Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (439)

Search Parameters:
Keywords = chromogenic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 865 KiB  
Article
A Sliding Microfluidic Chip-Integrated Colorimetric Biosensor Using MnO2 Nanoflowers for Rapid Salmonella Detection
by Yidan Niu, Juntao Jiang, Xin Zhi, Jiahui An and Yuhe Wang
Micromachines 2025, 16(8), 904; https://doi.org/10.3390/mi16080904 (registering DOI) - 31 Jul 2025
Viewed by 156
Abstract
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the [...] Read more.
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead–bacteria complexes. Then, through motor-assisted sliding of the chip, manganese dioxide (MnO2) nanoflowers conjugated with secondary antibodies were introduced to bind the captured bacteria, generating a dual-antibody sandwich structure. Finally, a second sliding step brought the complexes into contact with a chromogenic substrate, where the MnO2 nanoflowers catalyzed a colorimetric reaction, and the resulting signal was used to quantify the Salmonella concentration. Under optimized conditions, the biosensor achieved a detection limit of 10 CFU/mL within 20 min. In spiked pork samples, the average recovery rate of Salmonella ranged from 94.9% to 125.4%, with a coefficient of variation between 4.0% and 6.8%. By integrating mixing, separation, washing, catalysis, and detection into a single chip, this microfluidic biosensor offers a user-friendly, time-efficient, and highly sensitive platform, showing great potential for the on-site detection of foodborne pathogens. Full article
(This article belongs to the Section B1: Biosensors)
16 pages, 6426 KiB  
Article
Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration
by Yu Zhang, Guanghai Shi and Jiabao Wen
Crystals 2025, 15(8), 704; https://doi.org/10.3390/cryst15080704 - 31 Jul 2025
Viewed by 160
Abstract
Color is a primary determinant of the value of jadeite jade, but the petrological provenance of the chromogenic elements of jadeite jade remains uncertain. The characteristics of the associated chromite in Myanmar jadeite jade were systematically investigated through a series of tests, including [...] Read more.
Color is a primary determinant of the value of jadeite jade, but the petrological provenance of the chromogenic elements of jadeite jade remains uncertain. The characteristics of the associated chromite in Myanmar jadeite jade were systematically investigated through a series of tests, including polarized microscopy, microarea X-ray fluorescence spectroscopy (micro-XRF) mapping, electron probe microanalysis (EPMA), and backscattered electron (BSE) imaging. The results demonstrate that the chromite composition in Myanmar jadeite jade is characterized by a high concentration of Cr2O3 (46.18–67.11 wt.%), along with a notable abundance of MnO (1.68–9.13 wt.%) compared with the chromite from the adjacent Myitkyina peridotite. The diffusion of chromium (Cr) and manganese (Mn) in jadeite jade is accomplished by accompanying the metamorphic pathway of Mn-rich chromite → kosmochlor → chromian jadeite → jadeite. In the subsequent phase of jadeite jade formation, the chromium-rich omphacite veins generated by the fluid enriched in Ca and Mg along the fissures of kosmochlor and chromian jadeite play a role in the physical diffusion of Cr and Mn. The emergence of the lavender hue in jadeite is contingent upon the presence of a relatively high concentration of Mn (approximately 100–1000 ppmw) and the simultaneous absence of Cr, which would otherwise serve as a more effective chromophore (no Cr or up to a dozen ppmw). The distinctive Mn-rich chromite represents the primary origin of the chromogenic element Cr (green) and, perhaps more notably, an overlooked provider of Mn (lavender) in Myanmar jadeite jade. Full article
Show Figures

Figure 1

19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 289
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

16 pages, 298 KiB  
Article
Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy
by Fabrizio Bertelloni, Francesca Pauselli, Giulia Cagnoli, Roberto Biscontri, Renato Ceccherelli and Valentina Virginia Ebani
Antibiotics 2025, 14(7), 725; https://doi.org/10.3390/antibiotics14070725 - 18 Jul 2025
Viewed by 316
Abstract
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were [...] Read more.
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were typed and analyzed for exfoliative toxins genes and the phenotypic and genotypic characteristics of antimicrobial resistance. Results: A total of 54 strains were isolated and typed as S. aureus, S. xylosus, S. sciuri, S. pseudintermedius, S. simulans, S. chromogenes, S. epidermidis, S. hyicus, and S. lentus. No strains had the eta and etb genes coding for exfoliative toxins. Overall, 39/54 (72.20%) isolates showed phenotypic resistance to at least one antimicrobial and 21/54 (38.80%) showed more than one resistance. The lowest efficacy was observed for erythromycin, with 40/54 (74.08%) strains classified as intermediate and 6/54 (11.11%) classified as resistant. Among the 29 isolates shown to be penicillin-resistant, 11 (37.93%) were oxacillin-resistant, with a minimum inhibitory concentration (MIC). Among the 54 staphylococcal strains, 2 (3.70%) were resistant to vancomycin, both with an MIC value equal to the maximum concentration of the antibiotic tested (256 μg/mL) and 2 (3.70%) had an intermediate resistance profile with an 8 μg/mL MIC value. No strains had the genes vanA and vanB. Two of the 29 (6.90%) penicillin-resistant strains had the blaZ gene; 8 (27.13%) strains had the mecA gene. Overall, 2/54 (3.70%) isolates were classified as extensively drug-resistant (XDR) and 9/54 (16.66%) were classified as multidrug-resistant (MDR). Conclusions: Hedgehogs can harbor antimicrobial-resistant staphylococci and can be sources of these bacteria for other animals and humans. They can also serve as bioindicators of the pathogens and antimicrobial-resistant bacteria circulating in a given habitat. Full article
19 pages, 4194 KiB  
Article
3D-Printed PLA Hollow Microneedles Loaded with Chitosan Nanoparticles for Colorimetric Glucose Detection in Sweat Using Machine Learning
by Anastasia Skonta, Myrto G. Bellou and Haralambos Stamatis
Biosensors 2025, 15(7), 461; https://doi.org/10.3390/bios15070461 - 18 Jul 2025
Viewed by 381
Abstract
Biosensors play a central role in the early detection of abnormal glucose levels in individuals with diabetes; therefore, the development of less invasive systems is essential. Herein, a 3D-printed colorimetric biosensor combining microneedles and chitosan nanoparticles was developed for glucose detection in sweat [...] Read more.
Biosensors play a central role in the early detection of abnormal glucose levels in individuals with diabetes; therefore, the development of less invasive systems is essential. Herein, a 3D-printed colorimetric biosensor combining microneedles and chitosan nanoparticles was developed for glucose detection in sweat using machine learning. Briefly, hollow 3D-printed polylactic acid microneedles were constructed and loaded with chitosan nanoparticles encapsulating glucose oxidase, horseradish peroxidase, and the chromogenic substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), resulting in the formation of the chitosan nanoparticle−microneedle patches. Glucose detection was performed colorimetrically by first incubating the chitosan nanoparticle−microneedle patches with glucose samples of varying concentrations and then by using photographs of the top side of each microneedle and a color recognition application on a smartphone. The Random Sample Consensus algorithm was used to train a simple linear regression model to predict glucose concentrations in unknown samples. The developed biosensor system exhibited a good linear response range toward glucose (0.025−0.375 mM), a low limit of detection (0.023 mM), a limit of quantification (0.078 mM), high specificity, and recovery rates ranging between 86–112%. Lastly, the biosensor was applied to glucose detection in spiked artificial sweat samples, confirming the potential of the proposed methodology for glucose detection in real samples. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

15 pages, 636 KiB  
Article
High Prevalence of Multidrug-Resistant Bacterial Colonization Among Patients and Healthcare Workers in a Rural Ethiopian Hospital
by Elena Hidalgo, Teresa Alvaredo-Carrillo, Josefina-Marina Gil-Belda, Clara Portela-Pino, Clara Bares-Moreno, Sara Jareño-Moreno, Paula de la Fuente, Lucía Platero and Ramón Pérez-Tanoira
Antibiotics 2025, 14(7), 717; https://doi.org/10.3390/antibiotics14070717 - 17 Jul 2025
Viewed by 346
Abstract
Background/Objectives: Multidrug-resistant (MDR) bacterial colonization poses a significant risk for subsequent infections, especially within hospital environments. Healthcare workers can inadvertently transmit these MDR bacteria to vulnerable patients, exacerbating the problem. This study aimed to determine the colonization rates of MDR bacteria among patients [...] Read more.
Background/Objectives: Multidrug-resistant (MDR) bacterial colonization poses a significant risk for subsequent infections, especially within hospital environments. Healthcare workers can inadvertently transmit these MDR bacteria to vulnerable patients, exacerbating the problem. This study aimed to determine the colonization rates of MDR bacteria among patients and healthcare workers in a rural Ethiopian hospital with limited resources. Methods: Between 26 May and 6 June 2024, nasal, rectal, vagino-rectal exudate, and stool samples were collected from patients (n = 78) and healthcare workers (n = 11) at Gambo General Hospital (Oromia Region, Ethiopia). Samples were cultured on chromogenic media selective for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp. (VRE), and carbapenemase-producing Enterobacteriaceae (CPE). Bacterial identification was performed using MALDI-TOF mass spectrometry (Bruker), antimicrobial susceptibility testing using the MicroScan WalkAway system (Beckman Coulter), and genotypic characterization with the MDR Direct Flow Chip kit (Vitro). Results: MRSA nasal colonization was detected in 43.3% of patients (13/30; 95% CI: 27.4–60.8%) and 27.3% of healthcare workers (3/11; 95% CI: 6.0–61.0%) (p = 0.73). Rectal (or stool) colonization by MDR bacteria was significantly higher in pediatric patients (85.0%, 17/20; 95% CI: 62.1–96.8%) than in adults (14.3%, 4/28; 95% CI: 5.7–31.5%) (p < 0.001). Notably, a high proportion of pediatric patients harbored Escherichia coli strains co-producing NDM carbapenemase and CTX-M ESBL, and VRE strains were also predominantly isolated in this group. Conclusions: This study reveals a concerningly high prevalence of MRSA and MDR Enterobacteriaceae, especially among children at Gambo Hospital. The VRE prevalence was also substantially elevated compared to other studies. These findings underscore the urgent need for strengthened infection control measures and antimicrobial stewardship programs within the hospital setting. Full article
Show Figures

Figure 1

12 pages, 869 KiB  
Article
Perioperative Profiling of a Disintegrin and Metalloprotease with Thrombospondin Type 1 Motif, Member 13 (ADAMTS13) Activity in Cardiac Surgery: Kinetics and Mechanistic Insights
by Bernhard Strasser, Johann Knotzer, Selina Sartori, Bernhard Poidinger, Oskar Kotzinger, Christian Irsara, Gerald Lirk, Carolin Gunz and Alexander Haushofer
J. Clin. Med. 2025, 14(14), 4936; https://doi.org/10.3390/jcm14144936 - 11 Jul 2025
Viewed by 313
Abstract
Background: The enzyme A Disintegrin and metalloprotease with thrombospondin type 1 motif, member 13 (ADAMTS13) regulates hemostasis by cleaving von Willebrand factor (VWF) multimers. ADAMTS13–VWF axis dysregulation leads to different thrombotic conditions. This study investigated changes in ADAMTS13 activity during major cardiac procedures [...] Read more.
Background: The enzyme A Disintegrin and metalloprotease with thrombospondin type 1 motif, member 13 (ADAMTS13) regulates hemostasis by cleaving von Willebrand factor (VWF) multimers. ADAMTS13–VWF axis dysregulation leads to different thrombotic conditions. This study investigated changes in ADAMTS13 activity during major cardiac procedures and their relationship to VWF changes and clinical complications. Methods: A total of 628 ADAMTS13 activity and inhibitor measurements were carried out in 168 patients who underwent cardiac surgery. ADAMTS13 activity was measured after the initiation of anesthesia and daily for up to 6 days postoperatively via Technozym chromogenic ELISA. The von Willebrand factor antigen (VWF:Ag) and collagen binding (VWF:CB) were also measured. Clinical complications and correlations with liver function biomarkers were also assessed. Results: ADAMTS13 activity significantly decreased during surgery, with mean values markedly decreasing from preoperative to postoperative measurements (p = 0.01). A clear inverse relationship between ADAMTS13 activity and the VWF:CB/VWF:AG ratio was observed, indicating that increased high-molecular-weight VWF multimers are associated with decreased ADAMTS13 activity. Correlation analyses (CHE, Spearman’s rho = 0.39) indicated that the reduction in ADAMTS13 activity was not attributable to impaired liver synthesis but likely resulted from peripheral consumption, potentially influenced by surgical stress. Conclusions: Perioperative reductions in ADAMTS13 activity are associated with an accumulation of high-molecular-weight VWF multimers and a higher incidence of postoperative complications. These results demonstrate that ADAMTS13 could be a useful perioperative risk biomarker for cardiac surgery patients. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

20 pages, 3062 KiB  
Article
Optimal Horseshoe Crab Blood Collection Solution That Inhibits Cellular Exocytosis and Improves Production Yield of Limulus Amoebocyte Lysate for Use in Endotoxin Tests
by Mengmeng Zhang, Sophia Zhang and Jessica Zhang
Int. J. Mol. Sci. 2025, 26(14), 6642; https://doi.org/10.3390/ijms26146642 - 11 Jul 2025
Viewed by 252
Abstract
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as [...] Read more.
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as much as 80% of the total LAL during blood accumulation, confirming the incompatibility of these methods with the lasting survival of the American horseshoe crab. For this reason, new implementations of blood collection–suspension buffer combinations are critical. Here, we evaluated the ability of different blood collection solutions to inhibit exocytosis and subsequently treated the cells with CaCl2 to stimulate exocytosis and improve the yield of LAL. Two test methods, chromogenic and turbidimetric tests for LAL activity, were evaluated. Crabs were bled during the bleeding season. The crab blood samples were collected with the following blood collection solutions: citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer. The cell pellets were washed with 3% NaCl and subsequently resuspended in LRW or CaCl2 to facilitate degranulation. Both the chromogenic test and the turbidimetric assay were used to evaluate the LAL enzyme activity. Citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer blocked exocytosis, resulting in the high yields of LAL. There was no observable effect on the activity output of crab size via a chromogenic test with PBS–caffeine buffer during the bleeding season. This protocol substantially benefited prior processes, as the PBS–caffeine collection mixture decreased amoebocyte aggregation/clot formation during processing. Furthermore, we evaluated the specific biochemical parameters of PBS–caffeine-derived LAL. We developed an accessible, promising phosphate–caffeine-based blood collection buffer that prevents amoebocyte degranulation during blood collection, maximizing the LAL yield. Moreover, our analysis revealed that phosphate–caffeine-derived LAL is uniquely adaptable to compatibility with chromogenic and turbidimetric assay techniques. By employing this method for LAL blood extraction, our same-cost approach fostered significantly greater LAL yields, simultaneously ensuring a healthy limulus polyphemus population. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 781 KiB  
Article
Technical Lignins Antibacterial Effects Against Environmental Mastitis Pathogens Across Various Levels of Bedding Cleanliness In Vitro
by Godloves M. Oppong, Diana C. Reyes, Zhengxin Ma, Santiago A. Rivera, Marjorie A. Killerby, Diego Zamudio, Anne B. Lichtenwalner and Juan J. Romero
Molecules 2025, 30(14), 2904; https://doi.org/10.3390/molecules30142904 - 9 Jul 2025
Viewed by 293
Abstract
This study aimed to evaluate the antibacterial activity of several technical lignins against major environmental bacteria that cause mastitis in dairy cattle. The efficacy of four types of technical lignins against environmental mastitis pathogens was evaluated using MIC and MBC assays. The best [...] Read more.
This study aimed to evaluate the antibacterial activity of several technical lignins against major environmental bacteria that cause mastitis in dairy cattle. The efficacy of four types of technical lignins against environmental mastitis pathogens was evaluated using MIC and MBC assays. The best candidate, sodium lignosulfonate (NaL-O), was further tested using sawdust bedding substrates. Substrates were prepared in different cleanliness conditions: sawdust only, sawdust plus urine, sawdust plus feces, or sawdust plus a combination of both. The antimicrobial activity of NaL-O against the mixture of environmental mastitis-causing pathogens was determined on days 0, 2, and 6 of incubation. In addition, the components of bedding substrates were analyzed to help understand the dynamics of pathogen loads. In the MIC and MBC assays, NaL-O showed the best antimicrobial performance against all pathogens except Escherichia coli. When testing in the bedding substrates, the addition of NaL-O decreased the concentration of Staphylococcus chromogenes, Streptococcus uberis, and Pseudomonas aeruginosa across all bedding cleanliness levels at d 0, 2, and 6 of incubation. As the incubation time increased, the antimicrobial effect decreased. NaL-O also lowered the counts of E. coli and Klebsiella pneumoniae across all incubation times, but to a lesser extent. The presence of feces significantly reduced the antibacterial effects of NaL-O for these two bacteria. Among the technical lignins tested, NaL-O showed the broadest antibacterial activity against the mastitis pathogens tested. This study suggests that NaL-O has promising potential as a bedding conditioner to control environmental pathogens on dairies due to its low cost, ready availability, and compatibility with sustainable livestock practices. Combined with bedding cleanliness, bedding conditioner application may play a crucial role in reducing the growth of EM pathogens and subsequent mastitis incidence. Full article
Show Figures

Figure 1

22 pages, 4917 KiB  
Article
FVIII Trafficking Dynamics Across Subcellular Organelles Using CRISPR/Cas9 Specific Gene Knockouts
by Salime El Hazzouri, Rawya Al-Rifai, Nicole Surges, Melanie Rath, Heike Singer, Johannes Oldenburg and Osman El-Maarri
Int. J. Mol. Sci. 2025, 26(13), 6349; https://doi.org/10.3390/ijms26136349 - 1 Jul 2025
Viewed by 518
Abstract
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence [...] Read more.
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence FVIII secretion. Here, we further investigated the intracellular dynamics of FVIII using single and double CRISPR/Cas9 Knockout (KO) models of the abovementioned chaperones as well as the GABARAP proteins in HEK293 cells expressing FVIII. Cellular pathways were manipulated by Brefeldin A (BFA), Chloroquine (CQ), a Rab7 inhibitor, and subjected to glucose starvation. The effect of each KO on FVIII secretion and organelle distribution was assessed by a two-stage chromogenic assay and immunofluorescence (IF) microscopy, prior and upon cell treatments. Using these approaches, we first observed distinct effects of each studied protein on FVIII trafficking. Notably, intracellular localization patterns revealed clustering of FVIII phenotypes in GABARAPKO, CANXKO, and CALRKO cells together under both basal and treated conditions, an observation that was also reflected in their respective double KO combinations. Besides, a clear involvement of additional components of the endomembrane system was evident, specifically at the trans-Golgi space, as marked by FVIII colocalization with the Ras-like proteins in brain (Rab8 and Rab7) and with the Vesicle-Associated Membrane Protein (VAMP8), along with the observed impact of the selected cell treatments on FVIII phenotypes. These outcomes enhance our understanding of the molecular mechanisms regulating FVIII and pave the way for new perspectives, which could be further projected into FVIII replacement, cell and gene therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

18 pages, 3598 KiB  
Article
Molecular and Genetic Characterization of Arcobacter Species Isolated from Chicken Feces and Chicken Giblets from Grenada, West Indies
by Jacqueline Paige Coughlin, Andy Alhassan, Alfred Chikweto, Rohini Roopnarine and Bhumika Sharma
Microorganisms 2025, 13(7), 1495; https://doi.org/10.3390/microorganisms13071495 - 26 Jun 2025
Viewed by 1070
Abstract
This study aimed to isolate and genetically characterize Arcobacter species from broiler chickens sampled at three slaughterhouses in Grenada, West Indies. A total of 126 samples—including cloacal swabs, intestinal contents, and meat—from 42 birds were cultured using a chromogenic agar medium. Arcobacter spp. [...] Read more.
This study aimed to isolate and genetically characterize Arcobacter species from broiler chickens sampled at three slaughterhouses in Grenada, West Indies. A total of 126 samples—including cloacal swabs, intestinal contents, and meat—from 42 birds were cultured using a chromogenic agar medium. Arcobacter spp. were detected in 21.4% (9/42) of the birds. Among the sample types, meat exhibited the highest prevalence at 14.3% (6/42), followed by fecal samples at 7.1% (3/42) and cloacal swabs at 2.4% (1/42). Genus- and species-specific polymerase chain reaction assays on 33 isolates identified five Arcobacter species: A. butzleri, A. cryaerophilus, and A. skirrowii (each 18.2%), as well as A. cibarius and A. thereius (each 6.1%). Genetic diversity was further assessed via Enterobacterial Repetitive Intergenic Consensus–polymerase chain reaction, which revealed 13 distinct genotypic fingerprints forming six clusters, with a high discriminatory power (D = 0.96). This study represents the first documented isolation and molecular characterization of five Arcobacter species from broiler chickens in Grenada across multiple sample types. These findings underscore the zoonotic implications of isolating Arcobacter spp., particularly in contaminated poultry meat destined for human consumption. The presence of Arcobacter spp. in poultry carcasses poses a significant public health concern. To mitigate this public health risk, recommendations include surveillance for the presence of this pathogen in Hazard Analysis and Critical Control Points plans or other tools used to identify pathogens compromising food safety and public health. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 2295 KiB  
Article
Study on Rapeseed Albumin Hydrolysis by PrtS Protease from Streptococcus thermophilus and Bioactivity Characterization of Resulting Hydrolysates
by Zeeshan Hafeez, Sophie Beaubier, Arnaud Aymes, Ségolène Christophe, Samina Akbar, Romain Kapel and Laurent Miclo
Foods 2025, 14(13), 2235; https://doi.org/10.3390/foods14132235 - 25 Jun 2025
Viewed by 388
Abstract
Lactic acid bacteria are well known for hydrolyzing milk proteins, but their application to plant proteins remains limited. This study evaluated the ability of the cell-wall-anchored PrtS protease from two Streptococcus thermophilus strains to hydrolyze rapeseed albumins (RAs), aiming to generate bioactive peptides [...] Read more.
Lactic acid bacteria are well known for hydrolyzing milk proteins, but their application to plant proteins remains limited. This study evaluated the ability of the cell-wall-anchored PrtS protease from two Streptococcus thermophilus strains to hydrolyze rapeseed albumins (RAs), aiming to generate bioactive peptides with potential food functionality. The specific activity of PrtS was first determined using a chromogenic substrate. RAs were then hydrolyzed using 10X- and 100X-concentrated cell pellets of each strain to assess the hydrolysis kinetics and the enzymatic mechanism. The results showed concentration-dependent hydrolysis, with protein conversion and the degree of hydrolysis increasing threefold at 100X for both strains. Despite the increased hydrolysis, the peptides produced had similar average sizes, averaging at five amino acids, indicating a consistent “one-by-one” cleavage mechanism. The in vitro testing of the RA hydrolysates produced with 100X PrtS from S. thermophilus LMD-9 revealed dose-dependent antioxidant activity comparable to native RAs. Importantly, unlike native RAs, these hydrolysates did not induce increased secretion of the pro-inflammatory mediator IL-8 in inflamed HT-29 cells, suggesting a reduced pro-inflammatory potential. These findings demonstrate that PrtS protease from S. thermophilus can effectively hydrolyze rapeseed proteins to produce functional hydrolysates with improved bioactivity profiles. Such hydrolysates have promising applications as functional ingredients in plant-based food products, contributing both to health benefits and potential food preservation through antioxidant activity. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

15 pages, 6302 KiB  
Article
Fluorescent–Electrochemical–Colorimetric Triple-Model Immunoassays with Multifunctional Metal–Organic Frameworks for Signal Amplification
by Ning Xia, Chuye Zheng and Gang Liu
Biosensors 2025, 15(6), 376; https://doi.org/10.3390/bios15060376 - 11 Jun 2025
Viewed by 591
Abstract
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and [...] Read more.
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and the incompatibility of signal transduction methods in different detection modes. In this work, a fluorescent–electrochemical–colorimetric triple-mode immunoassay platform was proposed with Cu-based metal–organic frameworks (MOFs) as the signal labels. The captured Cu-MOFs were successfully decomposed under an acidic condition, leading to the release of numerous Cu2+ ions and 2-aminobenzene-1,4-dicarboxylic acid (NH2-BDC) ligands. The released NH2-BDC were determined by fluorescence titration. Meanwhile, the released Cu2+ were readily quantified by differential pulse voltammetry (DPV) and simply detected through the catalytic oxidation of chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB). Taking alpha-fetoprotein (AFP) as a model analyte, the designed triple-mode immunoassays showed good performances with the linear range of 10–200 pg/mL, 10–200 pg/mL, and 1–100 pg/mL for the fluorescent, electrochemical, and colorimetric modes, respectively. The proposed triple-mode biosensing platforms show great potential for the applications in disease diagnosis, since they can be easily extended to other bioassays by changing the targets and recognition elements. Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
Show Figures

Figure 1

11 pages, 2894 KiB  
Article
Macrocyclic Azopyrrole: Synthesis, Structure and Fluoride Recognition
by Ying An, Ying Sun and Zhenming Yin
Organics 2025, 6(2), 25; https://doi.org/10.3390/org6020025 - 5 Jun 2025
Viewed by 424
Abstract
A macrocyclic receptor based on azopyrrole and polyether was synthesized, and its structure was characterized by NMR (1H and 13C), HRMS and X-ray crystallography. In the solid state, the macrocyclic molecules could bind methanol through a pair of N-H…O hydrogen [...] Read more.
A macrocyclic receptor based on azopyrrole and polyether was synthesized, and its structure was characterized by NMR (1H and 13C), HRMS and X-ray crystallography. In the solid state, the macrocyclic molecules could bind methanol through a pair of N-H…O hydrogen bonds and further self-assembled into tubular structures through C-H…N hydrogen bonds. This revealed that the crystal could still keep its porous properties after the included molecules were removed. The UV–Vis titration indicates that the macrocylic receptor can chromogenically and selectively sense fluoride ion in DMSO solution, and the sensing mechanism was rationalized by 1H NMR. Full article
Show Figures

Figure 1

14 pages, 5563 KiB  
Article
Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae in Wastewater Effluent in Blantyre, Malawi
by Edna Ibrahim, Charity Mkwanda, Edward Masoambeta, Luigia Scudeller, Tomislav Kostyanev, Hussein H. Twabi, Yohane K. Diness, Jobiba Chinkhumba, Janelisa Musaya, Rajhab S. Mkakosya, Surbhi Malhotra-Kumar, Chantal M. Morel, Save Kumwenda and Chisomo L. Msefula
Antibiotics 2025, 14(6), 562; https://doi.org/10.3390/antibiotics14060562 - 30 May 2025
Viewed by 641
Abstract
Background/Objectives: Wastewater treatment plants (WWTPs) serve as a sink for both antimicrobial residues and bacteria carrying resistant genes, which are later disseminated into the environment, facilitating the spread of antimicrobial resistance. This study investigated the presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia [...] Read more.
Background/Objectives: Wastewater treatment plants (WWTPs) serve as a sink for both antimicrobial residues and bacteria carrying resistant genes, which are later disseminated into the environment, facilitating the spread of antimicrobial resistance. This study investigated the presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (Ec), Klebsiella pneumoniae (Kp), and Enterobacter cloacae (Enc) in effluent from WWTP in Blantyre, Malawi, to generate evidence and provide baseline information for interventions. Methods: Selective chromogenic agar was used to identify ESBL-producing bacteria. Results: A total of 288 samples were collected between April 2023 and March 2024, and 97.6% (281/288) yielded one or more presumptive ESBL isolates. Bacterial growth was confirmed as 48.9% Ec (255/522), 33.0% Kp (172/522), and 10.0% Enc (52/522). Antibiotic susceptibility testing showed the highest resistance to ceftriaxone (Ec, 100.0%; Kp, 98.3%; Enc, 100.0%) and the lowest resistance to meropenem (Ec, 6.3%, Kp, 1.2%; Enc, 3.8%) among the antibiotics that were tested. Multiple antibiotic resistance phenotypes were observed in 73.1% of the isolates, with the most prevalent phenotype being amoxicillin + clavulanate/cotrimoxazole/doxycycline/ciprofloxacin/gentamicin/azithromycin/ceftriaxone (55, 15.7%). Conclusions: The study demonstrated ongoing environmental contamination with antibiotic-resistant bacteria from sewage effluent. Therefore, the functionality of WWTPs should be improved to minimize the release of these organisms into the environment. Full article
Show Figures

Graphical abstract

Back to TopTop