Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (506)

Search Parameters:
Keywords = chloride choline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 4144 KiB  
Article
Amelioration of Olive Tree Indices Related to Salinity Stress via Exogenous Administration of Amino Acid Content: Real Agronomic Effectiveness or Mechanistic Restoration Only?
by Helen Kalorizou, Paschalis Giannoulis, Stefanos Leontopoulos, Georgios Koubouris, Spyridoula Chavalina and Maria Sorovigka
Horticulturae 2025, 11(8), 890; https://doi.org/10.3390/horticulturae11080890 (registering DOI) - 1 Aug 2025
Viewed by 299
Abstract
Salinization of olive orchards constitutes a front-line agronomic challenge for farmers, consumers, and the scientific community as food security, olive logistics, and land use become more unsustainable and problematic. Plantlets of two olive varieties (var. Kalamon and var. Koroneiki) were tested for their [...] Read more.
Salinization of olive orchards constitutes a front-line agronomic challenge for farmers, consumers, and the scientific community as food security, olive logistics, and land use become more unsustainable and problematic. Plantlets of two olive varieties (var. Kalamon and var. Koroneiki) were tested for their performance under soil saline conditions, in which L-methionine, choline-Cl, and L-proline betaine were applied foliarly to alleviate adverse effects. The ‘Kalamon’ variety ameliorated its photosynthetic rates when L-proline betaine and L-methionine were administered at low saline exposure. The stressed varieties achieved higher leaf transpiration rates in the following treatment order: choline-Cl > L-methionine > L-proline betaine. Choline chloride supported stomatal conductance in stressed var. Kalamon olives without this pattern, which was also followed by var. Koroneiki. Supplementation regimes created a mosaic of responses on varietal water use efficiency under stress. The total phenolic content in leaves increased in both varieties after exogenous application only at the highest levels of saline stress. None of the substances applied to olive trees could stand alone as a tool to mitigate salinity stress in order to be recommended as a solid agronomic practice. The residual exploitation of amino acids by the olive orchard microbiome must also be considered as part of an environmentally friendly, integrated strategy to mitigate salinity stress. Full article
(This article belongs to the Special Issue Olive Stress Alleviation Strategies)
Show Figures

Figure 1

22 pages, 5351 KiB  
Article
Hydrometallurgical Leaching of Copper and Cobalt from a Copper–Cobalt Ore by Aqueous Choline Chloride-Based Deep Eutectic Solvent Solutions
by Emmanuel Anuoluwapo Oke, Yorkabel Fedai and Johannes Hermanus Potgieter
Minerals 2025, 15(8), 815; https://doi.org/10.3390/min15080815 (registering DOI) - 31 Jul 2025
Viewed by 95
Abstract
The sustainable recovery of valuable metals such as Cu and Co from ores is a pressing need considering environmental and economic challenges. Therefore, this study evaluates the effectiveness of deep eutectic solvents (DESs) as alternative leaching agents for Cu and Co extraction. Four [...] Read more.
The sustainable recovery of valuable metals such as Cu and Co from ores is a pressing need considering environmental and economic challenges. Therefore, this study evaluates the effectiveness of deep eutectic solvents (DESs) as alternative leaching agents for Cu and Co extraction. Four DESs were prepared using choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and oxalic acid (OA), ethylene glycol (EG), urea (U) and thiourea (TU) as hydrogen bond donors (HBDs). Leaching experiments were conducted with DESs supplemented with 30 wt.% water at varying temperatures, various solid-to-liquid ratios, and time durations. The ChCl:OA DES demonstrated the highest leaching efficiencies among the DESs tested on pure CuO and CoO, achieving 89.2% for Cu and 92.4% for Co (60 °C, 400 rpm, 6 h, −75 + 53 µm particle size, and 1:10 solid-to-liquid ratio). In addition, the dissolution kinetics, analysed using the shrinking core model (SCM), showed that the leaching process was mainly controlled by surface chemical reactions. The activation energy values for Cu and Co leaching were 46.8 kJ mol−1 and 51.4 kJ mol−1, respectively, supporting a surface chemical control mechanism. The results highlight the potential of ChCl:OA as a sustainable alternative for metal recovery. Full article
Show Figures

Graphical abstract

18 pages, 2688 KiB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 394
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

16 pages, 3398 KiB  
Article
Green Extraction of Tea Polysaccharides Using Ultrasonic-Assisted Deep Eutectic Solvents and an Analysis of Their Physicochemical and Antioxidant Properties
by Haofeng Gu, Lei Liang, Yang Wei, Jiahao Wang, Yibo Ma, Jiaxin Shi and Bao Li
Foods 2025, 14(15), 2601; https://doi.org/10.3390/foods14152601 - 24 Jul 2025
Viewed by 352
Abstract
In this study, the ultrasonic-assisted extraction of deep eutectic solvents (UADES) for tea polysaccharides was optimized, and their physicochemical properties and antioxidant activities were analyzed. The optimal DES comprised choline chloride (CC) and ethylene glycol (EG) in a molar ratio of 1:3, with [...] Read more.
In this study, the ultrasonic-assisted extraction of deep eutectic solvents (UADES) for tea polysaccharides was optimized, and their physicochemical properties and antioxidant activities were analyzed. The optimal DES comprised choline chloride (CC) and ethylene glycol (EG) in a molar ratio of 1:3, with a water content of 40%. The optimized condition was an extraction temperature of 61 °C, an ultrasonic power of 480 W, and an extraction time of 60 min. The UADES extraction rate of polysaccharides (ERP) was 15.89 ± 0.13%, significantly exceeding that of hot water (HW) extraction. The polysaccharide content in the UADES-extracted tea polysaccharides (UADESTPs) was comparable to that of hot-water-extracted tea polysaccharides (HWTPs) (75.47 ± 1.35% vs. 74.08 ± 2.51%); the UADESTPs contained more uronic acid (8.35 ± 0.26%) and less protein (12.91%) than HWTP. Most of the UADESTPs (88.87%) had molecular weights (Mw) below 1.80 × 103 Da. The UADESTPs contained trehalose, glucuronic acid, galactose, xylose, and glucose, with molar ratios of 8:16:1:10. The free radical scavenging rate and total reducing power of the UADESTPs were markedly superior to those of the HWTPs. Moreover, the UADESTPs had a better alleviating effect on H2O2-induced oxidative injury in HepG2 cells. This study develops an eco-friendly and efficient extraction method for tea polysaccharides, offering new insights for the development of tea polysaccharides. Full article
Show Figures

Graphical abstract

21 pages, 2632 KiB  
Article
Natural Deep Eutectic Solvent-Based Extraction of Malva sylvestris L.: Phytochemical Content, Antioxidant and Antimicrobial Potential
by Neli Memdueva, Milena Tzanova, Zvezdelina Yaneva, Nikolina Rusenova, Neli Grozeva and Toncho Dinev
Separations 2025, 12(7), 187; https://doi.org/10.3390/separations12070187 - 20 Jul 2025
Viewed by 322
Abstract
Malva sylvestris L. is a herbaceous plant, distributed worldwide, rich in biological active compounds, and known for its health benefits. In this study, extracts from different parts (leaves, flowers, and roots) of this plant were prepared using green classic (70% ethanol) and natural [...] Read more.
Malva sylvestris L. is a herbaceous plant, distributed worldwide, rich in biological active compounds, and known for its health benefits. In this study, extracts from different parts (leaves, flowers, and roots) of this plant were prepared using green classic (70% ethanol) and natural deep eutectic solvents (NADESs) based on choline chloride and acetic acid (NADES1) or glycerol (NADES2). Their antioxidant, antibacterial (against B. cereus, S, aureus, E. coli, and P. aeruginosa), and antifungal activity (against P. chrysogenum, F. oxysporum, A. parasiticus, A. flavus, A. niger A. carbonarius, and A. ochraceus) were compared. Ethanolic extracts were characterized with the highest total contents of phenols, flavonoids, and condensed tannins. Ethanolic and NADES flower extracts were the richest in the antioxidants tested. Alkaloids were extracted in low quantities. The experimentally determined antioxidant potential of the extracts proved the highest DPPH scavenging activity of ethanolic extracts and the lowest of NADES1 extracts. The ABTS scavenging capacity of NADES1 and ethanolic extracts displayed comparable results, while NADES2 extracts were characterized as having the highest FRAP activity. NADES1 extracts manifested pronounced antibacterial activity, partially due to the low pH of the pure solvent, as well as inconsistent antifungal activity—from moderate to a complete lack of activity. A strong positive correlation was reported between the DPPH radical scavenging capacity and phenolic compound content. Future detailed investigations on the mechanism of the antimicrobial activity of NADES1 extracts are necessary to clarify the observed phenomenon of the decreased antifungal potential of NADES1 extracts compared to the pure solvent NADES1. Full article
Show Figures

Figure 1

13 pages, 1723 KiB  
Article
Effects of Trimethylamine Concentrations in Hatching Eggs on Chick Quality in Dwarf Hens
by Xuefeng Shi, Lin Xuan, Jiahui Lai, Caiyun Jiang, Junying Li, Guiyun Xu and Jiangxia Zheng
Animals 2025, 15(14), 2121; https://doi.org/10.3390/ani15142121 - 17 Jul 2025
Viewed by 265
Abstract
Microbial contamination of hatching eggs often leads to reduced hatchability and poor chick quality. As trimethylamine (TMA), a metabolite derived from dietary choline, has antimicrobial properties, increasing yolk TMA contents may increase bacterial resistance to eggs; however, the effects of TMA concentrations on [...] Read more.
Microbial contamination of hatching eggs often leads to reduced hatchability and poor chick quality. As trimethylamine (TMA), a metabolite derived from dietary choline, has antimicrobial properties, increasing yolk TMA contents may increase bacterial resistance to eggs; however, the effects of TMA concentrations on chick quality remain unknown. Hence, this study was conducted to determine the effects of yolk TMA concentrations on the hatchability and chick quality of dwarf hens with different FMO3 genotypes. Hens (n = 140) were divided into control and experimental groups; the latter received choline chloride (2800 mg/kg) to elevate their yolk TMA concentrations. The TMA content, Pasgar score, hatchability, and post-hatching performance were evaluated. The results showed that choline supplementation significantly increased TMA concentrations in hens with AT and TT genotypes. Higher yolk TMA concentrations (≥4 µg/g) correlated with improved Pasgar scores and reduced abnormalities in vitality, navel, and yolk sac absorption. Hatchability peaked at 6.49 µg/g TMA, suggesting a threshold effect. Although the growth rate remained unaffected, chick mortality decreased in the high-TMA group. Therefore, moderate TMA concentrations can enhance egg antimicrobial defenses and improve reproductive performance. This strategy provides a biologically grounded alternative to traditional chemical disinfection in hatcheries. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 483
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

17 pages, 3602 KiB  
Article
Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate
by Yanni Wang, Bo Liu, Yanmei Dai, Zijuan Tao, Lan Tang and Zhimin Ou
Molecules 2025, 30(13), 2869; https://doi.org/10.3390/molecules30132869 - 6 Jul 2025
Viewed by 355
Abstract
In this study, CGMCC NO:28566, a strain that can efficiently convert Ethyl 4-chloroacetoacetate(COBE) to (R)-4-chloro-3-hydroxybutyrate((R)-CHBE), was screened by soil-sieving bacteria. In order to improve the transformation effect of the strain, the natural low-eutectic solvent (NADES), which can alter the [...] Read more.
In this study, CGMCC NO:28566, a strain that can efficiently convert Ethyl 4-chloroacetoacetate(COBE) to (R)-4-chloro-3-hydroxybutyrate((R)-CHBE), was screened by soil-sieving bacteria. In order to improve the transformation effect of the strain, the natural low-eutectic solvent (NADES), which can alter the cell permeability, was utilized for assisted catalysis, and a better catalytic effect was achieved. This study was carried out using a co-culture of strains with NADES and secondary addition of NADES on the basis of co-culture, and 10 NADESs were screened at the same time. The co-catalytic effect of 0.5% (w/v) choline chloride: urea (1:2) (ChCl:U (1:2)) was found to be the most significant, with a yield of (R)-CHBE reaching 89.1%, which was 58.2% higher than that of the control group, with a 99% ee value. Furthermore, the catalytic results demonstrated that the co-culture of the strain with NADES during fermentation yielded superior outcomes to the secondary addition of NADES during the reaction buffer. Furthermore, the catalytic effect of ChCl:U (1:2) was demonstrated to be superior to that of its individual components or single-component blends, due to its distinctive valence bonding advantage. The results indicate that the addition of 0.5% (w/v) ChCl:U (1:2) during the co-culture process has the effect of improving cell permeability to a certain extent, thereby increasing the contact between the substrate and the enzyme during the whole-cell catalytic reactions. Full article
(This article belongs to the Special Issue Current Development of Asymmetric Catalysis and Synthesis)
Show Figures

Graphical abstract

35 pages, 4054 KiB  
Article
High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction
by Meirielly Jesus, Aloia Romaní, Joana Santos, Preciosa Pires, Pablo Del-Río, Fernando Mata, Élia Fernandes, Carla Ramos and Manuela Vaz-Velho
Foods 2025, 14(13), 2280; https://doi.org/10.3390/foods14132280 - 27 Jun 2025
Viewed by 484
Abstract
Utilizing deep eutectic solvents (DESs) combined with microwave-assisted extraction (MAE) provides a sustainable method for extracting bioactive compounds from the macroalgae Ascophyllum nodosum and Laminaria hyperborea. Two DES formulations, choline chloride/lactic acid (ChCl/LA) and sodium acetate/lactic acid (AcNa/LA), were evaluated under varying [...] Read more.
Utilizing deep eutectic solvents (DESs) combined with microwave-assisted extraction (MAE) provides a sustainable method for extracting bioactive compounds from the macroalgae Ascophyllum nodosum and Laminaria hyperborea. Two DES formulations, choline chloride/lactic acid (ChCl/LA) and sodium acetate/lactic acid (AcNa/LA), were evaluated under varying extraction conditions. For L. hyperborea, ChCl/LA at 150 °C for 10 min yielded a total phenolic content (TPC) of 15.34 mg GAE/g DW, with antioxidant activities measured by DPPH (34.55 mg TE/g DW) and ABTS (27.06 mg TE/g DW). Extending the extraction to 20 min at 130 °C increased the TPC to 19.12 mg GAE/g DW. A. nodosum exhibited higher bioactivity, with the TPC reaching 47.51 mg GAE/g DW under the same conditions. High-performance liquid chromatography (HPLC) identified significant phenolics such as 3,4-dihydroxybenzoic acid (678.05 µg/g DW) and vanillin (6718.5 µg/g DW). Antimicrobial assays revealed strong inhibition (zones > 20 mm) against Clostridium perfringens, moderate activity against Staphylococcus aureus, and selective activity against Escherichia coli. FT-IR confirmed the presence of phenolics, polysaccharides, and lipids. Thermal and structural characterization revealed that A. nodosum residue showed an amorphous structure, while L. hyperborea retained crystallinity with decomposition profiles indicating potential bioenergy potential. SEM images revealed significant cell wall disruption correlating with extraction efficiency. These results demonstrate DES–MAE as an effective, green strategy for producing high-value algal extracts and valorizing residual biomass for biotechnological applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 7336 KiB  
Article
Influence of Cu(II) Ion Concentration on Copper Electrodeposition from Deep Eutectic Solvent on Inert Substrate
by Vesna S. Cvetković, Nataša M. Petrović, Nebojša D. Nikolić and Jovan N. Jovićević
Metals 2025, 15(7), 716; https://doi.org/10.3390/met15070716 - 26 Jun 2025
Viewed by 535
Abstract
The electrochemical behavior of copper (II) on glassy carbon from an eutectic mixture of choline chloride (ChCl) and ethylene glycol (EG) was investigated using cyclic voltammetry (CV). The redox and deposition processes were studied for electrolyte concentrations of 0.01 M and 0.5 M [...] Read more.
The electrochemical behavior of copper (II) on glassy carbon from an eutectic mixture of choline chloride (ChCl) and ethylene glycol (EG) was investigated using cyclic voltammetry (CV). The redox and deposition processes were studied for electrolyte concentrations of 0.01 M and 0.5 M Cu(II), with particular attention paid to the effects of different Cu(II) concentrations on the copper deposition potential and morphology of the copper deposits. The CV results showed that the Cu(II) species are reduced to Cu(0) via two separate steps. Higher Cu(II) concentrations in the electrolyte triggered the formation of differently coordinated Cun+ complexes next to the electrode, which shifted the electrodeposition potential of Cu(I)/Cu(0) couples towards more positive values. The Cu deposits were obtained potentiostatically from 0.01 M and 0.5 M Cu(II)-ChCl:EG electrolyte and analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The different copper concentrations in electrolytes induced different morphologies of electrodeposited copper, where the mixture of irregular grains and carrot or needle-like dendrites was obtained from 0.01 M, and rose-like forms were obtained from 0.5 M electrolytes. This study is the first to identify these rose-like forms and the mechanism of their formation, which is discussed in detail. Full article
Show Figures

Figure 1

20 pages, 1663 KiB  
Article
Microwave–Ultrasound-Assisted Extraction Coupled with Natural Deep Eutectic Solvent Enables High-Yield, Low-Solvent Recovery of Curcumin from Curcuma longa L.
by Muhammad Sahlan, Desy Rosarina, Hasna Farida Ratna Suminar, Yoga Diatama Pohan, Ibnu Maulana Hidayatullah, Dimas Rafi Narawangsa, Dwini Normayulisa Putri, Eka Sari, Meka Saima Perdani, Yudha Gusti Wibowo and Heri Hermansyah
Pharmaceutics 2025, 17(7), 818; https://doi.org/10.3390/pharmaceutics17070818 - 24 Jun 2025
Viewed by 443
Abstract
Background/Objectives: Solvent-intensive methods are traditionally required to extract curcumin, a potent bioactive compound from Curcuma longa, raising environmental and safety concerns. Methods: This study introduces an efficient and scalable extraction approach using microwave–ultrasound-assisted extraction (MUAE) combined with a natural deep [...] Read more.
Background/Objectives: Solvent-intensive methods are traditionally required to extract curcumin, a potent bioactive compound from Curcuma longa, raising environmental and safety concerns. Methods: This study introduces an efficient and scalable extraction approach using microwave–ultrasound-assisted extraction (MUAE) combined with a natural deep eutectic solvent (NADES) composed of choline chloride and lactic acid. Process parameters, including solvent water content (20–30% v/v) and solid loading (4–8% w/v), were optimized using response surface methodology (RSM) to enhance curcumin yield. Results: Under optimal conditions (20% water content and 8% solid loading), the MUAE method achieved a curcumin content of 40.72 ± 1.21 mg/g, representing a 14.36% improvement over conventional ultrasound-assisted extraction (UAE), while reducing solvent usage by 50%. The quadratic model demonstrated excellent predictive capability, with an R2 value of 0.98. In addition, anti-solvent precipitation using water increased curcuminoid purity from 0.31% to 20.54%, with a recovery rate of 21.49%. Conclusions: Mechanistic analysis revealed that microwave-induced cell disruption, ultrasound cavitation, and the modulation of NADES viscosity contributed synergistically to the enhanced extraction performance. This study is the first to combine MUAE with NADES for optimized curcumin extraction, delivering both high yield and reduced solvent consumption. The proposed method offers a sustainable and industrially relevant alternative for curcumin recovery in the food, nutraceutical, and pharmaceutical sectors. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

20 pages, 2721 KiB  
Article
Natural Deep Eutectic Solvents (NADESs) for the Extraction of Bioactive Compounds from Quinoa (Chenopodium quinoa Willd.) Leaves: A Semi-Quantitative Analysis Using High Performance Thin-Layer Chromatography
by Verónica Taco, Dennys Almachi, Pablo Bonilla, Ixchel Gijón-Arreortúa, Samira Benali, Jean-Marie Raquez, Pierre Duez and Amandine Nachtergael
Molecules 2025, 30(12), 2620; https://doi.org/10.3390/molecules30122620 - 17 Jun 2025
Viewed by 416
Abstract
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and [...] Read more.
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and biological activities. Given the interest in flavonoids from Chenopodium quinoa Willd. leaves, an efficient “green” extraction method was developed by investigating eight NADESs with defined molar ratios, i.e., malic acid-choline chloride (chcl)-water (w) (1:1:2, N1), chcl-glucose-w (5:2:5, N2), proline-malic acid-w (1:1:3, N3), glucose-fructose-sucrose-w (1:1:1:11, N4), 1,2-propanediol-chcl-w (1:1:1, N5), lactic acid-glucose-w (5:1:3, N6), glycerol-chcl-w (2:1:1, N7), and xylitol-chcl-w (1:2:3, N8). Rheological measurements of all NADESs confirmed their pseudoplastic behaviors. To improve the extraction processes, differential scanning calorimetry (DSC) allowed us to determine the maximum amount of water that could be added to the most stable NADES (N1, N2, N3, and N4; 17.5%, 20%, 10%, and 10% w/w, respectively) to lower their viscosities without disturbing their eutectic environments. The phytochemical compositions of NADES extracts were analyzed using high-performance thin-layer chromatography (HPTLC), and their free radical scavenging and α-amylase inhibitory properties were assessed using HPTLC-bioautography. N2, diluted with 20% of water, and N7 presented the best potential for replacing methanol for an eco-friendly extraction of flavonoids, radical scavengers, and α-amylase inhibitors from quinoa leaves. Their biological properties, combined with a good understanding of both thermal behavior and viscosity, make the obtained quinoa leaf NADES extracts good candidates for direct incorporation in nutraceutical formulations. Full article
Show Figures

Graphical abstract

25 pages, 6135 KiB  
Article
Enhancement of Polyvinyl Alcohol-Based Films by Chemically Modified Lignocellulosic Nanofibers Derived from Bamboo Shoot Shells
by Jingjing Du, Jianlong Guo, Qian Zhu, Jiagang Guo, Jiayu Gu, Yuhan Wu, Ling Ren, Song Yang and Jian Jiang
Polymers 2025, 17(11), 1571; https://doi.org/10.3390/polym17111571 - 5 Jun 2025
Cited by 1 | Viewed by 568
Abstract
In this study, polyvinyl alcohol (PVA) films were reinforced with lignocellulosic nanofibers (LCNFs) extracted from bamboo shoot shells using a choline chloride-based deep eutectic solvent (DES). A filler loading of 10 wt% was identified as the optimal condition for enhancing film performance. To [...] Read more.
In this study, polyvinyl alcohol (PVA) films were reinforced with lignocellulosic nanofibers (LCNFs) extracted from bamboo shoot shells using a choline chloride-based deep eutectic solvent (DES). A filler loading of 10 wt% was identified as the optimal condition for enhancing film performance. To improve interfacial compatibility between the PVA matrix and LCNFs, three surface modification treatments were applied to the nanofibers: hydrochloric acid (HCl) hydrolysis, citric acid (CA) crosslinking, and a dual modification combining both methods (HCl&CA). Among all formulations, films incorporating dual-modified LCNF at 10 wt% loading exhibited the most significant improvements. Compared to neat PVA, these composites showed a 79.2% increase in tensile strength, a 15.1% increase in elongation at break, and a 33.1% enhancement in Young’s modulus. Additionally, thermal stability and barrier properties were improved, while water swelling and solubility were reduced. Specifically, the modified films achieved a thermal residue of 9.21% and the lowest degradation rate of 10.81%/min. Water vapor transmission rate and oxygen permeability decreased by 18.8% and 18.6%, respectively, and swelling and solubility dropped to 14.26% and 3.21%. These results highlight the synergistic effect of HCl hydrolysis and CA crosslinking in promoting uniform filler dispersion and strong interfacial adhesion, offering an effective approach to valorizing bamboo shoot shell waste into high-performance, eco-friendly packaging materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 2902 KiB  
Article
Low-Melting Mixtures Based on Lactic Acid with Choline Chloride or Betaine as Green Media for Extraction of Bioactive Compounds from Vaccinium vitis-idaea L. Leaves
by Anna Aniskevich, Alena Koigerova, Artemiy Samarov, Oleg Matusevich and Nikita Tsvetov
Processes 2025, 13(6), 1774; https://doi.org/10.3390/pr13061774 - 4 Jun 2025
Viewed by 696
Abstract
Environmentally friendly extraction technologies for biologically active substances (BASs) are an actively developing and important industry. In recent years, the development of this area has been associated with the use of low-melting mixtures, which are most often referred to as “deep eutectic solvents”. [...] Read more.
Environmentally friendly extraction technologies for biologically active substances (BASs) are an actively developing and important industry. In recent years, the development of this area has been associated with the use of low-melting mixtures, which are most often referred to as “deep eutectic solvents”. Vaccinium vitis-idaea L. is a valuable source of phenolic biologically active compounds. However, to date, there are limited studies devoted to the use of such solvents for the extraction of biologically active substances from V. vitis-idaea. This study introduces the use of low-melting mixtures of choline chloride or betaine with lactic acid and water for the ultrasonic extraction of phenolic secondary metabolites from V. vitis-idaea leaves for the first time. The kinetics of extraction have been studied, and the extraction conditions have been optimized using a Box–Behnken design. It was found that the optimal extraction conditions are follow: the most suitable mixture is betaine with lactic acid and water at a molar ratio of 1:10:5, the optimal temperature is 33 °C, and the optimal ratio of the mass of plant material to the volume of the solvent is 1:20. Under these conditions, the yield of total phenolic compounds was 744.3 ± 1.2 mg GAE/g, and total flavonoids reached 24.4 ± 0.2 mg RE/g. The IC50 values of the obtained extract were 2.45 mg/mL for free radical scavenging with DPPH and 3.47 mg/mL for ABTS. The data obtained can be used in the development of green technologies for the extraction of biologically active substances from the leaves of V. vitis-idaea. Full article
Show Figures

Figure 1

20 pages, 2180 KiB  
Article
Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES)
by Alessandro Frontini, Giulio Tarentini, Carmine Negro, Andrea Luvisi, Massimiliano Apollonio and Luigi De Bellis
Separations 2025, 12(6), 148; https://doi.org/10.3390/separations12060148 - 2 Jun 2025
Viewed by 632
Abstract
Natural deep eutectic solvents (NaDESs) are emerging solvents for their yield when used for extraction of different molecules, including polyphenols. NaDESs are a cutting-edge technology that offers numerous advantages, including cheap cost, safety, effectiveness and environmental friendliness. However, due to NaDES’ high boiling [...] Read more.
Natural deep eutectic solvents (NaDESs) are emerging solvents for their yield when used for extraction of different molecules, including polyphenols. NaDESs are a cutting-edge technology that offers numerous advantages, including cheap cost, safety, effectiveness and environmental friendliness. However, due to NaDES’ high boiling point, the recovery and separation of compounds after the extraction is the bottleneck of the process. In this work, two affordable methods were tested for the recovery of phenolic compounds from three binary NaDESs (composed of choline chloride mixed separately with lactic acid, tartaric acid or glycerol as hydrogen bond donors): the antisolvent and the liquid–liquid extraction methods. The former was assessed by diluting the extracts with different aliquots of water, employed as antisolvent, which was ineffective. For the liquid–liquid extraction method, ethyl acetate (EtOAc), acetonitrile (ACN), 2-chlorobutane (2-CB) and 2-methyltetrahydrofuran (2-MeTHF) were compared. Except for ACN, all solvents were perfectly immiscible with the three NaDESs, forming biphasic systems that were analyzed by colorimetric assays and HPLC/MS. 2-MeTHF applied on a 10-fold water dilution of the NaDES extract reached recovery percentages higher than 90% for most of the non-anthocyanin phenols and good recovery (up to 80%) for some anthocyanins. 2-MeTHF appears to be the first known solvent capable of extracting anthocyanins from NaDESs. Finally, a two-step liquid–liquid extraction performed firstly with EtOAc and subsequently with 2-MeTHF is proposed for the separation of different phenolic fractions. Full article
Show Figures

Figure 1

Back to TopTop