Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,958)

Search Parameters:
Keywords = chitosan-nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3166 KB  
Article
Coacervated and Freeze-Dried Polysaccharides-Nanoparticle with Efficient Encapsulation of Albendazole for High-Performance Treatment of Monogenean Parasite Infestation in Tilapia Fish
by Andrés Vicent Cubas Rengifo, Norma Lorena Rivadeneyra Sánchez, Chloé Barbosa Teixeira, Rafael R. M. Madrid, Omar Mertins and Patrick D. Mathews
Int. J. Mol. Sci. 2026, 27(2), 1001; https://doi.org/10.3390/ijms27021001 (registering DOI) - 19 Jan 2026
Abstract
Monogenean parasite infestation in fish leads to economic losses in aquaculture, representing a veterinary challenge and an environmental concern. The common administration procedures of anthelmintics to treat monogeneans in fish have low efficiency and diverse drawbacks. In this study, we produced a nanoparticle [...] Read more.
Monogenean parasite infestation in fish leads to economic losses in aquaculture, representing a veterinary challenge and an environmental concern. The common administration procedures of anthelmintics to treat monogeneans in fish have low efficiency and diverse drawbacks. In this study, we produced a nanoparticle using chitosan and alginate, biodegradable and biocompatible polysaccharides, as an oral drug delivery material of albendazole anthelmintic for parasite-infected fingerlings of Nile tilapia. The molecular interaction between the biopolymers was optimized and characterized by titration calorimetry. Freeze-drying of nanoparticles resulted in a fine powder with a particle size in the order of 400 nm. The nanoparticles provided 98% encapsulation of albendazole and sustained delivery with predominantly Fickian diffusion. The palatability of the nanopar-ticle formulation facilitated the oral administration of albendazole. The treatment of 100% prevalence of monogeneans was effective with a six-day dosage providing a total of 915 mg/kg b.w. of drug, resulting in total parasite clearance after 10 days from the treatment beginning, evidenced by microscopy analysis, and no mortality occurred. Therefore, molecular interactions between biofriendly polyelectrolytes yielded albendazole-carrying nanoparticles for high-efficiency parasite treatment in fish farming. Full article
(This article belongs to the Special Issue Recent Nanotechnology in Drug Delivery)
Show Figures

Figure 1

17 pages, 2376 KB  
Article
Chitosan Nanoparticles as a Biostimulant During In Vitro Multiplication of Vanilla Using Temporary Immersion Bioreactors
by Víctor Adrián Delgado-Rivera, María Karen Serrano-Fuentes, José María Rivera-Villanueva, Juan Antonio Pérez-Sato and Jericó Jabín Bello-Bello
Molecules 2026, 31(2), 328; https://doi.org/10.3390/molecules31020328 - 18 Jan 2026
Abstract
This research aimed to assess the effect of chitosan nanoparticles (ChNPs) during in vitro shoot proliferation of vanilla using temporary immersion bioreactors (TIB). TIB culture is a biotechnological process that uses semiautomated containers for the production of explants exposed in liquid culture medium. [...] Read more.
This research aimed to assess the effect of chitosan nanoparticles (ChNPs) during in vitro shoot proliferation of vanilla using temporary immersion bioreactors (TIB). TIB culture is a biotechnological process that uses semiautomated containers for the production of explants exposed in liquid culture medium. Concentrations of control, 25, 50, 100, 200, and 400 mg/L ChNPs were evaluated in Murashige and Skoog culture medium. Morphological characterization of ChNPs was performed using scanning electron microscopy. At 60 days of culture, survival (%), development variables, photosynthetic pigment content, lipid peroxidation expressed in malondialdehyde, total phenolic content (TPC), hydrogen peroxide (H2O2) content, and total antioxidant capacity (TAC) expressed in trolox equivalents were evaluated. The data were analyzed with analysis of variance, with a Tukey test (p ≤ 0.05) using SPSS statistics software, version 29. The results revealed that the greatest survival (%) was obtained at concentrations of control, 25, and 50 mg/L ChNPs, while the lowest survival (%) was observed at concentrations of 400 mg/L ChNPs. Growth stimulation was found, as well as an increase in chlorophyll and β-carotene at concentrations of 25 and 50 mg/L ChNPs. The level of H2O2 increased at 25 and 50 mg/L ChNPs. Lipid peroxidation showed no differences among treatments. TPC increased at 100 and 200 mg/L ChNPs, while TAC increased at 200 and 400 mg/L ChNPs. In conclusion, the administration of ChNPs at low concentrations can stimulate growth, while at high concentrations they can inhibit it, a response known as hormesis or hormetic effect. Full article
(This article belongs to the Special Issue Green Chemistry and Molecular Tools in Agriculture)
Show Figures

Graphical abstract

17 pages, 3107 KB  
Article
Quercetin-Loaded Zein/Carboxymethyl Chitosan Nanoparticles: Preparation, Characterization and Evaluation for Enhanced Stability and Antioxidant Activity
by Haiqi Yu, Wanjun Chen, Yuhong Su, Mengdie Mo, Fei Yu and Xiaodong Chen
Molecules 2026, 31(2), 288; https://doi.org/10.3390/molecules31020288 - 13 Jan 2026
Viewed by 123
Abstract
As a natural flavonoid compound, quercetin possesses excellent antioxidant, anti-inflammatory and anti-atherosclerotic activities. However, the poor water solubility and sensitivity to the environment severely limit the application of quercetin. Initially, quercetin-loaded zein/carboxymethyl chitosan nanoparticles (ZCQ NPs) were prepared using an anti-solvent precipitation method. [...] Read more.
As a natural flavonoid compound, quercetin possesses excellent antioxidant, anti-inflammatory and anti-atherosclerotic activities. However, the poor water solubility and sensitivity to the environment severely limit the application of quercetin. Initially, quercetin-loaded zein/carboxymethyl chitosan nanoparticles (ZCQ NPs) were prepared using an anti-solvent precipitation method. The fabricated ZCQ NPs exhibited a small particle size and polydispersity index (PDI). The ZCQ NPs had a negative zeta potential with an absolute value of 41.50 ± 1.76 mV. ZCQ NPs could remain highly stable against light, heat and ion strength. In addition, ZCQ NPs maintained good monodispersity and displayed minimal changes in particle size under long-term storage conditions. Additionally, a superior antioxidant capacity of ZCQ NPs was also observed in the free radical and reactive oxygen species (ROS) scavenging study compared to that of free quercetin. All these results of this study suggest that ZCQ NPs could serve as an effective drug delivery system for encapsulating and delivering quercetin. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

20 pages, 5704 KB  
Article
Magnetic Nanocarriers with ICPTES- and GPTMS-Functionalized Quaternary Chitosan for pH-Responsive Doxorubicin Release
by Sofia F. Soares, Ana L. M. Machado, Beatriz S. Cardoso, Diogo Marinheiro, Nelson Andrade, Fátima Martel and Ana L. Daniel-da-Silva
Biomolecules 2026, 16(1), 137; https://doi.org/10.3390/biom16010137 - 13 Jan 2026
Viewed by 157
Abstract
Smart nanocarriers are being increasingly explored to improve the performance selectivity of cancer chemotherapy. Here, two pH-responsive magnetic nanocarriers were developed using quaternary chitosan (HTCC) functionalized with 3-(triethoxysilyl)propyl isocyanate- ICPTES (MNP-HTCC1) or 3-(glycidyloxypropyl)trimethoxysilane-GPTMS (MNP-HTCC2) to form hybrid silica shells on Fe3O [...] Read more.
Smart nanocarriers are being increasingly explored to improve the performance selectivity of cancer chemotherapy. Here, two pH-responsive magnetic nanocarriers were developed using quaternary chitosan (HTCC) functionalized with 3-(triethoxysilyl)propyl isocyanate- ICPTES (MNP-HTCC1) or 3-(glycidyloxypropyl)trimethoxysilane-GPTMS (MNP-HTCC2) to form hybrid silica shells on Fe3O4 cores. The resulting core–shell nanoparticles (14.5 and 12.5 nm) displayed highly positive zeta potentials (+45.4 to +27.1 mV, pH 4.2–9.5), confirming successful HTCC incorporation and strong colloidal stability. Both nanocarriers achieved high doxorubicin (DOX) loading at pH 9.5, reaching 90% efficiency and a capacity of 154 µg DOX per mg. DOX release was pH-dependent, with faster release under acidic conditions relevant to tumor and endo-lysosomal environments. At pH 4.2, MNP-HTCC1 released 90% of DOX over 72 h, while MNP-HTCC2 released 79%. Release at pH 5.0 was intermediate (67–72%), and moderate at physiological pH (43–55%). All formulations showed an initial burst followed by sustained release. Kinetic modelling (Weibull) indicated a diffusion-controlled mechanism consistent with Fickian transport through the HTCC–silica matrix. Cytotoxicity assays using MCF-7 breast cancer cells revealed greater cytotoxicity for DOX-loaded nanocarriers compared with free DOX, with MNP-HTCC1 showing the strongest effect. Overall, these HTCC-based magnetic nanocarriers offer efficient loading, controlled pH-triggered DOX release, and enhanced therapeutic performance. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Figure 1

22 pages, 93734 KB  
Article
A Multifunctional Hydrogel Incorporating Luteolin-Encapsulated ROS-Responsive Nanoparticles and Stem Cells Promotes Bacterial-Infected Wound Healing
by Jingjing Wang, Rui Ni, Ziwei Li, Jianhong Chen and Yao Liu
Pharmaceutics 2026, 18(1), 98; https://doi.org/10.3390/pharmaceutics18010098 - 12 Jan 2026
Viewed by 265
Abstract
Background/Objectives: Wound healing represents a pervasive and urgent clinical challenge. Hard-to-heal chronic wounds are frequently complicated by infections, inflammatory responses, and oxidative stress. Currently, wound dressings are broadly categorized into dry and moist types, with moist wound dressings for chronic wounds accounting for [...] Read more.
Background/Objectives: Wound healing represents a pervasive and urgent clinical challenge. Hard-to-heal chronic wounds are frequently complicated by infections, inflammatory responses, and oxidative stress. Currently, wound dressings are broadly categorized into dry and moist types, with moist wound dressings for chronic wounds accounting for approximately 70% of market revenue. Recently, adipose-derived stem cells (ADSCs), which possess self-renewal and multi-lineage differentiation capabilities, have emerged as a promising strategy for promoting tissue regeneration and wound repair. Methods: In this study, we developed a novel luteolin nanoparticle–ADSCs composite hydrogel (GelCA@LUT@ADSCs). This system was constructed by first encapsulating ADSCs within a chitosan/alginate hydrogel (GelCA), followed by coating the hydrogel with luteolin-loaded nanoparticles (LUT@NPs). Results: The sustained release of LUT@NPs from the hydrogel modulates the wound microenvironment, enhancing the pro-healing functions of ADSCs at the wound site. The GelCA hydrogel exhibited excellent biocompatibility. Both in vitro and in vivo results demonstrated that GelCA@LUT@ADSCs treatment effectively reduced inflammation, promoted angiogenesis and collagen deposition, stimulated cell proliferation and migration, and polarized macrophages toward an anti-inflammatory, pro-healing M2 phenotype, thereby accelerating wound healing. Conclusions: Overall, this innovative therapeutic approach provides a novel strategy for wound management through a synergistic division of labor between pharmaceutical agents and stem cells. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 8700 KB  
Article
Efficient Oral Insulin Delivery Through Thiolated Trimethyl Chitosan-Grafted β-Cyclodextrin Nanoparticles
by Lizhen Yu, Fengge Wang, Shuyun Bao, Yue Zhang, Xuebin Shen, Desheng Wang, Zhisheng Liu, Xinyi Liu, Lihua Li and Renmin Gong
Pharmaceutics 2026, 18(1), 97; https://doi.org/10.3390/pharmaceutics18010097 - 12 Jan 2026
Viewed by 176
Abstract
Background: Oral insulin improves compliance and convenience in patients with diabetes who require regular needle injections. However, the clinical application of oral insulin preparations has been limited due to instability and inefficient permeation through the gastrointestinal tract. In this study, a novel [...] Read more.
Background: Oral insulin improves compliance and convenience in patients with diabetes who require regular needle injections. However, the clinical application of oral insulin preparations has been limited due to instability and inefficient permeation through the gastrointestinal tract. In this study, a novel cationic polysaccharide nanodrug delivery platform was designed for efficient oral insulin delivery. Methods: The innovative thiolated trimethyl chitosan-grafted β-cyclodextrin (NCT) was synthesized by utilizing N-trimethyl chitosan (TMC) as the polymer backbone. This involved modifying TMC with thiol group-containing N-acetylcysteine and carboxymethyl-β-cyclodextrin that possesses hydrophobic cavities via an amide condensation reaction. Subsequently, this polymer was employed to construct the NCT nanoparticle system using an ionic cross-linking method. The physicochemical properties of the NCT nanoparticles were systematically analyzed, and their therapeutic efficacy was comprehensively evaluated in streptozotocin (STZ)-induced animal models. Results: The NCT nanoparticles demonstrated mucus adhesion, permeability, and pH sensitivity, which facilitated a slow and controlled release within the gastrointestinal microenvironment due to both ionic electrostatic interactions and disulfide bonding interactions. The experiments revealed in vivo that insulin/NCT nanoparticles extended the retention time of insulin in the small intestine. Blood glucose levels decreased to approximately 39% of the initial level at 5 h post-administration while exhibiting smooth hypoglycemic efficacy. Simultaneously, insulin bioavailability increased to 12.58%. Conclusions: The NCT nanoparticles effectively protect insulin from degradation in the gastrointestinal microenvironment while overcoming intestinal barriers, thereby providing a promising approach to oral biomolecule delivery. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

20 pages, 60566 KB  
Article
Lysozyme Functionalized Alginate-Chitosan Beads and Films for Different Release Applications
by Beatriz Moutinho, Natalia Pyra, Zuzanna Styrna, Maria Emilia Rosa and Maria H. L. Ribeiro
Gels 2026, 12(1), 66; https://doi.org/10.3390/gels12010066 - 11 Jan 2026
Viewed by 165
Abstract
The main goal of this work was to develop nanoparticles of lysozyme (Lys) for biological and biomedical applications. The developed biosystems were based on Lys-loaded calcium alginate 2% and chitosan 1% beads and films with different concentrations of each polymer. Encapsulation efficiency was [...] Read more.
The main goal of this work was to develop nanoparticles of lysozyme (Lys) for biological and biomedical applications. The developed biosystems were based on Lys-loaded calcium alginate 2% and chitosan 1% beads and films with different concentrations of each polymer. Encapsulation efficiency was 100%. The ratio of adsorbed Lys on the films, Lys activity, and the release profile of Lys were measured using water and buffer solution at pH similar to the environment of cancer cells, at a controlled temperature of 37 °C and a constant speed, to assess the efficacy of the encapsulation process. Lys antimicrobial activity was assessed using Micrococcus lysodeikticus. Moreover, the anti-inflammatory and antioxidant properties of the developed biosystems were also evaluated. The anti-inflammatory activity of Lys released from calcium alginate 2%-chitosan 1% beads loaded with Lys was about 99%. These findings highlight the potential of the developed beads and films for biomedical applications, particularly in antimicrobial and anti-inflammatory therapies. Full article
Show Figures

Figure 1

20 pages, 5261 KB  
Article
Preparation of Chitosan Composite Film Loaded with Chlorogenic Acid–Chitosan Oligosaccharide Nanoparticles and Its Application in Preservation of Pleurotus geesteranus
by Ning Xu, Liru Luo, Fang Wu, Dan Luo, Liguo Feng and Huan Lu
Foods 2026, 15(2), 221; https://doi.org/10.3390/foods15020221 - 8 Jan 2026
Viewed by 195
Abstract
To reduce the environmental impact of plastic packaging in the edible fungi supply chain, this study developed an edible natural chitosan composite film loaded with chlorogenic acid–chitosan oligosaccharide nanoparticles (CGA/COS NPs). The effects of CGA/COS NPs as additives on the structure and overall [...] Read more.
To reduce the environmental impact of plastic packaging in the edible fungi supply chain, this study developed an edible natural chitosan composite film loaded with chlorogenic acid–chitosan oligosaccharide nanoparticles (CGA/COS NPs). The effects of CGA/COS NPs as additives on the structure and overall performances of chitosan-based films were systematically studied, and the application effect of nanoparticles/chitosan (NPs/CS) composite films in the preservation of Pleurotus geesteranus was explored. The results showed that the NPs had good compatibility with the film matrix, filled the voids of the chitosan matrix, enhanced the comprehensive performance of the film, and significantly improved the antioxidant activity of the film (DPPH free radical scavenging activity increased from 16.95% to 76.47%). Among all the films, the 5%NPs/CS composite film performed the best, not only having stronger barrier properties against moisture, oxygen, and ultraviolet rays, but also having the best thermal stability and mechanical properties, which can effectively extend the shelf life of Pleurotus geesteranus. This study developed a high-performance edible composite film, which provides a new path of great value for solving the preservation problem of perishable agricultural products such as Pleurotus geesteranus and promoting the innovative development of the green food packaging industry. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 1952 KB  
Systematic Review
Microbial Adhesion on 3D-Printed Composite Polymers Used for Orthodontic Clear Aligners: A Systematic Review and Meta-Analysis of In Vitro Evidence
by Sandy Hazko, Ahmed A. Holiel, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Roland Kmeid, Louis Hardan, Aly Osman, Abigailt Flores-Ledesma, Naji Kharouf and Nicolas Nassar
J. Compos. Sci. 2026, 10(1), 26; https://doi.org/10.3390/jcs10010026 - 6 Jan 2026
Viewed by 243
Abstract
Objectives: This systematic review and meta-analysis aimed to evaluate microbial adhesion and biofilm formation on additively manufactured composite-based orthodontic clear aligners compared with thermoformed aligners and other conventional polymeric materials. The influence of material composition, surface roughness, post-processing parameters, and cleaning protocols on [...] Read more.
Objectives: This systematic review and meta-analysis aimed to evaluate microbial adhesion and biofilm formation on additively manufactured composite-based orthodontic clear aligners compared with thermoformed aligners and other conventional polymeric materials. The influence of material composition, surface roughness, post-processing parameters, and cleaning protocols on microbial colonization was also assessed. Methods: A comprehensive search of PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library was conducted up to September 2025. Only in vitro studies investigating microbial adhesion, biofilm biomass, or microbiome changes on three-dimensional (3D)-printed aligner composites were included. Primary outcomes consisted of colony-forming units (CFU), optical density (OD) from crystal violet assays, viable microbial counts, and surface roughness. Risk of bias was assessed using the RoBDEMAT tool. Data were narratively synthesized, and a random-effects meta-analysis was performed for comparable datasets. Results: Five studies fulfilled the inclusion criteria, of which two in vitro studies were eligible for meta-analysis. Microbial adhesion and biofilm accumulation were influenced by the manufacturing technique, composite resin formulation, and surface characteristics. Certain additively manufactured aligners exhibited smoother surfaces and reduced bacterial adhesion compared with thermoformed controls, whereas others with increased surface roughness showed higher biofilm accumulation. Incorporating bioactive additives such as chitosan nanoparticles reduced Streptococcus mutans biofilm formation without compromising material properties. The meta-analysis, based on two in vitro studies, demonstrated higher OD values for bacterial biofilm on 3D-printed aligners compared with thermoformed aligners, indicating increased biofilm biomass (p < 0.05), but not necessarily viable bacterial load. Conclusions: Microbial adhesion and biofilm formation on 3D-printed composite clear aligners are governed by resin composition, additive manufacturing parameters, post-curing processes, and surface finishing. Although certain 3D-printed materials display antibacterial potential, the limited number of studies restricts the generalizability of these findings. Clinical Significance: Optimizing composite formulations for 3D printing, alongside careful post-curing and surface finishing, may help reduce microbial colonization. Further research is required before translating these findings into definitive clinical recommendations for clear aligner therapy. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

24 pages, 5203 KB  
Article
Biodegradable Antibacterial Nanostructured Coatings on Polypropylene Substrates for Reduction in Hospital Infections from High-Touch Surfaces
by Mariamelia Stanzione, Ilaria Improta, Maria Grazia Raucci, Alessandra Soriente, Marino Lavorgna, Giovanna Giuliana Buonocore, Roberto Spogli, Anna Maria Marcelloni, Anna Rita Proietto, Ilaria Amori and Antonella Mansi
Nanomaterials 2026, 16(2), 80; https://doi.org/10.3390/nano16020080 - 6 Jan 2026
Viewed by 261
Abstract
Healthcare-associated infections (HCAIs) remain a significant global challenge, as pathogenic microorganisms can persist on hospital surfaces and medical equipment, contributing to severe infections and epidemic outbreaks. Conventional preventive measures, including disinfection procedures and personal protective equipment, are often insufficient to ensure complete microbial [...] Read more.
Healthcare-associated infections (HCAIs) remain a significant global challenge, as pathogenic microorganisms can persist on hospital surfaces and medical equipment, contributing to severe infections and epidemic outbreaks. Conventional preventive measures, including disinfection procedures and personal protective equipment, are often insufficient to ensure complete microbial control, prompting interest in innovative antimicrobial surface technologies. This study reports the design, preparation, and comprehensive characterization of chitosan- and poly(ε-caprolactone)-based antibacterial coatings incorporating chlorhexidine-loaded zirconium phosphate (ZrPCHX) nanoparticles. Coatings were deposited by optimized spray and brush techniques to obtain uniform, adherent, and well-defined films. Their morphological, physicochemical, mechanical, and cytocompatibility properties were systematically evaluated, and antibacterial efficacy was assessed against clinically relevant pathogens following ISO 22196:2011 and additional protocols simulating realistic hospital conditions. Both coating systems demonstrated pronounced antibacterial activity, with the PCL-based formulation exhibiting a faster and broader bactericidal effect while maintaining good cytocompatibility. These findings support the potential of the developed nanostructured coatings as sustainable and scalable materials for the active decontamination of high-touch hospital surfaces, offering continuous antimicrobial protection and contributing to a reduction in HCAI incidence. Full article
(This article belongs to the Special Issue Nanocoating for Antibacterial Applications)
Show Figures

Figure 1

20 pages, 5307 KB  
Article
Chitosan-Based Aerogel Cushioning Packaging for Improving Postharvest Quality of Wax Apples
by Yujie Hou, Sitong Zhou, Shiqi Liu, Peng Jin, Yonghua Zheng and Zhengguo Wu
Foods 2026, 15(2), 192; https://doi.org/10.3390/foods15020192 - 6 Jan 2026
Viewed by 203
Abstract
Mechanical damage and microbial contamination are major challenges in the postharvest logistics of perishable fruit. In this study, two types of functionally modified chitosan-based aerogel pads were developed to enhance cushioning and preservation of wax apples. A chitosan/polyvinyl alcohol (CP) aerogel was first [...] Read more.
Mechanical damage and microbial contamination are major challenges in the postharvest logistics of perishable fruit. In this study, two types of functionally modified chitosan-based aerogel pads were developed to enhance cushioning and preservation of wax apples. A chitosan/polyvinyl alcohol (CP) aerogel was first optimized by adjusting solid content, CS:PVA ratio, and crosslinker concentration. The optimal formulation (2% solids, 1:1 CS: PVA, 3% glutaraldehyde) exhibited a uniform porous structure and improved compressive strength. A chitosan/montmorillonite (CM) aerogel with 5% montmorillonite (MMT) showed high porosity, low density, and excellent cyclic stability. Incorporating 10% copper nanoparticle-loaded antibacterial fibers (CuNPs-TNF) into CM aerogels yielded CM-Cu aerogels with enhanced cushioning and antimicrobial properties. Under simulated transport and cold storage conditions, all aerogel-packaged groups reduced mechanical damage and decay of wax apples. Compared to the control, the CM-Cu group showed 66% lower decay, 5% less weight loss, 6 N greater firmness, 7% less juice yield, and a 13% reduction in relative electrical conductivity. Additionally, it better preserved fruit color and total soluble solids, extending shelf life by 4 d at 20 °C. These results demonstrate the potential of chitosan-based aerogels as multifunctional packaging materials that combine mechanical protection with antimicrobial activity for perishable fruit preservation. Full article
(This article belongs to the Special Issue Application and Safety of Edible Films in Food Packaging)
Show Figures

Figure 1

16 pages, 4196 KB  
Article
A Green Approach to Bio-Based Active Packaging: Grape Skin Extract-Synthesized AgNPs for Food Preservation
by Wenjia Yin, Yongzhen Lei, Jiayi Wang, Qin Lei, Wenxi Yu and Siyu Ou
Materials 2026, 19(2), 218; https://doi.org/10.3390/ma19020218 - 6 Jan 2026
Viewed by 150
Abstract
This study aimed to develop an environmentally friendly composite film with effective antibacterial and preservation properties. Silver nanoparticles (AgNPs) were green-synthesized using grape skin extract as a natural reducing agent and incorporated into a PVA/chitosan matrix. The composition of the extract and the [...] Read more.
This study aimed to develop an environmentally friendly composite film with effective antibacterial and preservation properties. Silver nanoparticles (AgNPs) were green-synthesized using grape skin extract as a natural reducing agent and incorporated into a PVA/chitosan matrix. The composition of the extract and the structural characteristics of the AgNPs were characterized by UPLC-MS and TEM. The barrier, mechanical performance, antibacterial, and fruit preservation properties of the resulting films were systematically evaluated. The results showed that the incorporation of AgNPs significantly improved the water vapor and oxygen barrier properties of the film and imparted excellent broad-spectrum antibacterial activity. In grape storage experiments, films with higher AgNPs content effectively delayed skin aging and moisture loss, maintaining better visual quality of the fruit. This work provides a green and feasible approach for the preparation of nanoparticle-enhanced antibacterial packaging materials based on natural products, with promising application potential. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

27 pages, 2768 KB  
Article
Polymeric Hydrogels Loaded with ZnO Nanoparticles as Promising Tools for Tacking Viral Skin Disorders
by Ana Karen Jaimes, Victoria Ayala-Peña, Agustín Buzzi, Vera Álvarez and Verónica Lassalle
Viruses 2026, 18(1), 76; https://doi.org/10.3390/v18010076 - 5 Jan 2026
Viewed by 514
Abstract
Zinc oxide nanoparticles (ZnO NPs) have attracted growing interest in several fields, including topical biomedical applications, due to their stability, biocompatibility and therapeutic potential. In this study, chitosan (Ch), gelatin (G) and arabic gum (AG) were combined to formulate hydrogels loaded with different [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) have attracted growing interest in several fields, including topical biomedical applications, due to their stability, biocompatibility and therapeutic potential. In this study, chitosan (Ch), gelatin (G) and arabic gum (AG) were combined to formulate hydrogels loaded with different ZnO NP concentrations. The main aim is to assess the synergy between the properties of biopolymers and ZnO moieties in terms of antiviral activity. ZnO NPs were synthesized via co-precipitation. Hydrogels were prepared using the freeze–thaw method, and the loading of 2.5, 5 and 7.5% w/w of ZnO NPs with respect to Ch was promoted by ultrasonication. The structural, morphological, surface and thermal properties of hydrogels loaded with ZnO NPs (HZ 2.5, HZ 5 and HZ 7.5) and the control matrix (H) were characterized using FTIR spectroscopy, confirming the successful incorporation and interaction of ZnO NPs with the polymeric network. Low ZnO NP concentrations enhanced the swelling degree of the hydrogels (from 1044% to 1253%), improving their thermal stability and solubility (96 h vs. 48 h HZ 7.5 and 14 h in the case of H). This behavior could be ascribed to the aggregation of ZnO NPs with increasing amounts, which was verified through FESEM. Virucidal activity was tested against herpes simplex virus type 1 (HSV-1) and bovine coronavirus (BCoV), demonstrating a substantial enhancement when the ZnO NPs are added independently of the concentration. An almost 100% viral inhibition was recorded when the HZs were analyzed, whereas the H matrix showed an inhibition of about 40% against the same virus. Antioxidant activity was evaluated via the DPPH free radical inhibition method, revealing an improvement with the loading of NPs. Full article
(This article belongs to the Section General Virology)
Show Figures

Graphical abstract

24 pages, 23608 KB  
Article
Synergistic Effects of Silica Nanoparticles, Chitosan and Bacillus velezensis AAHM-BV2301 on the Growth, Immunity, Gut Microbiota and Disease Resistance of Asian Seabass (Lates calcarifer)
by Jasper Kit Tangal, Anurak Uchuwittayakul, Kriengkrai Satapornvanit and Prapansak Srisapoome
Biomolecules 2026, 16(1), 88; https://doi.org/10.3390/biom16010088 - 5 Jan 2026
Viewed by 200
Abstract
In this study, the synergistic effects of dietary Bacillus velezensis AAHM-BV2301, silica nanoparticles (SiNPs), and chitosan (CS) on the growth performance, innate immunity, gut microbiota, and disease resistance of Asian seabass (Lates calcarifer) fingerlings were evaluated. A total of 400 fish [...] Read more.
In this study, the synergistic effects of dietary Bacillus velezensis AAHM-BV2301, silica nanoparticles (SiNPs), and chitosan (CS) on the growth performance, innate immunity, gut microbiota, and disease resistance of Asian seabass (Lates calcarifer) fingerlings were evaluated. A total of 400 fish (11.25 ± 2.12 g) were assigned to five dietary treatments for 30 days: control, BV (1 × 108 CFU/kg feed), BVSiNP (1 × 108 CFU/kg + 2 mg SiNP/kg), BVCS (1 × 108 CFU/kg + 15 g CS/kg), and BVSiNPCS (combined additives at the same concentrations). The growth indices (WG, SGR, RGR, and FCR) significantly increased in the fish fed BVSiNPs, whereas the level of innate immunity increased across all the supplemented groups, with BVCS and BVSiNPCS having the strongest respiratory burst and lysozyme activities. The tissue-specific modulation of immune-related genes (α2M, HSP70, Mx, and C3) was most pronounced in BVSiNP-fed fish, particularly in the gills and liver. Gut microbiome profiling revealed enrichment of Cetobacterium somerae in response to BV-based treatments, whereas BVSiNPCS induced the greatest increase in microbial richness and network connectivity. Postchallenge survival against Vibrio vulnificus was significantly greater in the BV and BVSiNP groups (p < 0.05). Overall, SiNPs acted as functional enhancers of the B. velezensis probiotic, supporting improved growth, immune activation, and microbiota restructuring. These results highlight the potential of nanoparticle-integrated synbiotics for microbiome-targeted health management in aquaculture. Full article
(This article belongs to the Special Issue Advances in Nano-Based Drug Delivery Systems)
Show Figures

Figure 1

19 pages, 4926 KB  
Article
A Bipolar Membrane Containing Core–Shell Structured Fe3O4-Chitosan Nanoparticles for Direct Seawater Electrolysis
by Hyeon-Bee Song, Eun-Hye Jang and Moon-Sung Kang
Membranes 2026, 16(1), 23; https://doi.org/10.3390/membranes16010023 - 2 Jan 2026
Viewed by 438
Abstract
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation [...] Read more.
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation by regulating local pH, thereby enhancing DSWE efficiency. Accordingly, this study focuses on the fabrication of a high-performance BPM for DSWE applications. The water-splitting performance of BPMs is strongly dependent on the properties of the catalyst at the bipolar junction. Herein, iron oxide (Fe3O4) nanoparticles were coated with cross-linked chitosan to improve solvent dispersibility and catalytic activity. The resulting core–shell catalyst exhibited excellent dispersibility, facilitating uniform incorporation into the BPM. Water-splitting flux measurements identified an optimal catalyst loading of approximately 3 μg cm−2. The BPM containing Fe3O4–chitosan nanoparticles achieved a water-splitting flux of 26.2 μmol cm−2 min−1, which is 18.6% higher than that of a commercial BPM (BP-1E, Astom Corp., Tokyo, Japan). DSWE tests using artificial seawater as the catholyte and NaOH as the anolyte demonstrated lower cell voltage and stable catholyte acidification over 100 h compared to the commercial membrane. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

Back to TopTop