6), CC315 (1) | |||
II (10) | IIa (8) | CC7 (1), CC8 (3), CC29 (1), CC37 (3) | ||
IIc (2) | CC9 (2) | |||
Milk and milk products (21) | I (10) | IIb (1) | CC87 (1) | |
IVb (9) | CC2 (5), CC4 (2), ST32 (2) | |||
II (11) | IIa (10) | CC8 (1), CC14 (1), CC26 (1), CC29 (6), CC37 (1) | ||
IIc (1) | CC9 (1) | |||
Total | I (48.78%), II (51.22%) | IIb (2), IVb (18) IIa (18), IIc (3) | CC2 (6), CC3 (1), CC4 (3), CC6 (6), CC7 (1), CC8 (4), CC9 (3), CC 14 (1), CC26 (1), CC29 (7), ST32 (2), CC37 (4), CC87 (1), CC315 (1) | |
Food products consumed cooked (n = 42) | Meat and meat products (42) | I (10) | IIb (1) | CC5 (1) |
IVb (9) | CC2 (4), CC4 (1), CC6 (3), CC315 (1) | |||
II (32) | IIa (11) | CC7 (4), CC8 (1), CC14 (3), CC29 (1), CC37 (2) | ||
IIc (21) | CC9 (21) | |||
Total | I (23.81%), II (76.19%) | IIb (1), IVb (9) IIa (11), IIc (21) | CC2 (4), CC4 (1), CC5 (1), CC6 (3), CC7 (4), CC8 (1), CC9 (21), CC14 (3), CC29 (1), CC37 (2), CC315 (1) | |
Raw materials (n = 33) | Meat and meat products (20) | I (4) | IVb (4) | CC1 (4) |
II (16) | IIa (4) | CC7 (1), CC8 (3) | ||
IIc (12) | CC9 (12) | |||
Milk and milk products (4) | I (1) | IVb (1) | CC315 (1) | |
II (3) | IIc (1) | CC9 (1) | ||
IIa (2) | CC8 (1), CC26 (1) | |||
Fish meat products (4) | I (3) | IIb (1) | CC87 (1) | |
IVb (2) | CC2 (2) | |||
II (1) | IIa (1) | CC26 (1) | ||
Combined food products (5) | I (1) | IVb (1) | CC6 (1) | |
II (4) | IIa (3) | CC8 (1), CC121 (2) | ||
IIc (1) | CC9 (1) | |||
Total | I (27.27%), II (72.73%) | IIb (1), IVb (8) IIa (10), IIc (14) | CC1 (4), CC2 (2), CC6 (1), CC7 (1), CC8 (5), CC9 (14), CC26 (2), CC87 (1), CC121 (2), CC315 (1) | |
Food contact sample (n = 1) | Environmental sample (1) | II (1) | IIa (1) | CC7 (1) |
Total | II (100.00%) | IIa (1) | CC7 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jashari, B.; Capitaine, K.; Bisha, B.; Stessl, B.; Blagoevska, K.; Cana, A.; Jankuloski, D.; Félix, B. Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022. Foods 2024, 13, 2883. https://doi.org/10.3390/foods13182883
Jashari B, Capitaine K, Bisha B, Stessl B, Blagoevska K, Cana A, Jankuloski D, Félix B. Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022. Foods. 2024; 13(18):2883. https://doi.org/10.3390/foods13182883
Chicago/Turabian StyleJashari, Besart, Karine Capitaine, Bledar Bisha, Beatrix Stessl, Katerina Blagoevska, Armend Cana, Dean Jankuloski, and Benjamin Félix. 2024. "Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022" Foods 13, no. 18: 2883. https://doi.org/10.3390/foods13182883
APA StyleJashari, B., Capitaine, K., Bisha, B., Stessl, B., Blagoevska, K., Cana, A., Jankuloski, D., & Félix, B. (2024). Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022. Foods, 13(18), 2883. https://doi.org/10.3390/foods13182883