Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (329)

Search Parameters:
Keywords = circadian-related genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1781 KiB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Viewed by 365
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3116 KiB  
Article
Effects of Probiotic Supplementation on Depressive Symptoms, Sleep Quality, and Modulation of Gut Microbiota and Inflammatory Biomarkers: A Randomized Controlled Trial
by S Rehan Ahmad, Abdullah M. AlShahrani and Anupriya Kumari
Brain Sci. 2025, 15(7), 761; https://doi.org/10.3390/brainsci15070761 - 18 Jul 2025
Viewed by 1367
Abstract
Background: More than merely determining our sleep pattern, our body’s internal clock also improves the quality of our sleep, alleviates the symptoms of depression, and maintains the balance of our gut flora. Methods: We carried out a 12-week randomized controlled trial with 99 [...] Read more.
Background: More than merely determining our sleep pattern, our body’s internal clock also improves the quality of our sleep, alleviates the symptoms of depression, and maintains the balance of our gut flora. Methods: We carried out a 12-week randomized controlled trial with 99 adults from Kolkata, New Delhi, and Pune who reported sleep problems and symptoms of depression or anxiety. Participants received either a probiotic formulated to improve sleep quality and reduce depressive symptoms or a placebo. We tracked sleep using overnight studies and wearable devices, assessed depressive symptoms with standardized questionnaires, and analyzed stool samples to profile gut bacteria and their metabolites using gene sequencing and metabolomics. Advanced statistics and machine learning helped us pinpoint the key microbial and metabolic factors tied to sleep and mental health. Results: At the start, participants with disrupted sleep and depressive symptoms had fewer beneficial gut bacteria like Bifidobacterium and Lactobacillus, more inflammation-related microbes, and lower levels of helpful short-chain fatty acids. These imbalances were linked to poorer sleep efficiency, less REM sleep, and higher depression and anxiety scores. After 12 weeks, those taking the circadian-supporting probiotic saw a statistically significant increase in beneficial gut bacteria, improved sleep efficiency (+7.4%, p = 0.02), and greater reductions in depression and anxiety compared to the placebo. Increases in SCFA-producing bacteria most strongly predicted improvements. Conclusions: Our results show that taking a probiotic supplement can help bring your gut back into balance, support better sleep, and lift symptoms of depression and anxiety. This offers a hopeful and practical option for people looking for real relief from these deeply connected challenges. Full article
(This article belongs to the Special Issue Relationships Between Disordered Sleep and Mental Health)
Show Figures

Figure 1

17 pages, 1839 KiB  
Review
The Clock and the Brain: Circadian Rhythm and Alzheimer’s Disease
by Samaneh Ghorbani Shirkouhi, Ashkan Karimi, Seyed Sepehr Khatami, Ashkan Asgari Gashtrodkhani, Farzin Kamari, Morten Blaabjerg and Sasan Andalib
Curr. Issues Mol. Biol. 2025, 47(7), 547; https://doi.org/10.3390/cimb47070547 - 15 Jul 2025
Viewed by 552
Abstract
Alzheimer’s Disease (AD) is the most common type of dementia. The circadian system, which is controlled by the master clock in the Suprachiasmatic Nucleus (SCN) of the hypothalamus, is crucial for various physiological processes. Studies have shown that changes in the circadian rhythms [...] Read more.
Alzheimer’s Disease (AD) is the most common type of dementia. The circadian system, which is controlled by the master clock in the Suprachiasmatic Nucleus (SCN) of the hypothalamus, is crucial for various physiological processes. Studies have shown that changes in the circadian rhythms can deteriorate neurodegenerative diseases. Changes in the SCN are associated with cognitive decline in AD. The cognitive impairments in AD, especially memory dysfunctions, may be related to Circadian Rhythm Disturbances (CRDs). Moreover, rhythmic expression of clock genes is disrupted in AD patients. There is a circadian pattern of inflammatory processes in AD, and dysregulation of core clock genes promotes neuroinflammation. The present narrative review addresses the intricate link between CRDs and AD, revisiting the relevant cellular and molecular mechanisms. The association between CRDs and AD highlights the need for further investigation of the underlying mechanisms. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

21 pages, 3766 KiB  
Article
Comparative Genomic Analysis of COMT Family Genes in Three Vitis Species Reveals Evolutionary Relationships and Functional Divergence
by Yashi Liu, Zhiyuan Bian, Shan Jiang, Xiao Wang, Lin Jiao, Yun Shao, Chengmei Ma and Mingyu Chu
Plants 2025, 14(13), 2079; https://doi.org/10.3390/plants14132079 - 7 Jul 2025
Viewed by 423
Abstract
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total [...] Read more.
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total of 124 COMT family genes were identified from three Vitis species in this study, namely Pinot noir (Vitis vinifera L.), Vitis amurensis, and Vitis riparia. The amino acid sequence encoded by these genes ranged from 55 to 1422 aa, and their molecular mass ranged from 6640.82 to 77,034.43 Da. Subcellular localization prediction inferred that they were mainly located in the plasma membrane and cytoplasm. The prediction of secondary structures showed that α-helix and irregular coiled-coil were primary structural elements. These genes were unevenly distributed across 10 different chromosomes, respectively. Phylogenetic tree analysis of the amino acid sequences of VvCOMT, VaCOMT, VrCOMT, and AtCOMT proteins showed that they were closely related and were divided into four subgroups. The motif distribution was similar among the cluster genes, and the gene sequence was notably conserved. The 124 members of the COMT gene family possessed a variable number of exons, ranging from 2 to 13. The promoter region of all of these COMTs genes contained multiple cis-acting elements related to hormones (e.g., ABA, IAA, MeJA, GA, and SA), growth and development (e.g., endosperm, circadian, meristem, light response), and various stress responses (e.g., drought, low temperature, wounding, anaerobic, defense, and stress). The intraspecies collinearity analysis suggested that there were one pair, three pairs, and six pairs of collinear genes in Va, Pinot noir, and Vr, respectively, and that tandem duplication contributed more to the expansion of these gene family members. In addition, interspecific collinearity revealed that the VvCOMTs had the strongest homology with the VaCOMTs, followed by the VrCOMTs, and the weakest homology with the AtCOMTs. The expression patterns of different tissues and organs at different developmental stages indicated that the VvCOMT genes had obvious tissue expression specificity. The majority of VvCOMT genes were only expressed at higher levels in certain tissues. Furthermore, we screened 13 VvCOMT genes to conduct qRT-PCR verification according to the transcriptome data of VvCOMTs under abiotic stresses (NaCl, PEG, and cold). The results confirmed that these genes were involved in the responses to NaCl, PEG, and cold stress. This study lays a foundation for the exploration of the function of the COMT genes, and is of great importance for the genetic improvement of abiotic stress resistance in grapes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

24 pages, 5910 KiB  
Article
Transcriptome Profiling of Spike Development Reveals Key Genes and Pathways Associated with Early Heading in Wheat–Psathyrstachys huashanica 7Ns Chromosome Addition Line
by Binwen Tan, Yangqiu Xie, Hang Peng, Miaomiao Wang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Peng Qin, Yonghong Zhou, Dandan Wu, Yinghui Li and Houyang Kang
Plants 2025, 14(13), 2077; https://doi.org/10.3390/plants14132077 - 7 Jul 2025
Viewed by 409
Abstract
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such [...] Read more.
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such as early maturity and resistance to biotic and abiotic stresses. In this study, we found that a cytogenetically stable wheat–P. huashanica 7Ns disomic addition line showed (9–11 days) earlier heading and (8–10 days) earlier maturation than its wheat parents. Morphological observations of spike differentiation revealed that the 7Ns disomic addition line developed distinctly faster than its wheat parents from the double ridge stage. To explore the potential molecular mechanisms underlying the early heading, we performed transcriptome analysis at four different developmental stages of the 7Ns disomic addition line and its wheat parents. A total of 10,043 differentially expressed genes (DEGs) were identified during spike development. Gene Ontology (GO) enrichment analysis showed that these DEGs were linked to the carbohydrate metabolic process, photosynthesis, response to abscisic acid, and the ethylene-activated signaling pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these DEGs were involved in plant hormone signal transduction (ARF, AUX/IAA, SAUR, DELLA, BRI1, and ETR), starch and sucrose metabolism (SUS1 and TPP), photosynthetic antenna proteins (Lhc), and circadian rhythm (PRR37, FT, Hd3a, COL, and CDF) pathways. In addition, several DEGs annotated as transcription factors (TFs), such as bHLH, bZIP, MADS-box, MYB, NAC, SBP, WRKY, and NF-Y, may be related to flowering time. Our findings reveal spike development-specific gene expression and critical regulatory pathways associated with early heading in the wheat–P. huashanica 7Ns addition line, and provide a new genetic resource for further dissection of the molecular mechanisms underlying the heading date in wheat. Full article
(This article belongs to the Special Issue Biosystematics and Breeding Application in Triticeae Species)
Show Figures

Graphical abstract

14 pages, 1139 KiB  
Article
Comparative Transcriptome and Metabolome Analyses Provide New Insights into the Molecular Mechanisms Underlying Taproot Development and Bioactive Compound Biosynthesis in Ficus hirta vahl
by Meiqiong Tang, Chunying Liang, Yude Peng, Hong He, Fan Wei, Ying Hu, Yang Lin, Chunfeng Tang, Gang Li and Linxuan Li
Genes 2025, 16(7), 784; https://doi.org/10.3390/genes16070784 - 30 Jun 2025
Viewed by 344
Abstract
Background: F. hirta vahl is a famous Chinese medicinal plant. The root is the main organ accumulating bioactive compounds, and its development is directly related to the yield and quality of the harvested F. hirta. However, the molecular mechanisms underlying the bioactive compound [...] Read more.
Background: F. hirta vahl is a famous Chinese medicinal plant. The root is the main organ accumulating bioactive compounds, and its development is directly related to the yield and quality of the harvested F. hirta. However, the molecular mechanisms underlying the bioactive compound biosynthesis occurring during the root development of F. hirta are unknown. Method: Transcriptome and widely targeted metabolome analyses were performed to investigate gene expression and metabolite variation during the development of F. hirta taproots. Results: A total of 3792 differentially expressed genes (DEGs) were identified between the one- and three-year-old F. hirta taproots; they are related to circadian rhythm–plant, phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant–pathogen interaction pathways. In total, 119 differentially accumulated metabolites (DAMs) were identified between the one- and three-year-old F. hirta taproots, including flavonols, phenolic acids, and coumarins compounds. Integrative transcriptome and metabolome analyses revealed a significant correlation between 172 DEGs and 21 DAMs; they were predominantly enriched for processes associated with phenylpropanoid biosynthesis, flavonoid biosynthesis, plant hormone signal transduction, and stilbenoid, diarylheptanoid, and ginerol biosynthesis. In addition, 26 DEGs were identified to be significantly correlated with the DAMs that accumulated in the phenylpropanoid biosynthesis pathway, and these DEGs may be the key genes for the biosynthesis of F. hirta active compounds. Conclusions: The phenylpropanoid biosynthesis pathway plays a dual role in both development and bioactive compound synthesis in F. hirta taproots. These findings provide a molecular regulatory network in the relationships between F. hirta taproot development and the accumulation of secondary metabolites. The identification of candidate genes and pathways provides a genetic resource for quality control and future molecular breeding in F. hirta. Full article
(This article belongs to the Special Issue 5Gs in Crop Genetic and Genomic Improvement: 2nd Edition)
Show Figures

Figure 1

17 pages, 2284 KiB  
Article
ChronobioticsDB: The Database of Drugs and Compounds Modulating Circadian Rhythms
by Ilya A. Solovev, Denis A. Golubev, Arina I. Yagovkina and Nadezhda O. Kotelina
Clocks & Sleep 2025, 7(3), 30; https://doi.org/10.3390/clockssleep7030030 - 23 Jun 2025
Viewed by 483
Abstract
Chronobiotics represent a pharmacologically diverse group of substances, encompassing both experimental compounds and those utilized in clinical practice, which possess the capacity to modulate the parameters of circadian rhythms. These substances influence fluctuations in various physiological and biochemical processes, including the expression of [...] Read more.
Chronobiotics represent a pharmacologically diverse group of substances, encompassing both experimental compounds and those utilized in clinical practice, which possess the capacity to modulate the parameters of circadian rhythms. These substances influence fluctuations in various physiological and biochemical processes, including the expression of core “clock” genes in model organisms and cell cultures, as well as the expression of clock-controlled genes. Despite their chemical heterogeneity, chronobiotics share the common ability to alter circadian dynamics. The concept of chronobiotic drugs has been recognized for over five decades, dating back to the discovery and detailed clinical characterization of the hormone melatonin. However, the field remains fragmented, lacking a unified classification system for these pharmacological agents. The current categorizations include natural chrononutrients, synthetic targeted circadian rhythm modulators, hypnotics, and chronobiotic hormones, yet no comprehensive repository of knowledge on chronobiotics exists. Addressing this gap, the development of the world’s first curated and continuously updated database of chronobiotic drugs—circadian rhythm modulators—accessible via the global Internet, represents a critical and timely objective for the fields of chronobiology, chronomedicine, and pharmacoinformatics/bioinformatics. The primary objective of this study is to construct a relational database, ChronobioticsDB, utilizing the Django framework and PostGreSQL as the database management system. The database will be accessible through a dedicated web interface and will be filled in with data on chronobiotics extracted and manually annotated from PubMed, Google Scholar, Scopus, and Web of Science articles. Each entry in the database will comprise a detailed compound card, featuring links to primary data sources, a molecular structure image, the compound’s chemical formula in machine-readable SMILES format, and its name according to IUPAC nomenclature. To enhance the depth and accuracy of the information, the database will be synchronized with external repositories such as ChemSpider, DrugBank, Chembl, ChEBI, Engage, UniProt, and PubChem. This integration will ensure the inclusion of up-to-date and comprehensive data on each chronobiotic. Furthermore, the biological and pharmacological relevance of the database will be augmented through synchronization with additional resources, including the FDA. In cases of overlapping data, compound cards will highlight the unique properties of each chronobiotic, thereby providing a robust and multifaceted resource for researchers and practitioners in the field. Full article
(This article belongs to the Section Computational Models)
Show Figures

Figure 1

22 pages, 5207 KiB  
Article
The Circadian Rhythm Gene Network Could Distinguish Molecular Profile and Prognosis for Glioblastoma
by Fangzhu Wan, Zongpu Zhang, Jinsen Zhang, Jiyi Hu, Weixu Hu, Jing Gao, Minjie Fu, Yuan Feng and Lin Kong
Int. J. Mol. Sci. 2025, 26(12), 5873; https://doi.org/10.3390/ijms26125873 - 19 Jun 2025
Viewed by 454
Abstract
Increasing evidence highlights the role of aberrant circadian rhythm gene expression in glioblastoma (GBM) progression, but the impact of the circadian rhythm gene network on GBM molecular profiles and prognosis remains unclear. A total of 1042 GBM samples from six public datasets, TCGA [...] Read more.
Increasing evidence highlights the role of aberrant circadian rhythm gene expression in glioblastoma (GBM) progression, but the impact of the circadian rhythm gene network on GBM molecular profiles and prognosis remains unclear. A total of 1042 GBM samples from six public datasets, TCGA and CGGA, were analyzed, with GBM samples stratified into three circadian core-gene patterns using unsupervised clustering based on the expression profiles of 17 circadian rhythm genes. The Limma R package identified differentially expressed genes (DEGs) among the three patterns, and a secondary clustering system, termed circadian-related gene pattern, was established based on DEGs. A circadian risk score was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, and the efficiency of these patterns and the circadian risk score in distinguishing molecular profiles and predicting prognosis was systematically analyzed. The relationship between the circadian risk score and response to immune or targeted therapy was examined using the GSE78200 and IMvigor210 datasets. The results showed that GBM patients were clustered into three circadian core-gene patterns based on the expression profiles of 17 core circadian genes, with distinct molecular profiles, malignant characteristics, and patient prognoses among the patterns. Thirty-two DEGs among these patterns were identified and termed circadian-related genes, and secondary clustering based on these 32 DEGs classified GBM samples into two circadian-related gene patterns, which also predicted molecular profiles and prognosis. A circadian risk scoring system was established, allowing the calculation of individual risk scores based on the expression of 10 genes, where GBM patients with lower circadian risk scores had prolonged overall survival and less aggressive molecular subtypes, while higher circadian risk scores correlated with better responses to MAPK-targeted therapy. In conclusion, this study established two clustering patterns based on 17 circadian rhythm genes or 32 circadian-related genes, enabling the rapid classification of GBM patients with distinct molecular profiles and prognoses, while the circadian risk scoring system effectively predicted survival, molecular profiles, and therapeutic responses for individual GBM patients, demonstrating that the circadian rhythm gene network can distinguish molecular profiles and prognosis in GBM. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2416 KiB  
Article
Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii
by Adriana-Sebastiana Musca, Attila Cristian Ratiu, Adrian Ionascu, Nicoleta-Denisa Constantin and Marius Zahan
Insects 2025, 16(6), 591; https://doi.org/10.3390/insects16060591 - 4 Jun 2025
Viewed by 777
Abstract
Drosophila suzukii is a successful invasive insect species responsible for agricultural losses. The key to its prowess is the ability to swiftly adapt to new environments through various genetic mechanisms, including fast accommodation of mutations and gene expression fine-tuning. Piezo and nanchung ( [...] Read more.
Drosophila suzukii is a successful invasive insect species responsible for agricultural losses. The key to its prowess is the ability to swiftly adapt to new environments through various genetic mechanisms, including fast accommodation of mutations and gene expression fine-tuning. Piezo and nanchung (nan) genes are linked to circadian clock-related behaviors and, therefore, are expected to readily respond to stress stimuli. Herein, we compared the DNA sequences of Piezo, nan, and αTubulin at 67C, a highly conserved housekeeping gene, in ICDPP-ams-1, a Romanian local population of D. suzukii, and two well-annotated reference populations from the United States of America and Japan. Our results imply that short-term evolutionary accumulated single nucleotide and indel variants are overrepresented within introns, a propensity evaluated through the mutation accumulation tendency (MAT) original parameter. Piezo and nan gene expression under photoperiodicity changes challenges were assessed in a series of experiments on three groups of individuals from ICDPP-ams-1. We found that both genes are upregulated in females if their customary circadian rhythm is affected, a trend seemingly reverting if, after an initial perturbation, the circadian clock is reset to its initial timing. In conclusion, we found that both highly conserved and adaptability-related genes are rapidly evolving and that Piezo and nan have a fast functional reaction to circadian clock changes by modifying their gene expression profiles. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

14 pages, 3817 KiB  
Article
Mechanism of Circadian Regulation in Ferroptosis of the BMAL1/NRF2 Pathway in Renal Ischemia–Reperfusion
by Shang Xu, Qiao Tang, Haiyang Du, Jiatao Xie, Ruoxin He, Ruiyan Wang and Qian Sun
Biomedicines 2025, 13(6), 1375; https://doi.org/10.3390/biomedicines13061375 - 4 Jun 2025
Viewed by 672
Abstract
Background: Renal ischemia–reperfusion injury (IRI) is a frequent cause of kidney transplant failure. Recent studies have shown that the extent of injury is closely linked to ferroptosis, and the process of cellular ferroptosis is diurnal and regulated by circadian genes. NRF2, [...] Read more.
Background: Renal ischemia–reperfusion injury (IRI) is a frequent cause of kidney transplant failure. Recent studies have shown that the extent of injury is closely linked to ferroptosis, and the process of cellular ferroptosis is diurnal and regulated by circadian genes. NRF2, involved in iron–heme metabolism, may be related to ferroptosis. We hypothesize that the pathway plays a role in circadian regulation in ferroptosis in renal IRI. Methods: Using hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), Cell Counting Kit-8 (CCK8), flow cytometry, real-time quantitative reverse transcription PCR (qRT-PCR), and Western blotting, we analyzed renal tubular tissues in vivo and in vitro and compared the groups with IR injury treatment, inhibition of ferroptosis, and inhibition of BMAL1 gene expression at the ZT0 (zeitgeber time 0) and ZT12 (zeitgeber time 12) time points. Results: IR injury treatments caused exacerbation of injury, both in vivo and in vitro, and were more pronounced at the ZT12 time point, which correlates with circadian rhythms. The use of the ferroptosis inhibitor (Fer-I) attenuated IR injury, suggesting that IRI is associated with ferroptosis. In contrast, reduced BMAL1-gene expression exacerbated injury, and NRF2, which is elevated in IR injury, was suppressed. Conclusions: The circadian gene BMAL1 affects the circadian rhythm of ferroptosis in renal IRI through the regulation of NRF2 and its downstream pathway. In this study, renal injury is well ameliorated by the ferroptosis inhibitor, exhibiting potential as a therapeutic agent for use in renal transplantation. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

40 pages, 4276 KiB  
Systematic Review
The Impact of Genetic Variations on Radiotherapy Toxicity in Breast Cancer Patients: A Meta-Analysis of Acute and Late Skin Adverse Effects
by Andreea Cătană, Andrada-Adelaida Pătrășcanu, Daniela Laura Martin, Mariela Sanda Militaru, Irina Ioana Iordănescu, Alexandru Țîpcu, Patriciu Achimaș-Cadariu and Lorin-Manuel Pîrlog
Cancers 2025, 17(11), 1880; https://doi.org/10.3390/cancers17111880 - 4 Jun 2025
Viewed by 894
Abstract
Background/Objectives: Radiotherapy is a cornerstone in the treatment of breast cancer, yet its use is frequently accompanied by skin toxicities that vary in severity and timing among patients. The objective of this meta-analysis is to systematically evaluate the pooled impact of genetic variations [...] Read more.
Background/Objectives: Radiotherapy is a cornerstone in the treatment of breast cancer, yet its use is frequently accompanied by skin toxicities that vary in severity and timing among patients. The objective of this meta-analysis is to systematically evaluate the pooled impact of genetic variations on the risk and severity of acute and late skin side effects from radiotherapy in breast cancer patients. Materials and Methods: A systematic literature search was conducted across PubMed, Embase, and Scopus to identify studies published between 2014 and 2024 that examined associations between genetic polymorphisms and radiotherapy-induced skin toxicity. Studies were selected based on predefined inclusion and exclusion criteria, and data were synthesized using a random-effects meta-analysis model. The risk of bias was evaluated using the ROBINS-I tool, and publication bias was assessed through funnel plots and Egger’s test. Results: A total of 11 studies involving breast cancer patients were included, identifying associations between various gene polymorphisms and skin toxicity. The pooled analysis revealed that patients with specific genetic variants had a 53% increased risk of acute skin side effects and a 44% increased risk of late effects. Notable implicated genes included XRCC2, IFNG, ATM, TGFB1, and PER3. Significant heterogeneity and publication bias were noted across studies, warranting cautious interpretation. Conclusions: This meta-analysis highlights the role of genetic variation in predicting radiotherapy-induced skin toxicity in breast cancer patients. These findings support the future development of predictive biomarkers and personalized radiotherapy strategies to minimize treatment-related toxicity. Full article
(This article belongs to the Special Issue Breast Cancer: Biomarkers of Diagnosis and Prognosis)
Show Figures

Figure 1

23 pages, 2082 KiB  
Article
Transcriptomic Analysis of the Liver Redox Response During Food-Anticipatory Activity Under a Time-Restricted Feeding Protocol in Rats
by Adrián Báez-Ruiz, Andy Hernández-Abrego, Mauricio Díaz-Muñoz and Isabel Méndez
Antioxidants 2025, 14(6), 649; https://doi.org/10.3390/antiox14060649 - 28 May 2025
Viewed by 905
Abstract
Daytime-restricted feeding (TRF) exerts outstanding effects on circadian physiology, nutrient utilization, and energy metabolism. Limiting feeding access to two hours during the daytime (12:00–14:00 h) for three weeks promotes food-anticipatory activity (FAA). FAA encompasses not only behaviors related to meal expectations but also [...] Read more.
Daytime-restricted feeding (TRF) exerts outstanding effects on circadian physiology, nutrient utilization, and energy metabolism. Limiting feeding access to two hours during the daytime (12:00–14:00 h) for three weeks promotes food-anticipatory activity (FAA). FAA encompasses not only behaviors related to meal expectations but also includes diurnal fluctuations in liver metabolic responses, including distinct redox handling. Hepatic microarray profiles of genes associated with redox response processes were analyzed at three crucial time points: at the beginning of the light period or before FAA (08:00 h), during the expression of FAA (11:00 h), and after feeding (14:00 h). Data on fasting and nutrient processing were integrated, whereas circadian implications were extrapolated by comparing the TRF transcriptional output with a one-day fasting group. Transcripts of redox reactions, such as reactive oxygen species (ROS) generation, antioxidant defenses, NAD+/NADH equilibrium, and glutathione, hydrogen peroxide (H2O2), arginine, nitric oxide (NO), and hydrogen sulfide (H2S) metabolism, were analyzed. Results showed a decline in antioxidant defenses at 08:00 h, followed by a burst of pro-oxidant reactions, preparation of glutathione metabolism factors, and a tendency to decrease H2O2 and increase NO and H2S during the FAA. Most of the findings observed during the FAA were absent in response to one-day fasting. Hence, TRF involves concerted and sequential responses in liver pro-oxidant and antioxidant reactions, facilitating a redox-related circadian control that optimizes the metabolic utilization of nutrients, which differs from a response to a simple fast-feed cycle. Full article
Show Figures

Graphical abstract

19 pages, 12789 KiB  
Article
Integrative Transcriptomic and Metabolomic Analysis Reveals the Molecular Mechanisms Underlying Flowering Time Variation in Camellia Species
by Ling Zhou, Tao Guo, Shihui Zou, Lingli Li, Xuemei Li, Jiao Wang, Zilin Zhu and Lijiao Ai
Agronomy 2025, 15(6), 1288; https://doi.org/10.3390/agronomy15061288 - 24 May 2025
Cited by 1 | Viewed by 632
Abstract
Camellia’s ornamental value is constrained by its natural winter–spring flowering period. Although the discovery of Camellia azalea provides important germplasm resources for developing cultivars with year-round flowering, the molecular mechanisms underlying flowering time variation remain unclear. Here, we investigated three germplasms with [...] Read more.
Camellia’s ornamental value is constrained by its natural winter–spring flowering period. Although the discovery of Camellia azalea provides important germplasm resources for developing cultivars with year-round flowering, the molecular mechanisms underlying flowering time variation remain unclear. Here, we investigated three germplasms with distinct flowering patterns: winter–spring flowering Camellia japonica ‘Tieke Baozhu’, summer–autumn flowering Camellia azalea, and their hybrid Camellia ‘Lingnan Yuanbao’ inheriting the latter’s flowering traits. Integrated transcriptomic and metabolomic analyses revealed that differentially expressed genes (DEGs) and metabolites (DAMs) were mainly enriched in the pathways related to photoperiod regulation, plant hormone synthesis and signal transduction and flavonoid synthesis. The transcription factor (TF) analysis revealed that the bHLH and MYB TF families were significantly differentially expressed in different Camellia germplasm, suggesting their potential involvement in the regulation of flowering time through the plant hormone signal transduction and photoperiod pathway. Meanwhile, photoperiod regulation related genes, including Cryptochrome circadian regulator (CRY), Timing of CAB expression 1 (TOC1), and phytochrome interacting factor 3 (PIF3), showed significant expression differences, further confirming the photoperiod pathway’s crucial regulatory function. In terms of plant hormone levels, there were significant differences in the levels of gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) among Camellia germplasm. The differential expression characteristics of DELLA (Asp-Glu-Leu-Leu-Ala) proteins indicated that the GA signal transduction pathway was one of the key factors regulating flowering time in Camellia. Additionally, metabolomics analyses showed significant differences in flavonoid metabolite content among Camellia germplasm, which was significantly correlated with the different developmental stages of the buds. Our findings provide a theoretical basis for the molecular breeding of everblooming Camellia cultivars, advancing the understanding of flowering regulation mechanism in ornamental species. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

25 pages, 13199 KiB  
Article
Taurine Prevents Impairments in Skin Barrier Function and Dermal Collagen Synthesis Triggered by Sleep Deprivation-Induced Estrogen Circadian Rhythm Disruption
by Qi Shao, Zhaoyang Wang, Yifang Li, Xun Tang, Ziyi Li, Huan Xia, Qihong Wu, Ruxue Chang, Chunna Wu, Tao Meng, Yufei Fan, Yadong Huang and Yan Yang
Cells 2025, 14(10), 727; https://doi.org/10.3390/cells14100727 - 16 May 2025
Viewed by 1732
Abstract
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women’s skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical [...] Read more.
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women’s skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical taurine supplementation promotes the expression of tight junction (TJ)-related proteins and enhances collagen production, effectively restoring skin homeostasis in sleep-deprived female mice. Mechanistically, taurine upregulates the expression of TMEM38B, a gene encoding the TRIC-B trimeric cation channel, resulting in increased intracellular calcium ion levels. This, in turn, promotes the upregulation of TJ-related proteins, such as ZO-1, occludin, and claudin-11 in epidermal cells, while also enhancing the expression of type III collagen in fibroblasts, thus restoring skin homeostasis. These findings suggest that taurine may serve as an alternative to estradiol, effectively improving skin homeostasis disrupted by sleep deprivation while mitigating the potential risks associated with exogenous estrogen supplementation. Collectively, these results provide preliminary insights into the protective mechanisms of taurine against sleep deprivation-induced skin impairments and establish a foundation for its potential application in treating skin conditions related to estrogen imbalances, such as skin aging in menopausal women. Full article
Show Figures

Graphical abstract

17 pages, 3300 KiB  
Article
Acrolein-Triggered Ferroptosis and Protection by Intermittent Fasting via the AMPK/NRF2-CLOCK/BMAL1 Pathway
by Yuandie Zhang, Hong Chen, Qianfeng Chen, Margaret Zaitoun, Ying Cheng, Jierong Ge and Qing Feng
Toxics 2025, 13(5), 369; https://doi.org/10.3390/toxics13050369 - 1 May 2025
Viewed by 727
Abstract
Environmental pollution significantly exacerbates various diseases, particularly those affecting the cardiovascular and respiratory systems. Our previous studies have shown that acrolein, an environmental pollutant, promotes atherosclerosis by downregulating the circadian clock genes (CLOCK/BMAL1) and disrupting circadian rhythm. We have also found that intermittent [...] Read more.
Environmental pollution significantly exacerbates various diseases, particularly those affecting the cardiovascular and respiratory systems. Our previous studies have shown that acrolein, an environmental pollutant, promotes atherosclerosis by downregulating the circadian clock genes (CLOCK/BMAL1) and disrupting circadian rhythm. We have also found that intermittent fasting (IF), closely linked to the circadian clock, may mitigate atherosclerosis induced by acrolein. Ferroptosis, a newly identified form of regulated cell death, is associated with the acceleration of atherosclerotic development, but its relationship with the circadian clock is not well understood. In this study, we explored the potential of IF to alleviate ferroptosis by modulating the circadian clock. Our in vivo experiments revealed that IF reversed ferroptosis and upregulated CLOCK/BMAL1 in APOE-/- mice. In human umbilical vein endothelial cells (HUVECs), we discovered that acrolein-induced ferroptosis leads to cell death, while short-term starvation (STS, IF cell model) reversed this effect. Acrolein also suppressed the expression of AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (NRF2), and CLOCK/BMAL1, which were restored by subsequent STS treatments. Additionally, the overexpression of CLOCK/BMAL1 mitigated ferroptosis, consistent with findings from CLOCK gene knockout experiments. Notably, CLOCK/BMAL1 and AMPK/NRF2 were found to be mutually regulated. Concurrently, the AMPK and NRF2 signaling pathways may be interdependent and act in concert. In conclusion, our findings suggest that IF modulates the CLOCK/BMAL1-AMPK/NRF2 pathway to alleviate acrolein-induced ferroptosis, offering a potential strategy to address health issues related to environmental pollution. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

Back to TopTop