Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,167)

Search Parameters:
Keywords = city services

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2484 KiB  
Article
Urban Land Revenue and Common Prosperity: An Urban Differential Rent Perspective
by Fang He, Yuxuan Si and Yixi Hu
Land 2025, 14(8), 1606; https://doi.org/10.3390/land14081606 - 6 Aug 2025
Abstract
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common [...] Read more.
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common prosperity, though empirical evidence of its impact is limited. This study explores the potential influence of land utilization revenue disparity on common prosperity from the perspective of urban macro differential rent (UMDR). Utilizing panel data from 280 Chinese cities spanning 2007 to 2020, we discover that UMDR and common prosperity levels exhibit strikingly similar spatiotemporal evolution. Further empirical analysis shows that UMDR significantly raises urban common prosperity levels, with a 0.217 standard unit increase in common prosperity for every 1 standard unit rise in UMDR. This boost stems from enhanced urban prosperity and the sharing of development achievements, encompassing economic growth, improved public services, enhanced ecological civilization, and more equitable distribution of development gains between urban and rural areas and among individuals. Additionally, we observe that UMDR has a more pronounced effect on common prosperity in eastern cities and those with a predominant service industry. This study enhances the comprehension of the relationship between urban land revenue disparities, prosperity, and equitable sharing, presenting a new perspective for the administration to contemplate the utilization of land-based policy tools in pursuit of the common prosperity goal and ultimately achieve sustainable development. Full article
Show Figures

Figure 1

15 pages, 1258 KiB  
Article
Biochar Affects Greenhouse Gas Emissions from Urban Forestry Waste
by Kumuduni Niroshika Palansooriya, Tamanna Mamun Novera, Dengge Qin, Zhengfeng An and Scott X. Chang
Land 2025, 14(8), 1605; https://doi.org/10.3390/land14081605 - 6 Aug 2025
Abstract
Urban forests are vital to cities because they provide a range of ecosystem services, including carbon (C) sequestration, air purification, and urban cooling. However, urban forestry also generates significant amounts of organic waste, such as grass clippings, pruned tree branches, and fallen tree [...] Read more.
Urban forests are vital to cities because they provide a range of ecosystem services, including carbon (C) sequestration, air purification, and urban cooling. However, urban forestry also generates significant amounts of organic waste, such as grass clippings, pruned tree branches, and fallen tree leaves and woody debris that can contribute to greenhouse gas (GHG) emissions if not properly managed. In this study, we investigated the effect of wheat straw biochar (produced at 500 °C) on GHG emissions from two types of urban forestry waste: green waste (GW) and yard waste (YW), using a 100-day laboratory incubation experiment. Overall, GW released more CO2 than YW, but biochar addition reduced cumulative CO2 emissions by 9.8% in GW and by 17.6% in YW. However, biochar increased CH4 emissions from GW and reduced the CH4 sink strength of YW. Biochar also had contrasting effects on N2O emissions, increasing them by 94.3% in GW but decreasing them by 61.4% in YW. Consequently, the highest global warming potential was observed in biochar-amended GW (125.3 g CO2-eq kg−1). Our findings emphasize that the effect of biochar on GHG emissions varies with waste type and suggest that selecting appropriate biochar types is critical for mitigating GHG emissions from urban forestry waste. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
Show Figures

Figure 1

19 pages, 1976 KiB  
Article
Excess Commuting in Rural Minnesota: Ethnic and Industry Disparities
by Woo Jang, Jose Javier Lopez and Fei Yuan
Sustainability 2025, 17(15), 7122; https://doi.org/10.3390/su17157122 - 6 Aug 2025
Abstract
Research on commuting patterns has mainly focused on urban and metropolitan areas, and such studies are not typically applied to rural and small-town regions, where workers often face longer commutes due to limited job opportunities and inadequate public transportation. By using the Census [...] Read more.
Research on commuting patterns has mainly focused on urban and metropolitan areas, and such studies are not typically applied to rural and small-town regions, where workers often face longer commutes due to limited job opportunities and inadequate public transportation. By using the Census Transportation Planning Package (CTPP) data, this research fills that gap by analyzing commuting behavior by ethnic group and industry in south-central Minnesota, which is a predominantly rural area of 13 counties in the United States. The results show that both white and minority groups in District 7 experienced an increase in excess commuting from 2006 to 2016, with the minority group in Nobles County showing a significantly higher rise. Analysis by industry reveals that excess commuting in the leisure and hospitality sector (including arts, entertainment, and food services) in Nobles County increased five-fold during this time, indicating a severe spatial mismatch between jobs and affordable housing. In contrast, manufacturing experienced a decline of 50%, possibly indicating better commuting efficiency or a loss of manufacturing jobs. These findings can help city and transportation planners conduct an in-depth analysis of rural-to-urban commuting patterns and develop potential solutions to improve rural transportation infrastructure and accessibility, such as promoting telecommuting and hybrid work options, expanding shuttle routes, and adding more on-demand transit services in rural areas. Full article
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

19 pages, 4451 KiB  
Article
Assessment of the Payments for Watershed Services Policy from a Perspective of Ecosystem Services: A Case Study of the Liaohe River Basin, China
by Manman Guo, Xu Lu and Qing Ma
Water 2025, 17(15), 2328; https://doi.org/10.3390/w17152328 - 5 Aug 2025
Abstract
Payments for Watershed services (PWSs) have been emerging as a critical tool for environmental governance in watershed, yet their comparative effectiveness across implementation models has remained poorly understood. Based on a comparative analysis of Eco-Compensation (EC) and Payments for Ecosystem Services (PESs) frameworks, [...] Read more.
Payments for Watershed services (PWSs) have been emerging as a critical tool for environmental governance in watershed, yet their comparative effectiveness across implementation models has remained poorly understood. Based on a comparative analysis of Eco-Compensation (EC) and Payments for Ecosystem Services (PESs) frameworks, examining both theoretical foundations and implementation practices, this study aims to quantitatively assess and compare the effectiveness of two dominant PWSs models—the EC-like model (Phase I: October 2008–April 2017) and the PESs-like model (Phase II: 2017–December 2021). Using the Liaohe River in China as a case study, utilizing ecosystem service value (ESV) as an indicator and employing the corrected unit-value transfer method, we compare the effectiveness of different PWSs models from October 2008 to December 2021. The results reveal the following: (1) Policy Efficiency: The PESs-like model demonstrated significantly greater effectiveness than the EC-like model, with annual average increases in ESV of 3.23 billion CNY (491 million USD) and 1.79 billion CNY (272 million USD). (2) Functional Drivers: Water regulation (45.1% of total ESV growth) and climate regulation (24.3%) were dominant services, with PESs-like interventions enhancing multifunctionality. (3) Stakeholder Impact: In the PESs-like model, the cities implementing inter-county direct payment showed higher growth efficiency than those without it. The operational efficiency of PWSs increases with the number of participating stakeholders, which explains why the PESs-like model demonstrates higher effectiveness than the EC-like model. Our findings offer empirical evidence and actionable policy implications for designing effective PWSs models across global watershed ecosystems. Full article
Show Figures

Figure 1

25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Viewed by 42
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Viewed by 182
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 239
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 238
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 285
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Viewed by 118
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

19 pages, 440 KiB  
Article
Cost-Benefit Analysis of Diesel vs. Electric Buses in Low-Density Areas: A Case Study City of Jastrebarsko
by Marko Šoštarić, Marijan Jakovljević, Marko Švajda and Juraj Leonard Vertlberg
World Electr. Veh. J. 2025, 16(8), 431; https://doi.org/10.3390/wevj16080431 - 1 Aug 2025
Viewed by 178
Abstract
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle [...] Read more.
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle acquisition, operation, charging, maintenance, and environmental impact costs during the lifecycle of the buses. The results show that, despite the higher initial investment in electric buses, these vehicles offer savings, especially when coupled with significantly reduced emissions of pollutants, which decreases indirect costs. However, local contexts differ, leading to a need to revise whether or not a municipality can finance the procurement and operations of such a fleet. The paper utilizes a robust methodological framework, integrating a proposal based on real-world data and demand and combining it with predictive analytics to forecast long-term benefits. The findings of the paper support the introduction of buses as a sustainable solution for Jastrebarsko, which provides insights for public transport planners, urban planners, and policymakers, with a discussion about the specific issues regarding the introduction, procurement, and operations of buses of different propulsion in a low-density area. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

23 pages, 658 KiB  
Article
Green Innovation Quality in Center Cities and Economic Growth in Peripheral Cities: Evidence from the Yangtze River Delta Urban Agglomeration
by Sijie Duan, Hao Chen and Jie Han
Systems 2025, 13(8), 642; https://doi.org/10.3390/systems13080642 - 1 Aug 2025
Viewed by 261
Abstract
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines [...] Read more.
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines the influence of center cities’ GIQ on the economic performance of peripheral municipalities. The results show the following: (1) Center cities’ GIQ exerts a significant suppressive effect on peripheral cities’ economic growth overall. Heterogeneity analysis uncovers a distance-dependent duality. GIQ stimulates growth in proximate cities (within 300 km) but suppresses it beyond this threshold. This spatial siphoning effect is notably amplified in national-level center cities. (2) Mechanisms suggest that GIQ accelerates the outflow of skilled labor in peripheral cities through factor agglomeration and industry transfer mechanisms. Concurrently, it impedes the gradient diffusion of urban services, collectively hindering peripheral development. (3) Increased government green attention (GGA) and industry–university–research cooperation (IURC) in centers can mitigate these negative impacts. This paper contributes to the theoretical discourse on center cities’ spatial externalities within agglomerations and offers empirical support and policy insights for the exertion of spillover effects of high-quality green innovation from center cities and the sustainable development of urban agglomeration. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

40 pages, 1548 KiB  
Article
Real-Time Service Migration in Edge Networks: A Survey
by Yutong Zhang, Ke Zhao, Yihong Yang and Zhangbing Zhou
J. Sens. Actuator Netw. 2025, 14(4), 79; https://doi.org/10.3390/jsan14040079 - 1 Aug 2025
Viewed by 333
Abstract
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, [...] Read more.
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, the dynamic nature and limited resources of edge networks bring challenges such as load imbalance and high latency while satisfying user requests. Service migration, the dynamic redeployment of service instances across distributed edge nodes, has become a key enabler for solving these challenges and optimizing edge network characteristics. Moreover, the low-latency nature of edge computing requires that service migration strategies must be in real time in order to ensure latency requirements. Thus, this paper presents a systematic survey of real-time service migration in edge networks. Specifically, we first introduce four network architectures and four basic models for real-time service migration. We then summarize four research motivations for real-time service migration and the real-time guarantee introduced during the implementation of migration strategies. To support these motivations, we present key techniques for solving the task of real-time service migration and how these algorithms and models facilitate the real-time performance of migration. We also explore latency-sensitive application scenarios, such as smart cities, smart homes, and smart manufacturing, where real-time service migration plays a critical role in sustaining performance and adaptability under dynamic conditions. Finally, we summarize the key challenges and outline promising future research directions for real-time service migration. This survey aims to provide a structured and in-depth theoretical foundation to guide future research on real-time service migration in edge networks. Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Viewed by 184
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

Back to TopTop