ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents
Abstract
:1. Introduction
2. The Clonal Complex 5
3. Epidemiological History of ST105-SCCmecII
4. ST105-SCCmecII in Bloodstream Infections
5. ST105-SCCmecII and Its Dissemination among Animals and the Environment
6. Antibiotic-Resistance Pattern of ST105-SCCmecII
7. Evolution of ST105-SCCmecII-t002
8. Conclusions
9. Note of Authors
Author Contributions
Funding
Conflicts of Interest
References
- Mahjabeen, F.; Saha, U.; Mostafa, M.N.; Siddique, F.; Ahsan, E.; Fathma, S.; Tasnim, A.; Rahman, T.; Faruq, R.; Sakibuzzaman, M.; et al. An Update on Treatment Options for Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: A Systematic Review. Cureus 2022, 14, e31486. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report Emerging Infections Program Network Methicillin-Resistant Staphylococcus aureus. 2014. Available online: https://stacks.cdc.gov/view/cdc/39907/cdc_39907_DS1.pdf (accessed on 23 August 2024).
- Centers for Disease Control and Prevention. Emerging Infections Program Healthcare-Associated Infections Community Interface Report Invasive Staphylococcus aureus, 2020; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/healthcare-associated-infections/media/pdfs/2020-MRSA-Report-508.pdf (accessed on 23 August 2024).
- Centers for Disease Control and Prevention. Healthcare-Associated Infections-Community Interface (HAIC): Emerging Infections Program (EIP) Network Report Invasive Staphylococcus aureus, 2017; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2024; Available online: https://www.cdc.gov/healthcare-associated-infections/media/pdfs/2017-mrsa-report-508.pdf (accessed on 23 August 2024).
- Arias, C.A.; Reyes, J.; Carvajal, L.P.; Rincon, S.; Diaz, L.; Panesso, D.; Ibarra, G.; Rios, R.; Munita, J.M.; Salles, M.J.; et al. A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries. Antimicrob. Agents Chemother. 2017, 61, AAC.00816-17. [Google Scholar] [CrossRef]
- Seas, C.; Garcia, C.; Salles, M.J.; Labarca, J.; Luna, C.; Alvarez-Moreno, C.; Mejía-Villatoro, C.; Zurita, J.; Guzmán-Blanco, M.; Rodríguez-Noriega, E.; et al. Staphylococcus aureus Bloodstream Infections in Latin America: Results of a Multinational Prospective Cohort Study. J. Antimicrob. Chemother. 2018, 73, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.M.S.; Ferreira, F.A. The Multifaceted Resources and Microevolution of the Successful Human and Animal Pathogen Methicillin-Resistant Staphylococcus aureus. Memórias Do Inst. Oswaldo Cruz 2014, 109, 265–278. [Google Scholar] [CrossRef]
- Botelho, A.M.N.; Cerqueira E Costa, M.O.; Moustafa, A.M.; Beltrame, C.O.; Ferreira, F.A.; Côrtes, M.F.; Costa, B.S.S.; Silva, D.N.S.; Bandeira, P.T.; Lima, N.C.B.; et al. Local Diversification of Methicillin-Resistant Staphylococcus aureus ST239 in South America after Its Rapid Worldwide Dissemination. Front. Microbiol. 2019, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Schnitt, A.; Lienen, T.; Wichmann-Schauer, H.; Cuny, C.; Tenhagen, B.-A. The Occurrence and Distribution of Livestock-Associated Methicillin-Resistant Staphylococcus aureus ST398 on German Dairy Farms. J. Dairy Sci. 2020, 103, 11806–11819. [Google Scholar] [CrossRef]
- Viana, A.S.; Botelho, A.M.N.; Moustafa, A.M.; Boge, C.L.K.; Ferreira, A.L.P.; da Silva Carvalho, M.C.; Guimarães, M.A.; de Souza Scramignon Costa, B.; de Mattos, M.C.; Maciel, S.P.; et al. Multidrug-Resistant Methicillin- Resistant Staphylococcus aureus Associated with Bacteremia and Monocyte Evasion, Rio de Janeiro, Brazil. Emerg. Infect. Dis. 2021, 27, 2825–2835. [Google Scholar] [CrossRef]
- Chen, C.; Wu, F. Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) Colonisation and Infection among Livestock Workers and Veterinarians: A Systematic Review and Meta-Analysis. Occup Environ. Med 2021, 78, 530–540. [Google Scholar] [CrossRef]
- Breyre, A.; Frazee, B.W. Skin and Soft Tissue Infections in the Emergency Department. Emerg. Med. Clin. N. Am. 2018, 36, 723–750. [Google Scholar] [CrossRef]
- Hoppe, P.-A.; Holzhauer, S.; Lala, B.; Bührer, C.; Gratopp, A.; Hanitsch, L.G.; Humme, D.; Kieslich, M.; Kallinich, T.; Lau, S.; et al. Severe Infections of Panton-Valentine Leukocidin Positive Staphylococcus aureus in Children. Medicine 2019, 98, e17185. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.A.; Resende, C.A.; Ormonde, L.R.; Rosenbaum, R.; Figueiredo, A.M.; de Lencastre, H.; Tomasz, A. Geographic Spread of Epidemic Multiresistant Staphylococcus aureus Clone in Brazil. J. Clin. Microbiol. 1995, 33, 2400–2404. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.C.N.; Silva-Carvalho, M.C.; Ferreira, R.L.; Coelho, L.R.; Souza, R.R.; Gobbi, C.N.; Rozenbaum, R.; Solari, C.A.; Ferreira-Carvalho, B.T.; Figueiredo, A.M.S. Detection and Molecular Characterization of a Gentamicin-Susceptible, Methicillin-Resistant Staphylococcus aureus (MRSA) Clone in Rio de Janeiro That Resembles the New York/Japanese Clone. J. Hosp. Infect. 2004, 58, 276–285. [Google Scholar] [CrossRef]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The Evolutionary History of Methicillin-Resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef]
- Roberts, R.B.; Chung, M.; de Lencastre, H.; Hargrave, J.; Tomasz, A.; Nicolau, D.P.; John, J.F.; Korzeniowski, O.; Group, T.-S.M.C.S. Distribution of Methicillin-Resistant Staphylococcus aureus Clones among Health Care Facilities in Connecticut, New Jersey, and Pennsylvania. Microb. Drug Resist. 2000, 6, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Côrtes, M.F.; Botelho, A.M.N.; Bandeira, P.T.; Mouton, W.; Badiou, C.; Bes, M.; Lima, N.C.B.; Soares, A.E.R.; Souza, R.C.; Almeida, L.G.P.; et al. Reductive Evolution of Virulence Repertoire to Drive the Divergence between Community- and Hospital-Associated Methicillin-Resistant Staphylococcus aureus of the ST1 Lineage. Virulence 2021, 12, 951–967. [Google Scholar] [CrossRef]
- Planet, P.J.; Diaz, L.; Kolokotronis, S.-O.; Narechania, A.; Reyes, J.; Xing, G.; Rincon, S.; Smith, H.; Panesso, D.; Ryan, C.; et al. Parallel Epidemics of Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Infection in North and South America. J. Infect. Dis. 2015, 212, 1874–1882. [Google Scholar] [CrossRef]
- Challagundla, L.; Reyes, J.; Rafiqullah, I.; Sordelli, D.O.; Echaniz-Aviles, G.; Velazquez-Meza, M.E.; Castillo-Ramírez, S.; Fittipaldi, N.; Feldgarden, M.; Chapman, S.B.; et al. Phylogenomic Classification and the Evolution of Clonal Complex 5 Methicillin-Resistant Staphylococcus aureus in the Western Hemisphere. Front. Microbiol. 2018, 9, 1901. [Google Scholar] [CrossRef]
- Gu, F.; He, W.; Xiao, S.; Wang, S.; Li, X.; Zeng, Q.; Ni, Y.; Han, L. Antimicrobial Resistance and Molecular Epidemiology of Staphylococcus aureus Causing Bloodstream Infections at Ruijin Hospital in Shanghai from 2013 to 2018. Sci. Rep. 2020, 10, 6019. [Google Scholar] [CrossRef]
- Tkadlec, J.; Capek, V.; Brajerova, M.; Smelikova, E.; Melter, O.; Bergerova, T.; Polivkova, S.; Balejova, M.; Hanslianova, M.; Fackova, D.; et al. The Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus (MRSA) in the Czech Republic. J. Antimicrob. Chemother. 2021, 76, 55–64. [Google Scholar] [CrossRef]
- Shoaib, M.; Aqib, A.I.; Muzammil, I.; Majeed, N.; Bhutta, Z.A.; Kulyar, M.F.-A.; Fatima, M.; Zaheer, C.-N.F.; Muneer, A.; Murtaza, M.; et al. MRSA Compendium of Epidemiology, Transmission, Pathophysiology, Treatment, and Prevention within One Health Framework. Front. Microbiol. 2023, 13, 1067284. [Google Scholar] [CrossRef] [PubMed]
- de Lencastre, H.; de Lencastre, A.; Tomasz, A. Methicillin-Resistant Staphylococcus aureus Isolates Recovered from a New York City Hospital: Analysis by Molecular Fingerprinting Techniques. J. Clin. Microbiol 1996, 34, 2121–2124. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.B.; de Lencastre, A.; Eisner, W.; Severina, E.P.; Shopsin, B.; Kreiswirth, B.N.; Tomasz, A. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in 12 New York Hospitals. MRSA Collaborative Study Group. J. Infect. Dis. 1998, 178, 164–171. [Google Scholar] [CrossRef]
- da Silva Coimbra, M.V.; Silva-Carvalho, M.C.; Wisplinghoff, H.; Hall, G.O.; Tallent, S.; Wallace, S.; Edmond, M.B.; Figueiredo, A.M.S.; Wenzel, R.P. Clonal Spread of Methicillin-Resistant Staphylococcus aureus in a Large Geographic Area of the United States. J. Hosp. Infect. 2003, 53, 103–110. [Google Scholar] [CrossRef]
- Ohkura, T.; Yamada, K.; Okamoto, A.; Baba, H.; Ike, Y.; Arakawa, Y.; Hasegawa, T.; Ohta, M. Nationwide Epidemiological Study Revealed the Dissemination of Meticillin-Resistant Staphylococcus aureus Carrying a Specific Set of Virulence-Associated Genes in Japanese Hospitals. J. Med. Microbiol. 2009, 58, 1329–1336. [Google Scholar] [CrossRef]
- Loaiza, W.M.; Ruiz, A.K.R.; Patiño, C.C.O.; Vivas, M.C. Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. Acta Med. 2023, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sá-Leão, R.; Santos Sanches, I.; Dias, D.; Peres, I.; Barros, R.M.; de Lencastre, H. Detection of an Archaic Clone of Staphylococcus aureus with Low-Level Resistance to Methicillin in a Pediatric Hospital in Portugal and in International Samples: Relics of a Formerly Widely Disseminated Strain? J. Clin. Microbiol. 1999, 37, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, O.P.; Silva-Carvalho, M.C.; Ribeiro, A.; Portela, F.; Cordeiro, R.P.; Caetano, N.; Vidal, C.F.L.; Figueiredo, A.M.S. Emergence in Brazil of Methicillin-Resistant Staphylococcus aureus Isolates Carrying SCCmecIV That Are Related Genetically to the USA800 Clone. Clin. Microbiol. Infect. 2007, 13, 1166–1172. [Google Scholar] [CrossRef]
- De Sousa-Junior, F.C.; Silva-Carvalho, M.C.; Fernandes, M.J.B.C.; Vieira, M.F.P.; Pellegrino, F.L.P.C.; Figueiredo, A.M.S.; de Melo, M.C.N.; Milan, E.P.; de Sousa-Junior, F.C.; Silva-Carvalho, M.C.; et al. Genotyping of Methicillin-Resistant Staphylococcus aureus Isolates Obtained in the Northeast Region of Brazil. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas E Biol. 2009, 42, 877–881. [Google Scholar] [CrossRef]
- Pereira, V.C.; Riboli, D.F.M.; Da Cunha, M.D.L.R.D.S. Characterization of the Clonal Profile of MRSA Isolated in Neonatal and Pediatric Intensive Care Units of a University Hospital. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 50. [Google Scholar] [CrossRef]
- Rokney, A.; Baum, M.; Ben-Shimol, S.; Sagi, O.; Anuka, E.; Agmon, V.; Greenberg, D.; Valinsky, L.; Danino, D. Dissemination of the Methicillin-Resistant Staphylococcus aureus Pediatric Clone (ST5-T002-IV-PVL+) as a Major Cause of Community-Associated Staphylococcal Infections in Bedouin Children, Southern Israel. Pediatr. Infect. Dis. J. 2019, 38, 230–235. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, D.A.; Grillo, S.; Carrera-Salinas, A.; González-Díaz, A.; Cuervo, G.; Grau, I.; Camoez, M.; Martí, S.; Berbel, D.; Tubau, F.; et al. Molecular Epidemiology, Antimicrobial Susceptibility, and Clinical Features of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections over 30 Years in Barcelona, Spain (1990–2019). Microorganisms 2022, 10, 2401. [Google Scholar] [CrossRef] [PubMed]
- Sola, C.; Gribaudo, G.; Vindel, A.; Patrito, L.; Bocco, J.L. Identification of a Novel Methicillin-Resistant Staphylococcus aureus Epidemic Clone in Córdoba, Argentina, Involved in Nosocomial Infections. J. Clin. Microbiol. 2002, 40, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, O.; Bongiorno, D.; Bertoncello, L.; Grandesso, S.; Mazzucato, S.; Pozzan, G.B.; Cutrone, M.; Chirico, M.; Baesso, F.; Brugnaro, P.; et al. Rapid Containment of Nosocomial Transmission of a Rare Community-Acquired Methicillin-Resistant Staphylococcus aureus (CA-MRSA) Clone, Responsible for the Staphylococcal Scalded Skin Syndrome (SSSS). Ital. J. Pediatr. 2017, 43, 5. [Google Scholar] [CrossRef] [PubMed]
- Lina, G.; Durand, G.; Berchich, C.; Short, B.; Meugnier, H.; Vandenesch, F.; Etienne, J.; Enright, M.C. Staphylococcal Chromosome Cassette Evolution in Staphylococcus aureus Inferred from Ccr Gene Complex Sequence Typing Analysis. Clin. Microbiol. Infect. 2006, 12, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Sola, C.; Paganini, H.; Egea, A.L.; Moyano, A.J.; Garnero, A.; Kevric, I.; Culasso, C.; Vindel, A.; Lopardo, H.; Bocco, J.L.; et al. Spread of Epidemic MRSA-ST5-IV Clone Encoding PVL as a Major Cause of Community Onset Staphylococcal Infections in Argentinean Children. PLoS ONE 2012, 7, e30487. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Sievert, D.M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J.; et al. Infection with Vancomycin-Resistant Staphylococcus aureus Containing the vanA Resistance Gene. N. Engl. J. Med. 2003, 348, 1342–1347. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Staphylococcus aureus Resistant to Vancomycin—United States, 2002. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 565–567. [Google Scholar]
- Kos, V.N.; Desjardins, C.A.; Griggs, A.; Cerqueira, G.; Van Tonder, A.; Holden, M.T.G.; Godfrey, P.; Palmer, K.L.; Bodi, K.; Mongodin, E.F.; et al. Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States. mBio 2012, 3, e00112-12. [Google Scholar] [CrossRef]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin Resistant Staphylococcus aureus Infections: A Review of Case Updating and Clinical Features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef]
- Haas, W.; Singh, N.; Lainhart, W.; Mingle, L.; Nazarian, E.; Mitchell, K.; Nattanmai, G.; Kohlerschmidt, D.; Dickinson, M.C.; Kacica, M.; et al. Genomic Analysis of Vancomycin-Resistant Staphylococcus aureus Isolates from the 3rd Case Identified in the United States Reveals Chromosomal Integration of the vanA Locus. Microbiol. Spectr. 2023, 11, e04317-22. [Google Scholar] [CrossRef] [PubMed]
- Limbago, B.M.; Kallen, A.J.; Zhu, W.; Eggers, P.; McDougal, L.K.; Albrecht, V.S. Report of the 13th Vancomycin-Resistant Staphylococcus aureus Isolate from the United States. J. Clin. Microbiol. 2014, 52, 998–1002. [Google Scholar] [CrossRef]
- Di Gregorio, S.; Haim, M.S.; Famiglietti, Á.M.R.; Di Conza, J.; Mollerach, M. Comparative Genomics Identifies Novel Genetic Changes Associated with Oxacillin, Vancomycin and Daptomycin Susceptibility in ST100 Methicillin-Resistant Staphylococcus aureus. Antibiotics 2023, 12, 372. [Google Scholar] [CrossRef]
- Alfouzan, W.A.; Boswihi, S.S.; Udo, E.E. Methicillin-Resistant Staphylococcus aureus (MRSA) in a Tertiary Care Hospital in Kuwait: A Molecular and Genetic Analysis. Microorganisms 2023, 12, 17. [Google Scholar] [CrossRef]
- Garrine, M.; Costa, S.S.; Messa, A.; Massora, S.; Vubil, D.; Ácacio, S.; Nhampossa, T.; Bassat, Q.; Mandomando, I.; Couto, I. Antimicrobial Resistance and Clonality of Staphylococcus aureus Causing Bacteraemia in Children Admitted to the Manhiça District Hospital, Mozambique, over Two Decades. Front. Microbiol. 2023, 14, 1208131. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, L.; Chen, T.; Chen, W.; Ge, Y.; Bi, J.; Fang, Z.; Chen, M. Prevalence and WGS-Based Characteristics of MRSA Isolates in Hospitals in Shanghai, China. Front. Microbiol. 2022, 13, 1002691. [Google Scholar] [CrossRef] [PubMed]
- Kaku, N.; Sasaki, D.; Ota, K.; Miyazaki, T.; Yanagihara, K. Changing Molecular Epidemiology and Characteristics of MRSA Isolated from Bloodstream Infections: Nationwide Surveillance in Japan in 2019. J. Antimicrob. Chemother. 2022, 77, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Phokhaphan, P.; Tongsima, S.; Ngamphiw, C.; Phornsiricharoenphant, W.; Ruangchai, W.; Disratthakit, A.; Tingpej, P.; Mahasirimongkol, S.; Lulitanond, A.; et al. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Genotype ST764-SCCmec Type II in Thailand. Sci. Rep. 2022, 12, 2085. [Google Scholar] [CrossRef]
- Chung, M.; Dickinson, G.; de Lencastre, H.; Tomasz, A. International Clones of Methicillin-Resistant Staphylococcus aureus in Two Hospitals in Miami, Florida. J. Clin. Microbiol. 2004, 42, 542–547. [Google Scholar] [CrossRef]
- David, M.Z.; Rudolph, K.M.; Hennessy, T.W.; Zychowski, D.L.; Asthi, K.; Boyle-Vavra, S.; Daum, R.S. MRSA USA300 at Alaska Native Medical Center, Anchorage, Alaska, USA, 2000–2006. Emerg. Infect. Dis. 2012, 18, 105–108. [Google Scholar] [CrossRef]
- Read, T.D.; Jacko, N.F.; Petit, R.A.; Pegues, D.A.; David, M.Z. 852. Genomic Clusters of Methicillin-Resistant Staphylococcus aureus (MRSA) Causing Bloodstream Infections (BSIs) in Hospitalized Adults, 2018-19. Open Forum Infect. Dis. 2020, 7, S466–S467. [Google Scholar] [CrossRef]
- Martínez, J.R.; Planet, P.J.; Maria, S.-S.; Lina, R.; Lorena, D.; Ana, Q.-V.; Roberto, R.-N.; Manuel, A.-R.; Blake, H.; Carvajal, L.P.; et al. Dynamics of the MRSA Population in A Chilean Hospital: A Phylogenomic Analysis (2000–2016). Microbiol. Spectr. 2023, 11, e05351-22. [Google Scholar] [CrossRef] [PubMed]
- Bouiller, K.; Jacko, N.F.; Shumaker, M.J.; Talbot, B.M.; Read, T.D.; David, M.Z. Factors Associated with Foreign Body Infection in Methicillin-Resistant Staphylococcus aureus Bacteremia. Front. Immunol. 2024, 15, 1335867. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Blanc, D.S.; Petignat, C.; Wenger, A.; Kuhn, G.; Vallet, Y.; Fracheboud, D.; Trachsel, S.; Reymond, M.; Troillet, N.; Siegrist, H.H.; et al. Changing Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Small Geographic Area over an Eight-Year Period. J. Clin. Microbiol. 2007, 45, 3729–3736. [Google Scholar] [CrossRef]
- Verghese, B.; Schwalm, N.D.; Dudley, E.G.; Knabel, S.J. A Combined Multi-Virulence-Locus Sequence Typing and Staphylococcal Cassette Chromosome Mec Typing Scheme Possesses Enhanced Discriminatory Power for Genotyping MRSA. Infect. Genet. Evol. 2012, 12, 1816–1821. [Google Scholar] [CrossRef]
- Peterson, A.E.; Davis, M.F.; Julian, K.G.; Awantang, G.; Greene, W.H.; Price, L.B.; Waters, A.; Doppalapudi, A.; Krain, L.J.; Nelson, K.; et al. Molecular and Phenotypic Characteristics of Healthcare- and Community-Associated Methicillin-Resistant Staphylococcus aureus at a Rural Hospital. PLoS ONE 2012, 7, e38354. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Altman, D.R.; Chacko, K.I.; Ciferri, B.; Webster, E.; Pak, T.R.; Deikus, G.; Lewis-Sandari, M.; Khan, Z.; Beckford, C.; et al. A Complete Genome Screening Program of Clinical Methicillin-Resistant Staphylococcus aureus Isolates Identifies the Origin and Progression of a Neonatal Intensive Care Unit Outbreak. J. Clin. Microbiol. 2019, 57, e01261-19. [Google Scholar] [CrossRef] [PubMed]
- Iregui, A.; Khan, Z.; Malik, S.; Landman, D.; Quale, J. Emergence of Delafloxacin-Resistant Staphylococcus aureus in Brooklyn, New York. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 70, 1758–1760. [Google Scholar] [CrossRef]
- Fischer, A.J.; Porterfield, H.S.; LaMarche, M.M.; Hansen, A.R.; Pitcher, N.; Thurman, A.L.; Reeb, V.L. Staphylococcus aureus Genome Sequencing Reveals Strains Associated with Persistence and Poor Outcome in CF. Am. J. Respir. Crit. Care Med. 2020, 201, A7457. [Google Scholar]
- Porterfield, H.S.; Maakestad, L.J.; LaMarche, M.M.; Thurman, A.L.; Kienenberger, Z.E.; Pitcher, N.J.; Hansen, A.R.; Zirbes, C.F.; Boyken, L.; Muyskens, B.L.; et al. MRSA Strains with Distinct Accessory Genes Predominate at Different Ages in Cystic Fibrosis. Pediatr. Pulmonol. 2021, 56, 2868–2878. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.O.; Murphy, C.R.; Spratt, B.G.; Enright, M.C.; Elkins, K.; Nguyen, C.; Terpstra, L.; Gombosev, A.; Kim, D.; Hannah, P.; et al. Diversity of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated from Inpatients of 30 Hospitals in Orange County, California. PLoS ONE 2013, 8, e62117. [Google Scholar] [CrossRef] [PubMed]
- Campanile, F.; Bongiorno, D.; Perez, M.; Mongelli, G.; Sessa, L.; Benvenuto, S.; Gona, F.; Varaldo, P.E.; Stefani, S. Epidemiology of Staphylococcus aureus in Italy: First Nationwide Survey, 2012. J. Glob. Antimicrob. Resist. 2015, 3, 247–254. [Google Scholar] [CrossRef]
- Nikolaras, G.P.; Papaparaskevas, J.; Samarkos, M.; Tzouvelekis, L.S.; Psychogiou, M.; Pavlopoulou, I.; Goukos, D.; Polonyfi, K.; Pantazatou, A.; Deliolanis, I.; et al. Changes in the Rates and Population Structure of MRSA from Bloodstream Infections. A Single Center Experience (2000–2015). J. Glob. Antimicrob. Resist. 2019, 17, 117–122. [Google Scholar] [CrossRef]
- Espadinha, D.; Faria, N.A.; Miragaia, M.; Lito, L.M.; Melo-Cristino, J.; de Lencastre, H. Extensive Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) between the Hospital and the Community in a Country with a High Prevalence of Nosocomial MRSA. PLoS ONE 2013, 8, e59960. [Google Scholar] [CrossRef]
- Faria, N.A.; Miragaia, M.; de Lencastre, H.; Multi Laboratory Project Collaborators. Massive Dissemination of Methicillin Resistant Staphylococcus aureus in Bloodstream Infections in a High MRSA Prevalence Country: Establishment and Diversification of EMRSA-15. Microb. Drug Resist. 2013, 19, 483–490. [Google Scholar] [CrossRef]
- Almeida, S.T.; Nunes, S.; Paulo, A.C.S.; Faria, N.A.; de Lencastre, H.; Sá-Leão, R. Prevalence, Risk Factors, and Epidemiology of Methicillin-resistantStaphylococcus aureus Carried by Adults over 60 Years of Age. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.A.; Helmersen, K.; Visnovska, T.; Jørgensen, S.B.; Aamot, H.V. Rapid Nanopore-Based DNA Sequencing Protocol of Antibiotic-Resistant Bacteria for Use in Surveillance and Outbreak Investigation. Microb. Genom. 2021, 7, 000557. [Google Scholar] [CrossRef] [PubMed]
- Conceição, T.; Santos Silva, I.; de Lencastre, H.; Aires-de-Sousa, M. Staphylococcus aureus Nasal Carriage Among Patients and Health Care Workers in São Tomé and Príncipe. Microb. Drug Resist. 2014, 20, 57–66. [Google Scholar] [CrossRef]
- Boswihi, S.S.; Udo, E.E.; Al-Sweih, N. Shifts in the Clonal Distribution of Methicillin-Resistant Staphylococcus aureus in Kuwait Hospitals: 1992–2010. PLoS ONE 2016, 11, e0162744. [Google Scholar] [CrossRef]
- Peng, H.; Liu, D.; Ma, Y.; Gao, W. Comparison of Community- and Healthcare-Associated Methicillin-Resistant Staphylococcus aureus Isolates at a Chinese Tertiary Hospital, 2012–2017. Sci. Rep. 2018, 8, 17916. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.; Eckhardt, E.M.; Hansel, N.B.; Rahmani Eliato, T.; Martin, I.W.; Andam, C.P. Genome Evolution of Invasive Methicillin-Resistant Staphylococcus aureus in the Americas. Microbiol. Spectr. 2022, 10, e0020122. [Google Scholar] [CrossRef] [PubMed]
- Zurita, J.; Barba, P.; Ortega-Paredes, D.; Mora, M.; Rivadeneira, S. Local Circulating Clones of Staphylococcus aureus in Ecuador. Braz. J. Infect. Dis. 2016, 20, 525–533. [Google Scholar] [CrossRef]
- van der Heijden, I.M.; de Oliveira, L.M.; Brito, G.C.; Abdala, E.; Freire, M.P.; Rossi, F.; D’Albuquerque, L.A.C.; Levin, A.S.S.; Costa, S.F. Virulence and Resistance Profiles of MRSA Isolates in Pre- and Post-Liver Transplantation Patients Using Microarray. J. Med. Microbiol. 2016, 65, 1060–1073. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Bae, S.; Yang, E.; Chung, H.; Kim, E.; Jung, J.; Kim, M.J.; Chong, Y.P.; Kim, S.-H.; Choi, S.-H.; et al. Clinical and Microbiological Characteristics of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia Caused by a Community-Associated PVL-Negative Strain. Open Forum Infect. Dis. 2021, 8, ofab424. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Greenwood-Quaintance, K.E.; Uhl, J.R.; Cunningham, S.A.; Chia, N.; Jeraldo, P.R.; Sampathkumar, P.; Nelson, H.; Patel, R. Molecular Epidemiology of Staphylococcus aureus Bacteremia in a Single Large Minnesota Medical Center in 2015 as Assessed Using MLST, Core Genome MLST and Spa Typing. PLoS ONE 2017, 12, e0179003. [Google Scholar] [CrossRef]
- Augusto, M.F.; Da Silva Fernandes, D.C.; De Oliveira, T.L.R.; Cavalcante, F.S.; Chamon, R.C.; Ferreira, A.L.P.; Nouér, S.A.; Infection Control Group HUCFF/UFRJ; Rangel, A.P.; Castiñeiras, A.C.; et al. Pandemic Clone USA300 in a Brazilian Hospital: Detection of an Emergent Lineage among Methicillin-Resistant Staphylococcus aureus Isolates from Bloodstream Infections. Antimicrob. Resist. Infect. Control 2022, 11, 114. [Google Scholar] [CrossRef]
- Silva, V.; Hermenegildo, S.; Ferreira, C.; Manaia, C.M.; Capita, R.; Alonso-Calleja, C.; Carvalho, I.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; et al. Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance. Antibiotics 2020, 9, 375. [Google Scholar] [CrossRef]
- Berbel Caban, A.; Pak, T.R.; Obla, A.; Dupper, A.C.; Chacko, K.I.; Fox, L.; Mills, A.; Ciferri, B.; Oussenko, I.; Beckford, C.; et al. PathoSPOT Genomic Epidemiology Reveals Under-the-Radar Nosocomial Outbreaks. Genome Med. 2020, 12, 96. [Google Scholar] [CrossRef]
- Lin, Y.; Barker, E.; Kislow, J.; Kaldhone, P.; Stemper, M.E.; Pantrangi, M.; Moore, F.M.; Hall, M.; Fritsche, T.R.; Novicki, T.; et al. Evidence of Multiple Virulence Subtypes in Nosocomial and Community-Associated MRSA Genotypes in Companion Animals from the Upper Midwestern and Northeastern United States. Clin. Med. Res. 2011, 9, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Couto, N.; Belas, A.; Kadlec, K.; Schwarz, S.; Pomba, C. Clonal Diversity, Virulence Patterns and Antimicrobial and Biocide Susceptibility among Human, Animal and Environmental MRSA in Portugal. J. Antimicrob. Chemother. 2015, 70, 2483–2487. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.; Belas, A.; Marques, C.; Cruz, L.; Gama, L.T.; Pomba, C. Risk Factors for Nasal Colonization by Methicillin-Resistant Staphylococci in Healthy Humans in Professional Daily Contact with Companion Animals in Portugal. Microb. Drug Resist. 2017, 24, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Himsworth, C.G.; Miller, R.R.; Montoya, V.; Hoang, L.; Romney, M.G.; Al-Rawahi, G.N.; Kerr, T.; Jardine, C.M.; Patrick, D.M.; Tang, P.; et al. Carriage of Methicillin-Resistant Staphylococcus aureus by Wild Urban Norway Rats (Rattus Norvegicus). PLoS ONE 2014, 9, e87983. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; de Sousa, T.; Gómez, P.; Sabença, C.; Vieira-Pinto, M.; Capita, R.; Alonso-Calleja, C.; Torres, C.; Capelo, J.L.; Igrejas, G.; et al. Livestock-Associated Methicillin-Resistant Staphylococcus Aureus (MRSA) in Purulent Subcutaneous Lesions of Farm Rabbits. Foods 2020, 9, 439. [Google Scholar] [CrossRef]
- Silva, V.; Ribeiro, J.; Rocha, J.; Manaia, C.M.; Silva, A.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; Igrejas, G.; Poeta, P. High Frequency of the EMRSA-15 Clone (ST22-MRSA-IV) in Hospital Wastewater. Microorganisms 2022, 10, 147. [Google Scholar] [CrossRef]
- Zuma, A.V.P.; Lima, D.F.; Assef, A.P.D.C.D.C.; Marques, E.A.; Leão, R.S. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Blood in Rio de Janeiro Displaying Susceptibility Profiles to Non-β-Lactam Antibiotics. Braz. J. Microbiol. 2017, 48, 237–241. [Google Scholar] [CrossRef]
- Okado, J.B.; Bogni, S.C.; Reinato, L.A.F.; Martinez, R.; Gir, E.; Camargo, I.L.B.D.C. Molecular Analysis of Methicillin-Resistant Staphylococcus aureus Dissemination among Healthcare Professionals and/or HIV Patients from a Tertiary Hospital. Rev. Soc. Bras. Med. Trop. 2016, 49, 51–56. [Google Scholar] [CrossRef]
- Caiaffa-Filho, H.H.; Trindade, P.A.; Gabriela da Cunha, P.; Alencar, C.S.; Prado, G.V.B.B.; Rossi, F.; Levin, A.S. Methicillin-Resistant Staphylococcus aureus Carrying SCCmec Type II Was More Frequent than the Brazilian Endemic Clone as a Cause of Nosocomial Bacteremia. Diagn. Microbiol. Infect. Dis. 2013, 76, 518–520. [Google Scholar] [CrossRef]
- Ferreira, C.; Costa, S.S.; Serrano, M.; Oliveira, K.; Trigueiro, G.; Pomba, C.; Couto, I. Clonal Lineages, Antimicrobial Resistance, and PVL Carriage of Staphylococcus aureus Associated to Skin and Soft-Tissue Infections from Ambulatory Patients in Portugal. Antibiotics 2021, 10, 345. [Google Scholar] [CrossRef]
- Salgueiro, V.; Manageiro, V.; Bandarra, N.M.; Ferreira, E.; Clemente, L.; Caniça, M. Genetic Relatedness and Diversity of Staphylococcus aureus from Different Reservoirs: Humans and Animals of Livestock, Poultry, Zoo, and Aquaculture. Microorganisms 2020, 8, 1345. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, M.M.; Wu, S.W.; Zhou, Y.; Sieradzki, K.; de Lencastre, H.; Richardson, P.; Bruce, D.; Rubin, E.; Myers, E.; Siggia, E.D.; et al. Tracking the In Vivo Evolution of Multidrug Resistance in Staphylococcus aureus by Whole-Genome Sequencing. Proc. Natl. Acad. Sci. USA 2007, 104, 9451–9456. [Google Scholar] [CrossRef] [PubMed]
- Adamu, Y.; Puig-Asensio, M.; Dabo, B.; Schweizer, M.L. Comparative Effectiveness of Daptomycin versus Vancomycin among Patients with Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections: A Systematic Literature Review and Meta-Analysis. PLoS ONE 2024, 19, e0293423. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Melo-Cristino, J.; Resina, C.; Manuel, V.; Lito, L.; Ramirez, M. First Case of Infection with Vancomycin-Resistant Staphylococcus aureus in Europe. Lancet 2013, 382, 205. [Google Scholar] [CrossRef]
- McCulloch, J.A.; de, O. Silveira, A.C.; da C. Lima Moraes, A.; Pérez-Chaparro, P.J.; Ferreira Silva, M.; Almeida, L.M.; D’Azevedo, P.A.; Mamizuka, E.M. Complete Genome Sequence of Staphylococcus aureus FCFHV36, a Methicillin-Resistant Strain Heterogeneously Resistant to Vancomycin. Genome Announc. 2015, 3, e00893-15. [Google Scholar] [CrossRef] [PubMed]
- Viana, A.S.; Botelho, A.M.N.; Feder, A.; Moustafa, A.M.; Santos Silva, D.N.; Martini, C.L.; Ferreira, A.L.P.; Silva-Carvalho, M.C.; Ferreira-Carvalho, B.T.; Planet, P.J.; et al. High Frequency of Increased Triclosan MIC among CC5 MRSA and Risk of Misclassification of the SCC Mec into Types. J. Antimicrob. Chemother. 2022, 77, 3340–3348. [Google Scholar] [CrossRef]
- Dabul, A.N.G.; Camargo, I.L.B.C. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Resistant to Tigecycline and Daptomycin Isolated in a Hospital in Brazil. Epidemiol. Infect. 2018, 142, 479–483. [Google Scholar] [CrossRef]
- Furi, L.; Haigh, R.; Al Jabri, Z.J.H.; Morrissey, I.; Ou, H.Y.; León-Sampedro, R.; Martinez, J.L.; Coque, T.M.; Oggioni, M.R. Dissemination of Novel Antimicrobial Resistance Mechanisms through the Insertion Sequence Mediated Spread of Metabolic Genes. Front. Microbiol. 2016, 7, 1008. [Google Scholar] [CrossRef]
- Vulin, C.; Leimer, N.; Huemer, M.; Ackermann, M.; Zinkernagel, A.S. Prolonged Bacterial Lag Time Results in Small Colony Variants That Represent a Sub-Population of Persisters. Nat. Commun. 2018, 9, 4074. [Google Scholar] [CrossRef]
- Esteves, M.A.C.; Viana, A.S.; Viçosa, G.N.; Botelho, A.M.N.; Moustafa, A.M.; Mansoldo, F.R.P.; Ferreira, A.L.P.; Vermelho, A.B.; Ferreira-Carvalho, B.T.; Planet, P.J.; et al. RdJ Detection Tests to Identify a Unique MRSA Clone of ST105-SCCmecII Lineage and Its Variants Disseminated in the Metropolitan Region of Rio de Janeiro. Front. Microbiol. 2023, 14, 1275918. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, P.T.; Viana, A.S.; Côrtes, A.F.; Botelho, A.M.N.; Tasse, J.; Guimarães, M.A.; Abreu, U.d.S.; Lima, J.E.; Laurent, F.; Planet, P.J.; et al. Spl Proteases Modulate Important Virulence Attributes of Staphylococcus aureus. Virulence, 2024; Submitted manuscript. [Google Scholar]
- Guillén, R.; Salinas, C.; Mendoza-Álvarez, A.; Rubio Rodríguez, L.A.; Díaz-de Usera, A.; Lorenzo-Salazar, J.M.; González-Montelongo, R.; Flores, C.; Rodríguez, F. Genomic Epidemiology of the Primary Methicillin-Resistant Staphylococcus aureus Clones Causing Invasive Infections in Paraguayan Children. Microbiol. Spectr. 2024, 12, e03012-23. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Chong, Y.P.; Park, H.J.; Park, K.-H.; Moon, S.M.; Jeong, J.-Y.; Kim, M.-N.; Kim, S.-H.; Lee, S.-O.; Choi, S.-H.; et al. Agr Dysfunction and Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia in Patients with Removed Eradicable Foci. Infection 2013, 41, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Smeltzer, M.S. Staphylococcus aureus Pathogenesis: The Importance of Reduced Cytotoxicity. Trends Microbiol. 2016, 24, 681–682. [Google Scholar] [CrossRef]
- Lee, S.O.; Lee, S.; Lee, J.E.; Song, K.-H.; Kang, C.K.; Wi, Y.M.; San-Juan, R.; López-Cortés, L.E.; Lacoma, A.; Prat, C.; et al. Dysfunctional Accessory Gene Regulator (Agr) as a Prognostic Factor in Invasive Staphylococcus aureus Infection: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 20697. [Google Scholar] [CrossRef]
- Figueiredo, A.M. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in Hospitals of Metropolitan Region of Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro: Rio de Janeiro, RJ, Brazil, 2024; Manuscript in preparation. [Google Scholar]
MLST-SCCmec | Common Name | Other Name | Geographical Spread * |
---|---|---|---|
(CC5)ST5-SCCmecI | ChC/EMRSA-3 | Chilean-Cordobes clone/Epidemic MRSA-3 | South America/Europe |
(CC5)ST5-SCCmecII | USA100 | New York/Japan clone | All continents |
(CC5)ST5-SCCmecIV | USA800 | Pediatric clone | All continents |
(CC5)ST225-SCCmecI | - | South German clone | Europe |
(CC8)ST8-SCCmecIV-PVL- | USA500 | - | USA |
(CC8)ST8-SCCmecIV-ACME+/COMER+ | USA300 | USA300-NAE/USA300-LAE | Europe, North America/South America |
(CC8)ST239-SCCmecIII | BEC | Brazilian epidemic clone, Hungarian clone | South America, Europe, Asia |
(CC30)ST30-SCCmecIV | USA1100 | Southwest Pacific clone | Oceania, South America, Europe |
(CC30)ST36-SCCmecII | USA200 (EMRSA-16) | - | Europe |
Author, Year | Geographic Region | Population Studied | ST105 n (%) |
---|---|---|---|
Almeida et al. (2015) [70] | Portugal | One healthcare center/colonization in patients ˃60 years old | 27 (43.5%) |
Blanc et al. (2007) [58] | Western Switzerland | One reference laboratory/clinical isolates | 655 (32.0%) |
Viana et al. (2021) [11] | Rio de Janeiro, Brazil | 51 hospitals/colonization and nosocomial infections | 82/179 (45.8%) |
Verghese et al. (2012) [59] | Pennsylvania, USA | One hospital/colonization | 15 (22.5%) |
Faria et al. (2013) [69] | Portugal | 12 hospitals/BSI | 18 (18.%) |
Espadinha et al. (2013) [68] | Portugal | One hospital/nosocomial infections and nine healthcare centers/community SSTI | 30 (16.5%) |
Read et al. (2020) [54] | Philadelphia, USA | Two hospitals/BSI | 16 (15%) |
Sullivan et al. (2019) [61] | New York, USA | One hospital/BSI | 18 (13.5%) |
Peterson et al. (2012) [60] | Pennsylvania, USA | One hospital/colonization | 11 (11.7%) |
Himsworth et al. (2014) [87] | Vancouver, Canada | Downtown Eastside (DTES) neighborhood/colonization in rats | 2 (9.1%) |
Lin et al. (2011) [84] | USA | Six veterinarian settings/clinical isolates | 2 (8.3%) |
Chung et al. (2004) [52] | Miami, USA | Two hospitals/clinical isolates | 17 (8.4%) |
Conceição et al. (2014) [72] | São Tomé e Príncipe | One hospital/colonization | 1 (7.1%) |
David et al. (2012) [53] | Alaska, USA | One reference laboratory/clinical isolates | 12 (5.3%) |
Hudson et al. (2013) [65] | California, USA | 30 hospitals/clinical isolates | 12 (4.0%) |
Nikolaras et al. (2019) [67] | Athens, Greece | One hospital/BSI | 3 (3.6%) |
Campanile et al. (2015) [66] | Italy | 52 hospitals/nosocomial infections | 2 (1.9%) |
Peng et al. (2018) [74] | Shandong, China | One hospital/clinical isolates | 3 (1.5%) |
Boswihi et al. (2016) [73] | Kuwait | 13 hospitals/clinical isolates and colonization | 2 (0.5%) |
Zuma et al. (2017) [90] | Rio de Janeiro, Brazil | Five hospitals/BSI | 2 (3.3%) |
Okado et al. (2016) [91] | São Paulo, Brazil | One hospital/patients with HIV | 7 (24.1%) |
Arias et al. (2017) [6] | Latin America | 24 hospitals/BSI | 8 (8.3%) |
Porterfield et al. (2021) [64] | Iowa, USA | One hospital/patient with cystic fibrosis | 14 (14.4%) |
Couto et al. (2015) [85] | Portugal | One hospital/BSI | 2 (12.5%) |
Silva et al. (2020) [82] | Portugal | Slaughterhouse/purulent lesions of rabbits | 1 (6.25%) |
Rodrigues et al. (2017) [86] | Portugal | 27 Veterinarian settings/staff colonization | 1 (5.2%) |
Caiaffa-Filho et al. (2013) [92] | São Paulo, Brazil | One hospital/clinical isolates | 4 (66.6%) |
Zurita et al. (2016) [76] | Quito, Ecuador | Three hospitals/clinical isolates | 2 (3.2%) |
Ferreira et al. (2021) [93] | Lisbon, Portugal | One community laboratory/SSTIs | 7 (20.5%) |
Fischer et al. (2020) [63] | USA | One hospital/patients with cystic fibrosis | 14 (14.8%) |
Martinez et al. (2023) [55] | Chile | One hospital/clinical isolates | 119 (14.9%) |
Iregui et al. (2020) [62] | Brooklyn, New York | Seven hospitals/delafloxacin-resistant isolates | 15 (93.7%) |
Salgueiro et al. (2020) [94] | Portugal | Isolates sent to a reference laboratory/community and nosocomial infections | 14 (24%) |
Augusto et al. (2022) [81] | Rio de Janeiro, Brazil | One hospital/BSI | 16 (43.2%) |
Silva et al. (2020) [88] | Portugal | Slaughterhouse/purulent lesions of rabbits | 1 (6.25%) |
Clade | Evolutionary Events | Virulence | Antimicrobial Resistance |
---|---|---|---|
CC5-Basal | Acquisition of SCCmecIVc/SCCmecI/SCCmecII/SCCmecIII | Acquisition of lukSF-PVL, sec, sel and etb; sporadic acquisition of tst | Resistance to penicillin, sporadic vancomycin resistance; independent acquisition of low-dose resistance to triclosan |
CC5-I | Acquisition of SCCmecI, diversification in ST228, ST111, ST1481 | Loss of fnbB | Resistance to fluoroquinolones, macrolides, lincosamides and aminoglycosides |
CC5-IIA | Acquisition of SCCmecII, origin of the New York USA100 clone, diversification in ST1011 | Loss of sep and acquisition of fnbB | Multiple independent acquisition of vancomycin resistance; independent acquisition of low-dose resistance to triclosan |
CC5-IIB | Diversification in ST1011, ST225, ST105, ST125, ST231 and ST496 | Acquisition of sed, sej and ser; loss of splD; acquisition of aur mutation (A1106G) by RdJ clone. | Independent acquisition of low-dose resistance to triclosan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, A.S.; Tótola, L.P.d.V.; Figueiredo, A.M.S. ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents. Antibiotics 2024, 13, 893. https://doi.org/10.3390/antibiotics13090893
Viana AS, Tótola LPdV, Figueiredo AMS. ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents. Antibiotics. 2024; 13(9):893. https://doi.org/10.3390/antibiotics13090893
Chicago/Turabian StyleViana, Alice Slotfeldt, Laís Pires do Valle Tótola, and Agnes Marie Sá Figueiredo. 2024. "ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents" Antibiotics 13, no. 9: 893. https://doi.org/10.3390/antibiotics13090893
APA StyleViana, A. S., Tótola, L. P. d. V., & Figueiredo, A. M. S. (2024). ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents. Antibiotics, 13(9), 893. https://doi.org/10.3390/antibiotics13090893