Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,053)

Search Parameters:
Keywords = circular design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 6064 KB  
Review
Alkali-Activated Materials and CDW for the Development of Sustainable Building Materials: A Review with a Special Focus on Their Mechanical Properties
by Luca Baldazzi, Andrea Saccani and Stefania Manzi
Buildings 2026, 16(2), 309; https://doi.org/10.3390/buildings16020309 (registering DOI) - 11 Jan 2026
Abstract
Alkali-activated materials (AAMs) or geopolymers have been considered for many years as a sustainable substitution for the traditional ordinary Portland cement (OPC) binder. However, their production needs energy consumption and creates carbon emissions. Since construction and demolition waste (CDW) can become precursors for [...] Read more.
Alkali-activated materials (AAMs) or geopolymers have been considered for many years as a sustainable substitution for the traditional ordinary Portland cement (OPC) binder. However, their production needs energy consumption and creates carbon emissions. Since construction and demolition waste (CDW) can become precursors for manufacturing alkali-activated materials, their use as substitutes for traditional AAM (such as metakaolin, blast furnace slag, and fly ash) can solve both the problem of their disposal and the problem of sustainability. Furthermore, CDW can also be used as aggregate replacement, avoiding the exploitation of natural river sand and gravel. A new circular economy could be created based on CDW recycling, creating a new eco-friendly building practice. Unfortunately, this process is quite difficult owing to several variables that should be taken into consideration, such as the possibility of separating and sorting the CDW, the great variability of CDW composition, the cost of the mechanical and thermal treatment, the different parameters that compose an alkali-activated mix-design, and public opinion still being skeptical about the use of recycled materials in the construction sector. This review tries to describe all these aspects, summarizing the results of the most interesting studies performed on this subject. Today, thanks to a comprehensive protocol, the use of building information modeling (BIM) software and machine learning models, a large-scale reuse of CDW in the building industry appears more feasible. Full article
(This article belongs to the Special Issue Innovations in Building Materials and Infrastructure Design)
19 pages, 1358 KB  
Article
Interaction of BSA with Ta2O5 Nanoparticles: The Effect of Polydopamine Pre-Coating
by Ekaterina Koshevaya, Nikita Lifanovsky, Elena Shishmakova, Maksim Staltsov, Alexander Dubovik, Alexandr Belousov, Dmitry Kaluzhny, Vladimir Kuzmin, Vladimir Morozov, Maria Kolyvanova and Olga Dement’eva
Molecules 2026, 31(2), 241; https://doi.org/10.3390/molecules31020241 (registering DOI) - 11 Jan 2026
Abstract
The modification of tantalum oxide (Ta2O5) nanoparticles (NPs) with biocompatible polymers is crucial for their biomedical use. Such modification can prolong NP circulation in the bloodstream by minimizing salt-induced aggregation and reducing nonspecific protein adsorption onto their surface. Understanding [...] Read more.
The modification of tantalum oxide (Ta2O5) nanoparticles (NPs) with biocompatible polymers is crucial for their biomedical use. Such modification can prolong NP circulation in the bloodstream by minimizing salt-induced aggregation and reducing nonspecific protein adsorption onto their surface. Understanding the features of polymer–NP interactions is a key issue in the fabrication of nanostructures with required characteristics. The present work aims to provide a comprehensive comparative study of bovine serum albumin (BSA) adsorption on bare and polydopamine (PDA)-coated Ta2O5 NPs. The synthesized NPs were characterized via transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential measurements. Fluorescence and circular dichroism spectroscopy were also employed for the first-time investigation of the interactions of Ta2O5 NPs and Ta2O5@PDA NPs with BSA. The results obtained show that PDA coating significantly enhances the protein-binding affinity. Time-resolved measurements revealed signatures of Förster resonance energy transfer, confirming complex formation between NPs and BSA. Moreover, colloidal stability tests in phosphate-buffered saline indicated that the presence of adsorbed BSA improves the dispersion stability of bare and PDA-coated Ta2O5 NPs. These findings advance the understanding of protein–NP interactions and highlight the potential of PDA coatings for designing stable and functional nanostructures for biomedical applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

28 pages, 2105 KB  
Article
A Comparative Life Cycle Assessment of Conventional and Reusable Packaging Systems Under Alternative Logistic Configurations
by Giovanni Marmora, Carmen Ferrara, Vittorio Roselli and Giovanni De Feo
Recycling 2026, 11(1), 13; https://doi.org/10.3390/recycling11010013 (registering DOI) - 10 Jan 2026
Abstract
Packaging plays a crucial role in product preservation and distribution but also constitutes a major source of environmental burden. In the beverage sector, where unit value is low, secondary and tertiary packaging significantly influence the environmental profile of the final product. This study [...] Read more.
Packaging plays a crucial role in product preservation and distribution but also constitutes a major source of environmental burden. In the beverage sector, where unit value is low, secondary and tertiary packaging significantly influence the environmental profile of the final product. This study quantifies the environmental trade-offs between conventional single-use and reusable packaging systems for aluminum cans, identifying the operational thresholds that justify a transition to circular models. A standardized Life Cycle Assessment (LCA) approach is applied to five packaging configurations: three current market scenarios and two alternative solutions based on reusable plastic crates (RPCs). System boundaries include production, distribution, end-of-life, and, where applicable, reverse logistics. A functional unit of one fully packaged 0.33 L aluminum can is adopted. Results reveal that while single-use cardboard solutions achieve favorable performance under certain impact categories, reusable systems outperform them when a sufficient number of reuse cycles is achieved and reverse logistics are efficiently managed. Sensitivity analyses highlight the critical influence of transport distances and reuse frequency on overall impacts, with performance deteriorating for reusable systems beyond 200 km or below 50 reuse cycles. These findings offer concrete, evidence-based guidance for supply-chain and logistics decision-makers to optimize packaging choices and distribution network design. The study also provides robust quantitative insights for policymakers and industry stakeholders by defining the precise operational conditions under which reusable systems deliver real environmental benefits. By presenting a comprehensive, system-level comparison of complete packaging systems, this research closes a critical gap in LCA studies and sets out a practical pathway for implementing circular, low-impact packaging strategies consistent with emerging EU regulations. Full article
18 pages, 815 KB  
Article
Circularity in Agri-Food Value Chains in Developing Countries: A Case in Indonesia
by Elena Garnevska, Dwi Ratna Hidayati and Sarah McLaren
Sustainability 2026, 18(2), 708; https://doi.org/10.3390/su18020708 - 9 Jan 2026
Abstract
The adoption of circular economy approaches in agri-food value chains in developing countries remains underexplored, particularly in contexts dominated by smallholder farmers. This paper aims to analyze existing circular practices and identify key barriers to circular transformation in developing country agri-food value chains, [...] Read more.
The adoption of circular economy approaches in agri-food value chains in developing countries remains underexplored, particularly in contexts dominated by smallholder farmers. This paper aims to analyze existing circular practices and identify key barriers to circular transformation in developing country agri-food value chains, with a specific focus on Indonesia. Using a qualitative research design, the study draws on semi-structured interviews, with different value chain players, to empirically examine circularity within the cashew value chain in Indonesia. The findings reveal that while a range of circular practices are undertaken by individual actors across the value chain, these activities remain largely fragmented and weakly coordinated. Key barriers to further circular transformation include limited awareness, economic imperatives, constrained access to appropriate technologies, and insufficient institutional support. Notably, access to finance was not perceived as a major constraint. This study contributes to the literature by providing a multi-actor, value chain perspective on circularity in smallholder-based agri-food systems in developing countries. It offers novel empirical evidence that existing informal circular practices play an important role and should be preserved as value chains modernize. The findings further highlight the importance of stronger vertical and horizontal coordination to scale and integrate circular activities and support a more holistic sustainable transition. Full article
Show Figures

Figure 1

28 pages, 1994 KB  
Article
Modeling of Reverse Curves on a Railway Line Using the Analytical Design Method
by Wladyslaw Koc
Designs 2026, 10(1), 5; https://doi.org/10.3390/designs10010005 - 9 Jan 2026
Abstract
This study discusses the issue of designing reverse curves, i.e. a geometric system consisting of two circular arcs (usually with different radii), directed in opposite directions and directly connected to each other. The design is performed in an appropriate local Cartesian coordinate system. [...] Read more.
This study discusses the issue of designing reverse curves, i.e. a geometric system consisting of two circular arcs (usually with different radii), directed in opposite directions and directly connected to each other. The design is performed in an appropriate local Cartesian coordinate system. The origin of this system is located at the point of intersection of adjacent main directions of the route. Unlike other geometric situations, reverse curves have three main directions, which significantly complicate the design process. The initial values of the radii of the reverse arcs must correspond to the existing system of main directions. The introduction of transition curves causes these radii to decrease; their values are determined iteratively. A set of formulas for creating a geometric system of reverse curves is presented. These formulas were used in the calculation example. A graph of the horizontal curvature of the track axis and a method for determining the possible train speed, both without the use of cant on an arc and with the use of cant, are shown. The presented procedure is universal and can be applied to other geometric situations involving the design of reverse curves. It is also necessary to emphasize the practical usefulness of the discussed method not only in the design process, but also to pay attention to the cognitive value of the article. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

18 pages, 3200 KB  
Article
Non-Circular Domain Surface Figure Analysis of High-Dynamic Scanning Mirrors Under Multi-Physics Coupling
by Xiaoyan He, Kaiyu Jiang, Penglin Liu, Xi He and Peng Xie
Photonics 2026, 13(1), 65; https://doi.org/10.3390/photonics13010065 - 9 Jan 2026
Viewed by 69
Abstract
The use of large-aperture scanning mirrors for high-resolution and wide-swath imaging represents a major trend in Earth observation technology. However, to improve dynamic response performance, scanning mirror assemblies are highly lightweighted, resulting in reduced overall stiffness. This makes the mirror surface susceptible to [...] Read more.
The use of large-aperture scanning mirrors for high-resolution and wide-swath imaging represents a major trend in Earth observation technology. However, to improve dynamic response performance, scanning mirror assemblies are highly lightweighted, resulting in reduced overall stiffness. This makes the mirror surface susceptible to thermal and inertial loads during operation, leading to degraded surface accuracy and poor imaging quality. Moreover, dynamic scanning mirror has the multi-disciplinary coupling effects and non-circular structural characteristics. It poses significant challenges for surface figure analysis. To address these issues, this paper proposes a surface analysis method for high-dynamic scanning mirrors under multi-physics coupling in non-circular domains. First, a finite element model of the mirror assembly is established based on the minimum aperture and angular velocity parameters. Through finite element analysis, the surface response of the scanning mirror assembly under thermal loads, dynamic inertial loads, and their coupled effects is quantitatively investigated. Subsequently, an analytical approach, which combines rigid-body displacement separation and Gram–Schmidt orthogonalization, is developed to construct non-circular Zernike polynomials, enabling high-precision fitting and reconstruction of the mirror’s dynamic surface distortions. Numerical experiments validate the accuracy of the model. Results show that for a scanning mirror with an aperture of 466 mm × 250 mm under the coupled condition of a 5 °C temperature rise and 50 N·mm torque, the surface figure achieves RMS < 2 nm and PV < 22 nm, with a fitting accuracy achieves 10−6. These results verify the accuracy and reliability of the proposed method. The surface analysis approach presented in this study provides theoretical guidance and a design framework for subsequent image quality evaluation and assurance. Full article
(This article belongs to the Special Issue Advances in Optical Precision Manufacturing and Processing)
Show Figures

Figure 1

25 pages, 1145 KB  
Article
From Linear to Circular: Barriers to Sustainable Transition in the Saudi Banking Sector
by Aroop Mukherjee and Luisa Pinto
Sustainability 2026, 18(2), 673; https://doi.org/10.3390/su18020673 - 8 Jan 2026
Viewed by 113
Abstract
This study investigates the barriers in adopting the Circular Economy (CE) in Saudi Banking under Vision 2030 and using the Resource-Based View and stakeholder theory. This study examined how customer engagement, process innovation, and dynamic capabilities limit the implementation of CE. A quantitative, [...] Read more.
This study investigates the barriers in adopting the Circular Economy (CE) in Saudi Banking under Vision 2030 and using the Resource-Based View and stakeholder theory. This study examined how customer engagement, process innovation, and dynamic capabilities limit the implementation of CE. A quantitative, cross-sectional survey collected 418 responses from bank employees in Riyadh and was collected from January to March 2024. A 29-item Likert scale was analyzed with SmartPLS 4; measurement quality was strong, and confirmatory factor analysis confirmed construct validity. Results highlight the main barriers as customer resistance regulatory constraints and lack of adequate employee training. The construct is highly interconnected (r = 0.758), showing that improvements in customer engagement and process innovation strengthen dynamic capabilities. The study provides practical guidance for banks and policymakers on designing circular finance products, targeted training, and supportive regulations to accelerate the CE transition and achieve measurable sustainability outcomes in financial sectors, aligning with SDG 3, good health and well-being, and SDG 7, affordable and clean energy. Full article
(This article belongs to the Special Issue Business Circular Economy and Sustainability)
Show Figures

Figure 1

26 pages, 8805 KB  
Article
Comprehensive End-of-Life-Battery Composition Analysis from Module to Electrode Level to Assist More Efficient Recycling
by Steffen Fischer, Jannik Guido Born, Martin Wolke, Timo Hölter, Klaus Dröder, Stephan Scholl, Harald Zetzener and Arno Kwade
Recycling 2026, 11(1), 11; https://doi.org/10.3390/recycling11010011 - 8 Jan 2026
Viewed by 128
Abstract
With rising efforts to enable a circularity of valuable resources of lithium-ion batteries, a growing number of recycling companies in Europe are expanding their capacities and developing new recycling technologies. The European Union (EU) has set a benchmark for battery recycling by publishing [...] Read more.
With rising efforts to enable a circularity of valuable resources of lithium-ion batteries, a growing number of recycling companies in Europe are expanding their capacities and developing new recycling technologies. The European Union (EU) has set a benchmark for battery recycling by publishing recycling targets. These targets require precise mass determination of the individual battery components, making disassembly of the battery mandatory for characterization. The paper puts forth a semi-automated disassembly procedure for determining the composition of the components at the module and cell levels across a range of designs. Our analysis incorporates the introduction of TGA as a novel, direct method for determining the cathode active material with an accuracy above 99%. This approach is intended to define the recycling input for all extant recycling routes by providing quantitative experimental results with statistical significance. The results indicate a black mass proportion of 61.6% at the module level and 53–74% at the cell level. Additionally, there are significant differences in value creation, ranging from 0.80 to 1.81 USD kg−1 black mass, depending on the cell chemistry. The procedure can be used for EoL and scrap material, and enables greater transparency and comparability in battery recycling, opening up new perspectives for the resource-efficient and targeted use of various recycling technologies. Full article
Show Figures

Graphical abstract

14 pages, 3285 KB  
Article
Design of Functionalized Photon Sieves for the Detection of Biomarkers in Running Fluids
by Veronica Pastor-Villarrubia, Luis Pablo Canul-Solis, Luis Carlos Ortiz-Dosal, José Gabriel Roberto Hernández-Arteaga, Eleazar Samuel Kolosovas-Machuca, Luis Miguel Sanchez-Brea and Javier Alda
Sensors 2026, 26(2), 409; https://doi.org/10.3390/s26020409 - 8 Jan 2026
Viewed by 79
Abstract
In this work, we present the design of a prototype fluid analyzer based on photon sieves, permeable diffractive optical elements capable of focusing light through diffraction. The photon sieve comprises a spatial distribution of circular apertures patterned onto an aluminum substrate, which provides [...] Read more.
In this work, we present the design of a prototype fluid analyzer based on photon sieves, permeable diffractive optical elements capable of focusing light through diffraction. The photon sieve comprises a spatial distribution of circular apertures patterned onto an aluminum substrate, which provides intrinsic fluid permeability and functions as either a lens or a mirror. In our approach, the aluminum surface is chemically functionalized to detect a specific biomolecular marker—human serum albumin—whose interaction with the surface induces measurable changes in the spectral reflectance. The operating wavelength is selected to maximize the reflectance contrast produced by the presence of the biomarker. The optical set-up is configured such that the light source and detector lie in the same plane when the photon sieve operates in reflection. A combined geometrical and diffractive analysis is conducted to optimize their positions. Upon detection of the biomarker, the measured signal decreases to 0.43 of its initial value prior to biomarker binding. These results highlight photon sieves as a promising platform for the development of compact, lightweight, and low-cost optical chemical sensors for running fluids. Full article
(This article belongs to the Special Issue Optical Sensors for Biological and Biomedical Applications)
Show Figures

Figure 1

24 pages, 1787 KB  
Article
Uncertainty-Aware Machine Learning for NBA Forecasting in Digital Betting Markets
by Matteo Montrucchio, Enrico Barbierato and Alice Gatti
Information 2026, 17(1), 56; https://doi.org/10.3390/info17010056 - 8 Jan 2026
Viewed by 117
Abstract
This study introduces a fully uncertainty-aware forecasting framework for NBA games that integrates team-level performance metrics, rolling-form indicators, and spatial shot-chart embeddings. The predictive backbone is a recurrent neural network equipped with Monte Carlo dropout, yielding calibrated sequential probabilities. The model is evaluated [...] Read more.
This study introduces a fully uncertainty-aware forecasting framework for NBA games that integrates team-level performance metrics, rolling-form indicators, and spatial shot-chart embeddings. The predictive backbone is a recurrent neural network equipped with Monte Carlo dropout, yielding calibrated sequential probabilities. The model is evaluated against strong baselines including logistic regression, XGBoost, convolutional models, a GRU sequence model, and both market-only and non-market-only benchmarks. All experiments rely on strict chronological partitioning (train ≤ 2022, validation 2023, test 2024), ablation tests designed to eliminate any circularity with bookmaker odds, and cross-season robustness checks spanning 2012–2024. Predictive performance is assessed through accuracy, Brier score, log-loss, AUC, and calibration metrics (ECE/MCE), complemented by SHAP-based interpretability to verify that only pre-game information influences predictions. To quantify economic value, calibrated probabilities are fed into a frictionless betting simulator using fractional-Kelly staking, an expected-value threshold, and bootstrap-based uncertainty estimation. Empirically, the uncertainty-aware model delivers systematically better calibration than non-Bayesian baselines and benefits materially from the combination of shot-chart embeddings and recent-form features. Economic value emerges primarily in less-efficient segments of the market: The fused predictor outperforms both market-only and non-market-only variants on moneylines, while spreads and totals show limited exploitable edge, consistent with higher pricing efficiency. Sensitivity studies across Kelly multipliers, EV thresholds, odds caps, and sequence lengths confirm that the findings are robust to modelling and decision-layer perturbations. The paper contributes a reproducible, decision-focused framework linking uncertainty-aware prediction to economic outcomes, clarifying when predictive lift can be monetized in NBA markets, and outlining methodological pathways for improving robustness, calibration, and execution realism in sports forecasting. Full article
Show Figures

Graphical abstract

17 pages, 1121 KB  
Article
Design and Environmental Analysis of an Aquaponics System Coupled with Photovoltaic Unit for Food Production and Reuse of Nutrients from Wastewater: A Life Cycle Assessment Study
by Juan J. Espada Sanjurjo, Mª Prado Díaz de Mera-Sánchez and Rosalía Rodríguez Escudero
Appl. Sci. 2026, 16(2), 635; https://doi.org/10.3390/app16020635 - 8 Jan 2026
Viewed by 136
Abstract
Aquaponics consists of the combination of hydroponics and aquaculture within a closed loop, being a promising technology for food production and wastewater treatment in the context of the circular economy. This technology is less energy-intensive, environmentally friendly, and consumes less water. In addition, [...] Read more.
Aquaponics consists of the combination of hydroponics and aquaculture within a closed loop, being a promising technology for food production and wastewater treatment in the context of the circular economy. This technology is less energy-intensive, environmentally friendly, and consumes less water. In addition, the wastewater produced by fish, rich in nutrients, can be used to grow a wide variety of plants, which avoids further treatments for nutrient removal. Although aquaponics presents advantages from an environmental point of view with regard to other technologies, its sustainability must be analyzed using systematic tools, such as the Life Cycle Assessment (LCA). In this work, a small-scale aquaponics system (tilapia–lettuce) coupled with a photovoltaic unit was designed and assessed from an environmental perspective using the LCA to quantify its environmental burdens. The photovoltaic unit was sized to supply renewable energy to the system, achieving a reduction of 52% in grid electricity consumption. The environmental impacts of the system were quantified by the LCA, showing that electricity and fish feed were the most important contributors to all the impacts (by 90%), obtaining significant reductions (by 40% on average for all of them) when coupling a photovoltaic unit to the system. Full article
Show Figures

Figure 1

17 pages, 827 KB  
Article
Integrating Circular Economy Principles into Energy-Efficient Retrofitting of Post-1950 UK Housing Stock: A Pathway to Sustainable Decarbonisation
by Louis Gyoh, Obas John Ebohon, Juanlan Zhou and Deinsam Dan Ogan
Buildings 2026, 16(2), 262; https://doi.org/10.3390/buildings16020262 - 7 Jan 2026
Viewed by 117
Abstract
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and [...] Read more.
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and heating upgrades—while neglecting broader sustainability considerations. This research advocates systematically integrating Circular Economy (CE) principles into residential retrofit practices. CE approaches emphasise material circularity, waste minimisation, adaptive design, and a lifecycle assessment, delivering superior environmental and economic outcomes compared to conventional methods. The investigation employs mixed-methods research combining a systematic literature analysis, policy review, stakeholder engagement, and a retrofit implementation evaluation across diverse UK contexts. Key barriers identified include regulatory constraints, workforce capability gaps, and supply chain fragmentation, alongside critical transition enablers. An evidence-based decision-making framework emerges from this analysis, aligning retrofit interventions with CE principles. This framework guides policymakers, industry professionals, and researchers in the development of strategies that simultaneously improve energy-efficiency, maximise material reuse, reduce embodied emissions, and enhance environmental and economic sustainability. The findings advance a holistic, systems-oriented approach, positioning housing as a pivotal catalyst in the UK’s transition toward a circular, low-carbon built environment, moving beyond isolated technological fixes toward a comprehensive sustainability transformation. Full article
(This article belongs to the Special Issue Advancements in Net-Zero-Energy Buildings)
Show Figures

Figure 1

38 pages, 2755 KB  
Review
From Material to Manufacture: A State-of-the-Art Review of Compression Garment Technologies for Medical and Sports Use
by Emran Hossain, Prasad Potluri, Chamil Abeykoon and Anura Fernando
Textiles 2026, 6(1), 7; https://doi.org/10.3390/textiles6010007 - 7 Jan 2026
Viewed by 68
Abstract
Compression garments are widely employed in medical and sports contexts for their ability to promote venous return, manage oedema, support musculoskeletal function, and enhance athletic recovery. Advances in textile-based compression systems have been driven by innovations in fibres, yarn structures, fabric structure engineering, [...] Read more.
Compression garments are widely employed in medical and sports contexts for their ability to promote venous return, manage oedema, support musculoskeletal function, and enhance athletic recovery. Advances in textile-based compression systems have been driven by innovations in fibres, yarn structures, fabric structure engineering, and design methods. This review critically examines the current literature on compression garments, highlighting the influence of raw materials and yarn architectures on performance, durability, and wearer comfort. Attention is given specially to fabric structures and manufacturing methods, where the evolution from traditional cut-and-sew methods to advanced seamless, flatbed, and circular knitting technologies is highlighted, along with their impact on pressure distribution and overall garment efficacy. The integration of 3D body scanning, finite element analysis, and predictive modelling, which enables more personalised and precise garment design, is also speculated upon. Moreover, the review highlights testing and evaluation methodologies, spanning both in vivo and in vitro based assessments, pressure sensor studies for real-time monitoring, and theoretical models mostly based on Laplace’s law. This literature survey provides a foundation for future innovations aimed at optimising compression garment design for both therapeutic and athletic use. Full article
Show Figures

Figure 1

25 pages, 9547 KB  
Article
Industrial Validation and Mechanical Characterization of SMA Mixtures Stabilized with Recycled Polymeric Fibers from Waste Tires
by Alejandra Calabi-Floody, Gonzalo Valdés-Vidal, Cristian Mignolet-Garrido, Cristian Díaz-Montecinos and Claudio Fonseca-Ibarra
Polymers 2026, 18(2), 156; https://doi.org/10.3390/polym18020156 - 7 Jan 2026
Viewed by 83
Abstract
This study investigates the industrial validation of a granular additive derived from waste tire textile fibers (WTTF) developed to replace the conventional cellulose stabilizing additive in stone mastic asphalt (SMA) mixtures while enhancing their mechanical performance. Building on previous laboratory-scale findings, this work [...] Read more.
This study investigates the industrial validation of a granular additive derived from waste tire textile fibers (WTTF) developed to replace the conventional cellulose stabilizing additive in stone mastic asphalt (SMA) mixtures while enhancing their mechanical performance. Building on previous laboratory-scale findings, this work evaluates the feasibility and mechanical behavior of this recycled-fiber additive under real asphalt-plant production conditions, advancing a sustainable solution aligned with circular economy principles. Three asphalt mixtures were fabricated in a batch plant: a reference SMA (SMA-R) containing a commercial cellulose additive, an SMA incorporating the WTTF additive (SMA-F), and a reference hot mix asphalt (HMA-R). The WTTF additive was incorporated in a 1:1 proportion relative to the cellulose additive. Performance was assessed through tests of cracking resistance (Fénix test), stiffness modulus, fatigue resistance (four-point bending test), moisture susceptibility (ITSR), and resistance to permanent deformation (Hamburg wheel tracking). Industrial validation results showed that the SMA-F mixture met the design criteria and achieved superior mechanical performance relative to the reference mixtures. In particular, SMA-F exhibited greater ductility and toughness at low temperatures, reduced susceptibility to moisture-induced damage, and higher fatigue resistance, with an increase in fatigue durability of up to 44% compared to SMA-R. The results confirm that the WTTF additive is both feasible and scalable for industrial production, offering a solution that not only improves pavement mechanical performance but also promotes the valorization of a challenging waste material. Full article
Show Figures

Figure 1

24 pages, 12341 KB  
Review
Toolpath-Driven Surface Articulation for Wax Formwork Technology in the Production of Thin-Shell, Robotic, CO2-Reduced Shotcrete Elements
by Sven Jonischkies, Jeldrik Mainka, Harald Kloft, Bhavatarini Kumaravel, Asbjørn Søndergaard, Falk Martin and Norman Hack
Buildings 2026, 16(2), 257; https://doi.org/10.3390/buildings16020257 - 7 Jan 2026
Viewed by 104
Abstract
This study introduces a digital fabrication process for producing recyclable, closed-loop wax formwork for architectural concrete applications with visually rich surface articulation while drastically reducing formwork milling time. As such, this paper presents (a) a circular large-scale production method for wax blocks via [...] Read more.
This study introduces a digital fabrication process for producing recyclable, closed-loop wax formwork for architectural concrete applications with visually rich surface articulation while drastically reducing formwork milling time. As such, this paper presents (a) a circular large-scale production method for wax blocks via a single casting process; (b) four machine-time-optimized surface articulation strategies through CNC toolpath-driven design; (c) the investigation of different coating systems to improve architectural concrete surface quality and to ease demolding; and (d) the integration of robotic concrete shotcreting using a low-CO2 fine-grain concrete. For the first time, wax formwork technology, characterized by its waste-free approach, has been combined with robotic shotcreting in a digital and automated workflow to fabricate fiber-reinforced, geometrically complex thin-shell concrete elements with distinct surface articulations. To evaluate the process, a series of four thin-shell concrete elements was produced, employing four distinct parametric toolpath-driven designs: linear surface articulation, crossed surface articulation, topology-adapted curve flow surface articulation, and robotic drill topology-adapted surface articulation. Results revealed a possible reduction in milling time of between 77% and 94% compared to traditional milling methods. The optimized toolpaths and design-driven milling strategies achieved a high degree of visual richness, showcasing the potential of this integrated approach for the production of high-quality architectural concrete elements. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

Back to TopTop