Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (583)

Search Parameters:
Keywords = climate volatility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1121 KiB  
Review
Molecular Mechanisms of Potato Plant–Virus–Vector Interactions
by Roza Kenzhebekova, Alexandr Pozharskiy, Kamila Adilbayeva and Dilyara Gritsenko
Plants 2025, 14(15), 2282; https://doi.org/10.3390/plants14152282 - 24 Jul 2025
Abstract
Viral infections and their vector dynamics pose a major threat to potatoes (Solanum tuberosum L.) worldwide, urgently needing an integrated understanding of the molecular and ecological interactions in this tripartite system. This review describes the major potato viruses, namely potato virus Y [...] Read more.
Viral infections and their vector dynamics pose a major threat to potatoes (Solanum tuberosum L.) worldwide, urgently needing an integrated understanding of the molecular and ecological interactions in this tripartite system. This review describes the major potato viruses, namely potato virus Y (PVY), the potato leafroll virus (PLRV), and potato virus X (PVX), with an emphasis on their infection and replication strategies in plants, as well as their movement within them. It also discusses plant responses to these viruses by uncovering RNA silencing, resistance (R) genes, and hormonal signaling. The complex dynamics of virus–vector interactions are discussed, considering the modes of transmission-persistent, non-persistent and semi-persistent—the role of viral proteins such as HC-Pro in determining vector specificity and adaptations in vectors that facilitate virus dissemination. This article discusses how vectors select potato plants, with an emphasis on the role played by plant-excreted volatiles and vector-applied saliva in plant defense. It also discusses host genes that contribute to vector resistance. This review provides an overview of the interactions between potato plants, viruses, and vectors and shows how viruses influence plant–vector interactions, the molecular pathways shared, and the altered gene expression profiles due to these interactions. The review offers an integrated perspective essential for developing sustainable and precise control strategies against potato viral pathogens under changing climatic conditions. Full article
(This article belongs to the Special Issue Plant–Microbe Interaction)
Show Figures

Figure 1

30 pages, 9268 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

26 pages, 1579 KiB  
Article
Forecasting Infrastructure Needs, Environmental Impacts, and Dynamic Pricing for Electric Vehicle Charging
by Osama Jabr, Ferheen Ayaz, Maziar Nekovee and Nagham Saeed
World Electr. Veh. J. 2025, 16(8), 410; https://doi.org/10.3390/wevj16080410 - 22 Jul 2025
Abstract
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on [...] Read more.
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on oil-based fuels. The continued use of diesel and petrol raises concerns related to oil costs, supply security, GHG emissions, and the release of air pollutants and volatile organic compounds. This study explored electric vehicle (EV) charging networks by assessing environmental impacts through GHG and petroleum savings, developing dynamic pricing strategies, and forecasting infrastructure needs. A substantial dataset of over 259,000 EV charging records from Palo Alto, California, was statistically analysed. Machine learning models were applied to generate insights that support sustainable and economically viable electric transport planning for policymakers, urban planners, and other stakeholders. Findings indicate that GHG and gasoline savings are directly proportional to energy consumed, with conversion rates of 0.42 kg CO2 and 0.125 gallons per kilowatt-hour (kWh), respectively. Additionally, dynamic pricing strategies such as a 20% discount on underutilised days and a 15% surcharge during peak hours are proposed to optimise charging behaviour and improve station efficiency. Full article
Show Figures

Figure 1

25 pages, 4762 KiB  
Article
Supply Chain Capability and Performance Under Environmental Uncertainty: The Mediating Role of Multidimensional Resilience
by Jiaqi Wang, Yanfeng Liu and Jing Li
Systems 2025, 13(8), 618; https://doi.org/10.3390/systems13080618 - 22 Jul 2025
Viewed by 64
Abstract
Global supply chains face unprecedented challenges from geopolitical conflicts, climate change, economic volatility, and technological disruptions, highlighting the critical role of supply chain resilience as a core strategy for firms to maintain stability and competitive advantage. Grounded in the resource-based view and dynamic [...] Read more.
Global supply chains face unprecedented challenges from geopolitical conflicts, climate change, economic volatility, and technological disruptions, highlighting the critical role of supply chain resilience as a core strategy for firms to maintain stability and competitive advantage. Grounded in the resource-based view and dynamic capability theory, this study examines how supply chain capability—that is, entrepreneurial leadership, collaborative capability, and digital transformation—enhances resilience, which mediates its impact on performance. Using structural equation modeling on survey data from Chinese firms, we find that resilience, comprising absorptive, reactive, and recovery capability, significantly mediates the relationship between supply chain capability and performance. Environmental uncertainty moderates this relationship, particularly in highly uncertain contexts, where resilience becomes a key driver of competitive advantage. Theoretically, this study extends dynamic capability theory by disaggregating resilience and exploring its mediating role. Practically, it emphasizes strengthening entrepreneurial leadership, collaborative capability, and digital transformation to improve resilience and performance in uncertain environments. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

34 pages, 712 KiB  
Review
Transformation of Demand-Response Aggregator Operations in Future US Electricity Markets: A Review of Technologies and Open Research Areas with Game Theory
by Styliani I. Kampezidou and Dimitri N. Mavris
Appl. Sci. 2025, 15(14), 8066; https://doi.org/10.3390/app15148066 - 20 Jul 2025
Viewed by 143
Abstract
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how [...] Read more.
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how demand–response (DR) aggregators and distributed loads can support these climate goals while addressing critical operational challenges. We hypothesize that current DR aggregator frameworks fall short in the areas of distributed load operational flexibility, scalability with the number of distributed loads (prosumers), prosumer privacy preservation, DR aggregator and prosumer competition, and uncertainty management, limiting their potential to enable large-scale prosumer participation. Using a systematic review methodology, we evaluate existing DR aggregator and prosumer frameworks through the proposed FCUPS criteria—flexibility, competition, uncertainty quantification, privacy, and scalability. The main results highlight significant gaps in current frameworks: limited support for decentralized operations; inadequate privacy protections for prosumers; and insufficient capabilities for managing competition, uncertainty, and flexibility at scale. We conclude by identifying open research directions, including the need for game-theoretic and machine learning approaches that ensure privacy, scalability, and robust market participation. Addressing these gaps is essential to shape future research agendas and to enable DR aggregators to contribute meaningfully to US climate targets. Full article
Show Figures

Figure 1

22 pages, 825 KiB  
Review
Research on the Emission of Biogenic Volatile Organic Compounds from Terrestrial Vegetation
by Dingyi Pei, Anzhi Wang, Lidu Shen and Jiabing Wu
Atmosphere 2025, 16(7), 885; https://doi.org/10.3390/atmos16070885 - 19 Jul 2025
Viewed by 263
Abstract
Biogenic volatile organic compounds (BVOCs) are low-boiling-point compounds commonly synthesized by secondary metabolic pathways in plants. As key precursors of ozone (O3) and secondary organic aerosols (SOA), BVOCs play a critical role in ecosystem-atmosphere interactions. However, their emission from both marine [...] Read more.
Biogenic volatile organic compounds (BVOCs) are low-boiling-point compounds commonly synthesized by secondary metabolic pathways in plants. As key precursors of ozone (O3) and secondary organic aerosols (SOA), BVOCs play a critical role in ecosystem-atmosphere interactions. However, their emission from both marine and terrestrial ecosystems, as well as their association with climate and the environment, remain poorly characterized. In light of recent advances in BVOC research, including the establishment of emission inventories, identification of driving factors, and evaluation of ecological and environmental impacts, this study reviews the latest advancements in the field. The findings underscore that the carbon losses via BVOC emission should not be overlooked when estimating the terrestrial carbon balance. Additionally, more work needs to be conducted to quantify the emission factors of specific tree species and to establish links between BVOC emission and climate or environment change. This study contributes to a deeper understanding of vegetation ecology and its environmental functions. Full article
(This article belongs to the Special Issue Atmospheric Particulate Matter: Origin, Sources, and Composition)
Show Figures

Figure 1

19 pages, 1567 KiB  
Review
Design Efficiency: A Critical Perspective on Testing Methods for Solar-Driven Photothermal Evaporation and Photocatalysis
by Hady Hamza, Maria Vittoria Diamanti, Vanni Lughi, Sergio Rossi and Daniela Meroni
Nanomaterials 2025, 15(14), 1121; https://doi.org/10.3390/nano15141121 - 18 Jul 2025
Viewed by 241
Abstract
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified [...] Read more.
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified water. Despite advancements, challenges persist, particularly in addressing volatile contaminants and biofouling, which can compromise long-term performance. The integration of photocatalysts into solar-driven interfacial evaporators has been proposed as a solution, enabling pollutant degradation and microbial inactivation while enhancing water transport and self-cleaning properties. This review critically assesses testing methodologies for solar-driven interfacial evaporators incorporating both photothermal and photocatalytic functions. While previous studies have examined materials and system design, the added complexity of photocatalysis necessitates new testing approaches. First, solar still setups are analyzed, particularly concentrating on the selection of materials and geometry for the transparent cover and water-collecting surfaces. Then, performance evaluation tests are discussed, with focus on the types of tested pollutants and analytical techniques. Finally, key challenges are presented, providing insights for future advancements in sustainable water purification. Full article
(This article belongs to the Special Issue Degradation of Pollutants by Nanostructured Photocatalysts)
Show Figures

Graphical abstract

16 pages, 19476 KiB  
Article
Photochemical Ozone Production Along Flight Trajectories in the Upper Troposphere and Lower Stratosphere and Route Optimisation
by Allan W. Foster, Richard G. Derwent, M. Anwar H. Khan, Dudley E. Shallcross, Mark H. Lowenberg and Rukshan Navaratne
Atmosphere 2025, 16(7), 858; https://doi.org/10.3390/atmos16070858 - 14 Jul 2025
Viewed by 181
Abstract
Aviation is widely recognised to have global-scale climate impacts through the formation of ozone (O3) in the upper troposphere and lower stratosphere (UTLS), driven by emissions of nitrogen oxides (NOX). Ozone is known to be one of the most [...] Read more.
Aviation is widely recognised to have global-scale climate impacts through the formation of ozone (O3) in the upper troposphere and lower stratosphere (UTLS), driven by emissions of nitrogen oxides (NOX). Ozone is known to be one of the most potent greenhouse gases formed from the interaction of aircraft emission plumes with atmospheric species. This paper follows up on previous research, where a Photochemical Trajectory Model was shown to be a robust measure of ozone formation along flight trajectories post-flight. We use a combination of a global Lagrangian chemistry-transport model and a box model to quantify the impacts of aircraft NOX on UTLS ozone over a five-day timescale. This work expands on the spatial and temporal range, as well as the chemical accuracy reported previously, with a greater range of NOX chemistry relevant chemical species. Based on these models, route optimisation has been investigated, through the use of network theory and algorithms. This is to show the potential inclusion of an understanding of climate-sensitive regions of the atmosphere on route planning can have on aviation’s impact on Earth’s Thermal Radiation balance with existing resources and technology. Optimised flight trajectories indicated reductions in O3 formation per unit NOX are in the range 1–40% depending on the spatial aspect of the flight. Temporally, local winter times and equatorial regions are generally found to have the most significant O3 formation per unit NOX; moreover, hotspots were found over the Pacific and Indian Ocean. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

27 pages, 4635 KiB  
Review
Harnessing Multi-Omics and Predictive Modeling for Climate-Resilient Crop Breeding: From Genomes to Fields
by Adnan Amin, Wajid Zaman and SeonJoo Park
Genes 2025, 16(7), 809; https://doi.org/10.3390/genes16070809 - 10 Jul 2025
Viewed by 507
Abstract
The escalating impacts of climate change pose significant threats to global agriculture, necessitating a rapid development of climate-resilient crop varieties. The integration of multi-omics technologies—such as genomics, transcriptomics, proteomics, metabolomics, and phenomics—has revolutionized our understanding of the intricate molecular networks that govern plant [...] Read more.
The escalating impacts of climate change pose significant threats to global agriculture, necessitating a rapid development of climate-resilient crop varieties. The integration of multi-omics technologies—such as genomics, transcriptomics, proteomics, metabolomics, and phenomics—has revolutionized our understanding of the intricate molecular networks that govern plant stress responses. Coupled with advanced predictive modeling approaches such as machine learning, deep learning, and multi-omics-assisted genomic selection, these integrated frameworks enable accurate genotype-to-phenotype predictions that accelerate breeding for augmented stress tolerance. This review comprehensively synthesizes the current strategies for multi-omics data integration, highlighting computational tools, conceptual frameworks, and challenges in harmonizing heterogeneous datasets. We examine the contribution of digital phenotyping platforms and environmental data in dissecting genotype-by-environment interactions critical for climate adaptation resilience. Further, we discuss technical, biological, and ethical challenges, encompassing computational bottlenecks, trait complexity, data standardization, and equitable data sharing. Finally, we outline future directions that prioritize scalable infrastructures, interpretability, and collaborative platforms to facilitate the deployment of multi-omics-guided breeding in diverse agroecological contexts. This integrative approach possesses transformative potential for the development of resilient crops, ensuring agricultural sustainability amidst increasing environmental volatility. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 286
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

23 pages, 1305 KiB  
Systematic Review
Biological Assets in Agricultural Accounting: A Systematic Review of the Application of IAS 41
by Priscila Campos-Llerena, Mauricio Arias-Pérez, Cecilia Toscano-Morales and Carlos Barreno-Córdova
J. Risk Financial Manag. 2025, 18(7), 380; https://doi.org/10.3390/jrfm18070380 - 9 Jul 2025
Viewed by 426
Abstract
The valuation of biological assets represents a crucial component for the generation of accounting information, especially in the context of the agricultural sector, where assets subject to continuous transformation processes predominate. This study aims to analyze, through a systematic review of the literature, [...] Read more.
The valuation of biological assets represents a crucial component for the generation of accounting information, especially in the context of the agricultural sector, where assets subject to continuous transformation processes predominate. This study aims to analyze, through a systematic review of the literature, how the measurement methods established by International Accounting Standard 41 (IAS 41) affect the quality, accuracy, and usefulness of accounting reports. The results show that the correct valuation of biological assets significantly improves strategic and financial decision-making by providing more reliable and representative data on the economic reality of the sector. Finally, the study highlights the main practical challenges in the application of IAS 41, including fair value volatility, the subjectivity of estimates, the limited availability of reliable data, and the need for more flexible accounting frameworks that consider the cultural, climatic, and productive realities of each environment. Based on these findings, the importance of strengthening transparency and accounting disclosure and adapting measurement methods to the particularities of the agricultural sector in order to improve the quality of information and the confidence of external users is highlighted. Full article
(This article belongs to the Special Issue Financial and Sustainability Reporting in a Digital Era, 2nd Edition)
Show Figures

Figure 1

20 pages, 800 KiB  
Article
The Influence of Plant Growth Regulators (PGRs) on Physical and Chemical Characteristics of Hops (Humulus lupulus L.)
by Mengzi Zhang, Nicholas A. Wendrick, Sean M. Campbell, Jacob E. Gazaleh, Heqiang Huo, Katherine A. Thompson-Witrick and Brian J. Pearson
Int. J. Plant Biol. 2025, 16(3), 79; https://doi.org/10.3390/ijpb16030079 - 8 Jul 2025
Viewed by 307
Abstract
Hops (Humulus lupulus L.) are a critical component in beer brewing. The growing demand for craft beer has increased interest in hop cultivation in non-traditional regions where unfavorable climatic conditions hinder optimal yield and quality. To address these challenges, this study investigates [...] Read more.
Hops (Humulus lupulus L.) are a critical component in beer brewing. The growing demand for craft beer has increased interest in hop cultivation in non-traditional regions where unfavorable climatic conditions hinder optimal yield and quality. To address these challenges, this study investigates the effects of plant growth regulators (PGRs) on hop cone yield and chemical compositions. In two separate studies, year-1 Cascade hops were subjected to various PGR treatments in the field. PGR treatments generally had minimal effect on the dry cone yield in study I. In study II, a combination of Ethephon at 45 mg/L and ProGibb at 3 mg/L significantly increased the cone yield by 125% compared to the control. While all treatments had a “good quality” hop storage index, a combination of Ethephon and ProGibb produced alpha acid percentages within the commercial standard range. Ethephon at 30 mg/L combined with ProGibb at 2 mg/L enhanced bitterness and aroma, delivering the highest concentration of volatile organic compounds at 569.7 mg/L, thereby enhancing aroma compounds associated with fruity esters, monoterpenes, and sesquiterpenes. This study demonstrates that specific PGR treatments can improve the chemical composition of hops grown in non-traditional regions, with implications for optimizing aroma and bitterness in beer. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

18 pages, 2771 KiB  
Article
Short-Term Forecasting of Crop Production for Sustainable Agriculture in a Changing Climate
by Vincenzo Guerriero, Anna Rita Scorzini, Bruno Di Lena, Mario Di Bacco and Marco Tallini
Sustainability 2025, 17(13), 6135; https://doi.org/10.3390/su17136135 - 4 Jul 2025
Viewed by 249
Abstract
Globally, crop productive systems exhibit climatic adaptation, resulting in increased overall yields over the past century. Nevertheless, inter-annual fluctuations in production can lead to food price volatility, raising concerns about food security. Within this framework, short-term crop yield predictions informed by climate observations [...] Read more.
Globally, crop productive systems exhibit climatic adaptation, resulting in increased overall yields over the past century. Nevertheless, inter-annual fluctuations in production can lead to food price volatility, raising concerns about food security. Within this framework, short-term crop yield predictions informed by climate observations may significantly contribute to sustainable agricultural development. In this study, we discuss the criteria for historical monitoring and forecasting of the productive system response to climatic fluctuations, both ordinary and extreme. Here, forecasting is intended as an assessment of the conditional probability distribution of crop yield, given the observed value of a key climatic index in an appropriately chosen month of the year. Wheat production in the Teramo province (central Italy) is adopted as a case study to illustrate the approach. To characterize climatic conditions, this study utilizes the Standardized Precipitation Evapotranspiration Index (SPEI) as a key indicator impacting wheat yield. Validation has been carried out by means of Monte Carlo simulations, confirming the effectiveness of the method. The main findings of this study show that the model describing the yield–SPEI relationship has time-varying parameters and that the study of their variation trend allows for an estimate of their current values. These results are of interest from a methodological point of view, as these methods can be adapted to various crop products across different geographical regions, offering a tool to anticipate production figures. This offers effective tools for informed decision-making in support of both agricultural and economic sustainability, with the additional benefit of helping to mitigate price volatility. Full article
Show Figures

Figure 1

24 pages, 625 KiB  
Article
Interaction Between Ethical Leadership, Affective Commitment and Social Sustainability in Transition Economies: A Model Mediated by Ethical Climate and Moderated by Psychological Empowerment in the Colombian Electricity Sector
by Carlos Santiago-Torner, Yirsa Jiménez-Pérez and Elisenda Tarrats-Pons
Sustainability 2025, 17(13), 6068; https://doi.org/10.3390/su17136068 - 2 Jul 2025
Cited by 1 | Viewed by 363
Abstract
This inquiry articulates a conceptually cohesive framework to explore the interplay between ethical leadership–affective commitment, particularly in settings characterized by socio-environmental volatility. Central to the analysis is the examination of how ethical climate functions as a psychological conduit and how psychological empowerment modulates [...] Read more.
This inquiry articulates a conceptually cohesive framework to explore the interplay between ethical leadership–affective commitment, particularly in settings characterized by socio-environmental volatility. Central to the analysis is the examination of how ethical climate functions as a psychological conduit and how psychological empowerment modulates this pathway. Empirical validation was carried out with a sample of 448 employees (175 women, 273 men) from Colombia’s electricity sector, a context where institutional fragility elevates the salience of ethical practices. The study employed structural equation modeling to test the model’s robustness. Results underscore that ethical leadership cultivates a benevolent ethical climate, which in turn reinforces affective commitment. Importantly, this sequence is not fixed but is contingent upon psychological empowerment. The influence of ethical leadership on ethical climate and especially on affective commitment is amplified when empowerment is high; likewise, the ethical climate–affective commitment link becomes more salient under elevated empowerment conditions. These findings highlight the influence of ethical dynamics in organizations. Beyond model validation, this research contributes to broader conversations on social sustainability. Ethical leadership is shown to foster organizational climates rooted in fairness, stakeholder sensitivity, and moral coherence—factors essential for long-term institutional legitimacy. In environments such as Colombia’s electricity industry, where governance infrastructures are evolving, such leadership emerges as a necessary condition for rebuilding trust and promoting shared ethical standards. Accordingly, this study advocates for the systematic cultivation of ethical leadership as a means to enhance organizational loyalty and public credibility. The theoretical model presented here offers fertile ground for cross-cultural replication and further inquiry across industries in emerging economies. Full article
(This article belongs to the Section Psychology of Sustainability and Sustainable Development)
Show Figures

Figure 1

37 pages, 2700 KiB  
Review
A Review of Botany, Phytochemistry, and Biological Activities of Fragaria vesca and Fragaria viridis Widespread in Kazakhstan
by Gayane A. Atazhanova, Gulnissa K. Kurmantayeva, Yana K. Levaya, Margarita Yu Ishmuratova and Marlen K. Smagulov
Plants 2025, 14(13), 2027; https://doi.org/10.3390/plants14132027 - 2 Jul 2025
Viewed by 423
Abstract
According to current taxonomic consensus, the genus Fragaria L. (family Rosaceae) comprises nine recognized species: Fragaria × ananassa (Duchartre ex Weston) Duchesne ex Rozier, Fragaria bucharica Losinsk., Fragaria viridis subsp. campestris (Steven) Pael., Fragaria chiloensis (L.) Mill., Fragaria moschata Duchesne ex Weston, Fragaria [...] Read more.
According to current taxonomic consensus, the genus Fragaria L. (family Rosaceae) comprises nine recognized species: Fragaria × ananassa (Duchartre ex Weston) Duchesne ex Rozier, Fragaria bucharica Losinsk., Fragaria viridis subsp. campestris (Steven) Pael., Fragaria chiloensis (L.) Mill., Fragaria moschata Duchesne ex Weston, Fragaria orientalis Losinsk., Fragaria vesca L., Fragaria virginiana Mill., and Fragaria viridis Duchartre. Within the flora of Kazakhstan, two species are of particular significance: F. vesca L. and F. viridis Weston. The genus Fragaria L. is notable for its high content of diverse classes of biologically active compounds, which exhibit a broad spectrum of pharmacological and physiological activities. This review focuses on two Fragaria species native to the flora of Kazakhstan: F. vesca L. and F. viridis Weston. It summarizes recent advances in their botanical characterization, phytochemical profiling, extraction methodologies, and biological activities. Available evidence indicates that the phytochemical composition of extracts obtained from these species is modulated by a range of environmental and biological factors. These include habitat conditions, climate variability, chemotypic diversity, and the specific extraction protocols applied. Particular emphasis is placed on modern extraction techniques and the identification of low-molecular-weight metabolites. These include anthocyanins, volatile organic compounds, flavonoids, and phenolic acids, which contribute significantly to the observed biological effects. The review findings support the relevance of continued research into the potential application of these species as sources for the development of novel therapeutic and prophylactic agents. In addition, they highlight their promise for use in the formulation of biologically active compounds intended for food supplements and cosmetic products. Full article
Show Figures

Figure 1

Back to TopTop