Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = chirality inversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 44682 KB  
Article
Data-Driven Solutions and Parameters Discovery of the Chiral Nonlinear Schrödinger Equation via Deep Learning
by Zekang Wu, Lijun Zhang, Xuwen Huo and Chaudry Masood Khalique
Mathematics 2025, 13(15), 2344; https://doi.org/10.3390/math13152344 - 23 Jul 2025
Viewed by 320
Abstract
The chiral nonlinear Schrödinger equation (CNLSE) serves as a simplified model for characterizing edge states in the fractional quantum Hall effect. In this paper, we leverage the generalization and parameter inversion capabilities of physics-informed neural networks (PINNs) to investigate both forward and inverse [...] Read more.
The chiral nonlinear Schrödinger equation (CNLSE) serves as a simplified model for characterizing edge states in the fractional quantum Hall effect. In this paper, we leverage the generalization and parameter inversion capabilities of physics-informed neural networks (PINNs) to investigate both forward and inverse problems of 1D and 2D CNLSEs. Specifically, a hybrid optimization strategy incorporating exponential learning rate decay is proposed to reconstruct data-driven solutions, including bright soliton for the 1D case and bright, dark soliton as well as periodic solutions for the 2D case. Moreover, we conduct a comprehensive discussion on varying parameter configurations derived from the equations and their corresponding solutions to evaluate the adaptability of the PINNs framework. The effects of residual points, network architectures, and weight settings are additionally examined. For the inverse problems, the coefficients of 1D and 2D CNLSEs are successfully identified using soliton solution data, and several factors that can impact the robustness of the proposed model, such as noise interference, time range, and observation moment are explored as well. Numerical experiments highlight the remarkable efficacy of PINNs in solution reconstruction and coefficient identification while revealing that observational noise exerts a more pronounced influence on accuracy compared to boundary perturbations. Our research offers new insights into simulating dynamics and discovering parameters of nonlinear chiral systems with deep learning. Full article
(This article belongs to the Special Issue Applied Mathematics, Computing and Machine Learning)
Show Figures

Figure 1

24 pages, 5160 KB  
Review
Chiral Perovskite Single Crystals: Toward Promising Design and Application
by Lin Wang, Jie Ren and Hanying Li
Materials 2025, 18(11), 2635; https://doi.org/10.3390/ma18112635 - 4 Jun 2025
Viewed by 1030
Abstract
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. [...] Read more.
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. Herein, the recent advances in various synthesis strategies for chiral perovskite single crystals (SCs) are systematically demonstrated. Then, we elucidate an in-depth understanding of the chirality transfer mechanisms from chiral organic ligands to perovskite inorganic frameworks. Furthermore, representative examples of chiral perovskite SC-based applications are comprehensively discussed, including circularly polarized light (CPL) photodetection, nonlinear optical (NLO) responses, and other emerging chirality-dependent applications. In the end, an outlook for future challenges and research opportunities is provided, highlighting the transformative potential of chiral perovskites in next-generation optoelectronic devices. Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Graphical abstract

19 pages, 3943 KB  
Article
Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis
by Yu Tian, Kang-Hua Yan, Shao-Hui Wang, Kang-Jia Wang and Chang Liu
Axioms 2025, 14(6), 438; https://doi.org/10.3390/axioms14060438 - 3 Jun 2025
Viewed by 476
Abstract
The central objective of this study is to develop some different wave solutions and perform a qualitative analysis on the nonlinear dynamics of the time-fractional chiral nonlinear Schrodinger’s equation (NLSE) in the conformable sense. Combined with the semi-inverse method (SIM) and traveling wave [...] Read more.
The central objective of this study is to develop some different wave solutions and perform a qualitative analysis on the nonlinear dynamics of the time-fractional chiral nonlinear Schrodinger’s equation (NLSE) in the conformable sense. Combined with the semi-inverse method (SIM) and traveling wave transformation, we establish the variational principle (VP). Based on this, the corresponding Hamiltonian is constructed. Adopting the Galilean transformation, the planar dynamical system is derived. Then, the phase portraits are plotted and the bifurcation analysis is presented to expound the existence conditions of the various wave solutions with the different shapes. Furthermore, the chaotic phenomenon is probed and sensitivity analysis is given in detail. Finally, two powerful tools, namely the variational method (VM) which stems from the VP and Ritz method, as well as the Hamiltonian-based method (HBM) that is based on the energy conservation theory, are adopted to find the abundant wave solutions, which are the bell-shape soliton (bright soliton), W-shape soliton (double-bright solitons or double bell-shaped soliton) and periodic wave solutions. The shapes of the attained new diverse wave solutions are simulated graphically, and the impact of the fractional order δ on the behaviors of the extracted wave solutions are also elaborated. To the authors’ knowledge, the findings of this research have not been reported elsewhere and can enable us to gain a profound understanding of the dynamics characteristics of the investigative equation. Full article
(This article belongs to the Special Issue Fractional Differential Equations and Dynamical Systems)
Show Figures

Figure 1

12 pages, 3635 KB  
Article
Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces
by Bo Cheng, Yuxiao Zou, Zihui Ge, Longfeng Lv, Taohua Liang, Kunpeng Zhai and Guofeng Song
Crystals 2025, 15(5), 462; https://doi.org/10.3390/cryst15050462 - 14 May 2025
Viewed by 559
Abstract
The switching function of traditional waveplates necessitates mechanical replacement or the superimposition of multiple waveplates, which gives rise to a complex system and a large volume. We have devised a multifunctional micro-waveplate based on the COMSOL simulation platform (v5.6), which concurrently integrates the [...] Read more.
The switching function of traditional waveplates necessitates mechanical replacement or the superimposition of multiple waveplates, which gives rise to a complex system and a large volume. We have devised a multifunctional micro-waveplate based on the COMSOL simulation platform (v5.6), which concurrently integrates the compact nature of metasurfaces and the dynamic regulatory features of phase-change materials. When the phase-change material is in the crystalline phase, the metasurface possesses the functionality of a half-waveplate (HWP) and is capable of performing chirality inversion of circularly polarized light within the wavelength range of 1.45 μm to 1.52 μm and 1.56 μm to 1.61 μm. When the phase-change material is in the amorphous phase, the metasurface serves as a quarter-waveplate (QWP) and can achieve the conversion between linear and circular polarization through a 90° phase delay. The phase-change metasurface breaks through the constraint of fixed functions of traditional optical waveplates, facilitating the development of optical systems towards miniaturization, intelligence, and low power consumption and providing a crucial technical route for the next generation of photonic integration and dynamic optical applications. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices, Second Edition)
Show Figures

Figure 1

12 pages, 370 KB  
Article
Explanation of the Mass Pattern of the Low-Lying Scalar Nonet
by Mihail Chizhov, Emanuil Chizhov, Momchil Naydenov and Daniela Kirilova
Symmetry 2025, 17(4), 600; https://doi.org/10.3390/sym17040600 - 15 Apr 2025
Viewed by 319
Abstract
The aim of this work is to propose an explanation of the inverse mass hierarchy of the low-lying nonet of the scalar mesons in the framework of the massless Nambu–Jona-Lasinio UR(3)×UL(3) quark model. [...] Read more.
The aim of this work is to propose an explanation of the inverse mass hierarchy of the low-lying nonet of the scalar mesons in the framework of the massless Nambu–Jona-Lasinio UR(3)×UL(3) quark model. The proposed explanation is based on symmetry principles. The collective meson states are described via quark–antiquark pairs, whose condensates lead simultaneously to spontaneous breaking of chiral and flavour symmetry. It is shown that, due to flavour symmetry breaking, two iso-doublets of K0*(700) mesons play the role of Goldstone bosons. It is also proven that there exists a solution with degenerate masses of the a0(980) and f0(980) mesons and a zero mass of the f0(500) meson. Full article
(This article belongs to the Special Issue Symmetry in Hadron Physics)
Show Figures

Figure 1

13 pages, 1755 KB  
Article
Determination of the Enantiomerization Barrier of Midazolam in Aqueous Conditions by Electronic Circular Dichroism and Dynamic Enantioselective HPLC/UHPLC
by Francesca Romana Mammone, Daniele Sadutto, Eleonora Antoniella, Marco Pierini and Roberto Cirilli
Molecules 2025, 30(5), 1108; https://doi.org/10.3390/molecules30051108 - 28 Feb 2025
Viewed by 656
Abstract
Midazolam is a benzodiazepine that is utilized for the induction of anesthesia and the facilitation of procedural sedation. Despite the absence of stereogenic centers, the non-planar seven-membered ring devoid of reflection symmetry elements confers planar stereogenicity to the molecule. Due to the rapid [...] Read more.
Midazolam is a benzodiazepine that is utilized for the induction of anesthesia and the facilitation of procedural sedation. Despite the absence of stereogenic centers, the non-planar seven-membered ring devoid of reflection symmetry elements confers planar stereogenicity to the molecule. Due to the rapid conformational inversion of the Rp and Sp enantiomers, which occurs via a simple ring flip, high-performance liquid chromatography (HPLC) enantiomeric separation is restricted to sub-room temperature conditions. In this study, the energy barriers for the racemization of midazolam at five distinct temperatures and in acetonitrile/water mixtures were determined by monitoring the decay of the circular dichroism signal at a specific wavelength over time. The kinetic and thermodynamic data obtained were compared with those determined by dynamic enantioselective high-performance liquid chromatography using the Chiralpak IG-3 chiral stationary phase, which contains the amylose tris(3-chloro-5-methylphenylcarbamate) as the selector. The temperature-dependent dynamic HPLC of midazolam was carried out at the same temperatures and with the same aqueous mixtures used in parallel kinetic off-column experiments. To simulate dynamic chromatographic profiles, a lab-made computer program based on a stochastic model was utilized. The results indicated that the moderate influence of the stationary phase resulted in a slight increase in the activation barriers, which was more pronounced as the time spent in the column increased. This phenomenon was found to be mitigated when switching from a 250 mm × 4.6 mm, 3 µm, Chiralpak IG-3 column to a 50 mm × 4.6 mm, 1.6 µm, Chiralpak IG-U UHPLC column. The outcomes obtained under UHPLC conditions were found to be more closely aligned with those obtained through the ECD technique, with a discrepancy of only 0.1 kcal/mol or less, indicating a high degree of concordance between the two methods. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Analytical Chemistry)
Show Figures

Figure 1

13 pages, 874 KB  
Article
Electro-Optic Kerr Response in Optically Isotropic Liquid Crystal Phases
by Tetiana Yevchenko, Dorota Dardas, Natalia Bielejewska and Arkadiusz C. Brańka
Materials 2024, 17(19), 4926; https://doi.org/10.3390/ma17194926 - 9 Oct 2024
Viewed by 1129
Abstract
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant (K) of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic [...] Read more.
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant (K) of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic liquid crystal (5CB) and a chiral dopant (CE2), which formed non-polymer-stabilized liquid crystalline blue phases with an exceptionally large value of K∼2 × 10−9 mV−2. The measurements were performed on liquid and blue phases at several concentrations covering a range of temperatures and using three wavelengths: 532 nm, 589 nm and 633 nm. The work focused on changes caused by concentration and their impact on the increase in the value of K, and it was found that in the case of the 5CB/CE2 mixture these changes were significant and quite systematic with temperature and wavelength. It is shown that the dispersion relation based on the single-band birefringence model described K well in isotropic liquid crystal phases at all of the measured concentrations. In an isotropic fluid, both temperature-dependent parameters in the dispersion relation had a simple linear form and, therefore, the K-surface could be described by only four constants. In the blue phase, the expression reproducing the temperature variation of K depended on concentration, which could vary from being almost linear to quasi-linear and could be represented well by an inverse exponential analytic expression. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 4379 KB  
Article
Chirality Sensing of Amino Acid Esters by S-2-Methylbutanamido-Substituted m-Phthalic Diamide-Linked Zinc Bisporphyrinate
by Zhipeng Li, Yue Zhao, Yong Wang, Wen-Hua Zhang and Chuanjiang Hu
Molecules 2024, 29(15), 3652; https://doi.org/10.3390/molecules29153652 - 1 Aug 2024
Cited by 1 | Viewed by 1121
Abstract
To understand the role of an additional coordination site in the linker in chirality sensing, we designed and synthesized an S-2-methylbutanamido-substituted m-phthalic diamide-linked zinc bisporphyrinate, [Zn2(S-MAABis)] and investigated its ability to sense the chirality of amino acid esters. The 1 [...] Read more.
To understand the role of an additional coordination site in the linker in chirality sensing, we designed and synthesized an S-2-methylbutanamido-substituted m-phthalic diamide-linked zinc bisporphyrinate, [Zn2(S-MAABis)] and investigated its ability to sense the chirality of amino acid esters. The 1H NMR spectra and the crystal structure showed that the amido oxygen adjacent to the chiral carbon was coordinated with zinc. NMR and UV–vis titration showed that the binding of [Zn2(S-MAABis)] to amino acid esters occurred via two equilibria, forming 1:1 and 1:2 host–guest complexes. The CD spectra suggested that [Zn2(S-MAABis)] can effectively recognize the absolute configuration of amino acid esters. The sign of the CD spectra remained unchanged during the titration, indicating that the corresponding 1:1 and 1:2 host–guest complexes had the same chirality. This is different from previously studied amino-substituted m-phthalic diamide-linked zinc bisporphyrinate [Zn2(AmBis)], which showed chirality inversion during titration. Theoretical calculations indicated that the additional coordination sites (amido or amino) in the 1:1 host–guest complexes played different roles, leading to differences in chirality. Our studies suggest that the introduction of a coordination site can influence the chirality transfer process, but the results of chirality transfers are dependent on the specific binding modes. Full article
Show Figures

Figure 1

19 pages, 4532 KB  
Article
Designed De Novo α-Sheet Peptides Destabilize Bacterial Biofilms and Increase the Susceptibility of E. coli and S. aureus to Antibiotics
by Tatum Prosswimmer, Sarah E. Nick, James D. Bryers and Valerie Daggett
Int. J. Mol. Sci. 2024, 25(13), 7024; https://doi.org/10.3390/ijms25137024 - 27 Jun 2024
Cited by 4 | Viewed by 2070
Abstract
Biofilm-associated microbes are 10–1000 times less susceptible to antibiotics. An emerging treatment strategy is to target the structural components of biofilm to weaken the extracellular matrix without introducing selective pressure. Biofilm-associated bacteria, including Escherichia coli and Staphylococcus aureus, generate amyloid fibrils to [...] Read more.
Biofilm-associated microbes are 10–1000 times less susceptible to antibiotics. An emerging treatment strategy is to target the structural components of biofilm to weaken the extracellular matrix without introducing selective pressure. Biofilm-associated bacteria, including Escherichia coli and Staphylococcus aureus, generate amyloid fibrils to reinforce their extracellular matrix. Previously, de novo synthetic α-sheet peptides designed in silico were shown to inhibit amyloid formation in multiple bacterial species, leading to the destabilization of their biofilms. Here, we investigated the impact of inhibiting amyloid formation on antibiotic susceptibility. We hypothesized that combined administration of antibiotics and α-sheet peptides would destabilize biofilm formation and increase antibiotic susceptibility. Two α-sheet peptides, AP90 and AP401, with the same sequence but inverse chirality at every amino acid were tested: AP90 is L-amino acid dominant while AP401 is D-amino acid dominant. For E. coli, both peptides increased antibiotic susceptibility and decreased the biofilm colony forming units when administered with five different antibiotics, and AP401 caused a greater increase in all cases. For S. aureus, increased biofilm antibiotic susceptibility was also observed for both peptides, but AP90 outperformed AP401. A comparison of the peptide effects demonstrates how chirality influences biofilm targeting of gram-negative E. coli and gram-positive S. aureus. The observed increase in antibiotic susceptibility highlights the role amyloid fibrils play in the reduced susceptibility of bacterial biofilms to specific antibiotics. Thus, the co-administration of α-sheet peptides and existing antibiotics represents a promising strategy for the treatment of biofilm infections. Full article
(This article belongs to the Special Issue Protein Folding and Misfolding — Structure and Functions 2.0)
Show Figures

Graphical abstract

14 pages, 2291 KB  
Article
A Thiourea Derivative of 2-[(1R)-1-Aminoethyl]phenol as a Chiral Sensor for the Determination of the Absolute Configuration of N-3,5-Dinitrobenzoyl Derivatives of Amino Acids
by Federica Aiello, Alessandra Recchimurzo, Federica Balzano, Gloria Uccello Barretta and Federica Cefalì
Molecules 2024, 29(6), 1319; https://doi.org/10.3390/molecules29061319 - 15 Mar 2024
Cited by 3 | Viewed by 1597
Abstract
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in [...] Read more.
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in the enantiodifferentiation of N-3,5-dinitrobenzoyl (N-DNB) amino acids. In order to broaden the application of 1-TU for configurational assignment, enantiomerically enriched N-DNB amino acids were analyzed via NMR. A robust correlation was established between the relative position of specific 1H and 13C NMR resonances of the enantiomers in the presence of 1-TU. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was selected for the complete solubilization of amino acid substrates. Notably, the para and ortho protons of the N-DNB moiety displayed higher frequency shifts for the (R)-enantiomers as opposed to the (S)-enantiomers. This trend was consistently observed in the 13C NMR spectra for quaternary carbons bonded to NO2 groups. Conversely, an inverse correlation was noted for quaternary carbon resonances of the carboxyl moiety, amide carbonyl, and methine carbon at the chiral center. This observed trend aligns with the interaction mechanism previously reported for the same chiral auxiliary. The configurational correlation can be effectively exploited under conditions of high dilution or, significantly, under sub-stoichiometric conditions. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

14 pages, 7420 KB  
Article
The Physical Mechanism of Linear and Nonlinear Optical Properties of Nanographene-Induced Chiral Inversion
by Zhiyuan Yang, Xinwen Gai, Yi Zou and Yongjian Jiang
Molecules 2024, 29(5), 1053; https://doi.org/10.3390/molecules29051053 - 28 Feb 2024
Cited by 4 | Viewed by 1434
Abstract
Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac [...] Read more.
Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac are studied by means of transition density matrix (TDM) and charge density difference (CDD) diagrams. The intermolecular interaction is discussed based on an independent gradient model based on Hirshfeld partition (IGMH). The interaction of 1-meso and 1-rac with the external environment is studied using the electrostatic potential (ESP), and the electron delocalization degree of 1-meso and 1-rac is studied based on the magnetically induced current under the external magnetic field. Through the chiral separation of 1-rac, two enantiomers, 1-(P, P) and 1-(M, M), were obtained. The electrical–magnetic interaction of the molecule is revealed by analyzing the electron circular dichroism (ECD) spectra of 1-meso, 1-(P, P) and 1-(M, M), the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM). It is found that 1-(P, P) and 1-(M, M) have opposite chiral properties due to the inversion of the structure. Full article
(This article belongs to the Special Issue Advanced Carbon Nanomaterials and Their Applications)
Show Figures

Figure 1

13 pages, 5359 KB  
Article
Properties of Antiferroelectric Mixtures Differing in the Amount of Added Racemate
by Magdalena Urbańska and Dorota Dardas
Crystals 2024, 14(2), 147; https://doi.org/10.3390/cryst14020147 - 31 Jan 2024
Cited by 3 | Viewed by 1355
Abstract
Novel three-component liquid crystalline mixtures composed of chiral and achiral (racemic) liquid crystalline materials were designed and studied by polarizing optical microscopy, differential scanning calorimetry, and UV–VIS spectroscopy. The compositions of liquid crystalline mixtures were developed based on the composition of a two-component [...] Read more.
Novel three-component liquid crystalline mixtures composed of chiral and achiral (racemic) liquid crystalline materials were designed and studied by polarizing optical microscopy, differential scanning calorimetry, and UV–VIS spectroscopy. The compositions of liquid crystalline mixtures were developed based on the composition of a two-component (binary) mixture marked as W-1000 with the following phase sequence: Cr ↔ SmCA* ↔ SmC* ↔ SmA* ↔ Iso. This mixture has an antiferroelectric (SmCA*) phase over a wide temperature range and exhibits a helical pitch inversion in this phase. All newly obtained mixtures occur in a wide temperature range of the SmCA* phase, while the ferroelectric (SmC*) phase and the orthogonal (SmA*) phase occur in a narrow temperature range. The new mixtures also have a very long helical pitch in the antiferroelectric phase and a short helical pitch in the ferroelectric phase. Full article
Show Figures

Figure 1

19 pages, 344 KB  
Article
Uniqueness Results for Some Inverse Electromagnetic Scattering Problems with Phaseless Far-Field Data
by Xianghe Zhu, Jun Guo and Haibing Wang
Axioms 2023, 12(12), 1069; https://doi.org/10.3390/axioms12121069 - 22 Nov 2023
Cited by 1 | Viewed by 1327
Abstract
Consider three electromagnetic scattering models, namely, electromagnetic scattering by an elastic body, by a chiral medium, and by a cylinder at oblique incidence. We are concerned with the corresponding inverse problems of determining the locations and shapes of the scatterers from phaseless far-field [...] Read more.
Consider three electromagnetic scattering models, namely, electromagnetic scattering by an elastic body, by a chiral medium, and by a cylinder at oblique incidence. We are concerned with the corresponding inverse problems of determining the locations and shapes of the scatterers from phaseless far-field patterns. There are certain essential differences from the usual inverse electromagnetic scattering problems, and some fundamental conclusions need to be proved. First, we show that the phaseless far-field data are invariant under the translation of the scatterers and prove the reciprocity relations of the scattering data. Then, we justify the unique determination of the scatterers by utilizing the reference ball approach and the superpositions of a fixed point source and plane waves as the incident fields. The proofs are based on the reciprocity relations, Green’s formulas, and the analyses of the wave fields in the reference ball. Full article
22 pages, 2901 KB  
Article
Diastereoselective Synthesis of Dispiro[Imidazothiazolotriazine-Pyrrolidin-Oxindoles] and Their Isomerization Pathways in Basic Medium
by Alexei N. Izmest′ev, Dmitry B. Vinogradov, Angelina N. Kravchenko, Natalya G. Kolotyrkina and Galina A. Gazieva
Int. J. Mol. Sci. 2023, 24(22), 16359; https://doi.org/10.3390/ijms242216359 - 15 Nov 2023
Cited by 2 | Viewed by 1363
Abstract
Highly diastereoselective methods for the synthesis of two series of regioisomeric polynuclear dispyroheterocyclic compounds with five or six chiral centers, comprising moieties of pyrrolidinyloxindole and imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine of linear structure or imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine of angular structure, have [...] Read more.
Highly diastereoselective methods for the synthesis of two series of regioisomeric polynuclear dispyroheterocyclic compounds with five or six chiral centers, comprising moieties of pyrrolidinyloxindole and imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine of linear structure or imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine of angular structure, have been developed on the basis of a [3+2] cycloaddition of azomethine ylides to functionalized imidazothiazolotriazines. Depending on the structure of the ethylenic component, cycloaddition proceeds as an anti-exo process for linear derivatives, while cycloaddition to angular ones resulted in a syn-endo diastereomer. Novel pathways of isomerization for the synthesized anti-exo products upon treatment with sodium alkoxides have been found, which resulted in two more series of diastereomeric dispiro[imidazothiazolotriazine-pyrrolidin-oxindoles] inaccessible with the direct cycloaddition reaction. For the first series, the inversion of the configuration of one stereocenter, i.e., C-4′ atom of the pyrrolidine cycle, (epimerization) was established. For the second one, configuration of the obtained diastereomer formally corresponded to the syn-endo approach of the azomethine ylide in the case of cycloaddition to the ethylenic component. Full article
Show Figures

Graphical abstract

13 pages, 2794 KB  
Article
Chiral Quasi-Bound States in the Continuum of a Dielectric Metasurface for Optical Monitoring and Temperature Sensing
by Xu Du, Suxia Xie, Haoxuan Nan, Siyi Sun, Weiwei Shen, Jingcheng Yang and Xin Guan
Photonics 2023, 10(9), 980; https://doi.org/10.3390/photonics10090980 - 28 Aug 2023
Cited by 12 | Viewed by 2972
Abstract
Chiral BIC can reach ultrahigh quality factors (Q-factor) based on its asymmetry, with broken mirror symmetries and in-plane inversion. Only by in-plane structural perturbation can chiral quasi-BIC (q-BIC) appear, so it is much more realizable and reasonable for the manufacturers in practical productions [...] Read more.
Chiral BIC can reach ultrahigh quality factors (Q-factor) based on its asymmetry, with broken mirror symmetries and in-plane inversion. Only by in-plane structural perturbation can chiral quasi-BIC (q-BIC) appear, so it is much more realizable and reasonable for the manufacturers in practical productions and fabrications considering the technology and means that are available. In this paper, we design a new dielectric metasurface employing H-shaped silica meta-atoms in the lattice, which is symmetrical in structure, obtaining chiral BIC with ultrahigh Q-factor (exceeding 105). In this process, we change the length of the limbs of the structure to observe the specific BICs. Previous scholars have focused on near-infrared-wavelength bands, while we concentrate on the terahertz wavelength band (0.8–1 THz). We found that there is more than one BIC, thus realizing multiple BICs in the same structure; all of them exhibit excellent circular dichroism (CD) (the maximum value of CD is up to 0.8127) for reflectance and transmittance, which provides significant and unique guidance for the design of multi-sensors. Meanwhile, we performed temperature sensing with chiral BIC; the sensitivity for temperature sensing can reach 13.5 nm/°C, which exhibits high accuracy in measuring temperature. As a consequence, the result proposed in this study will make some contributions to advanced optical imaging, chiral sensors with high frequency and spectral resolution, optical monitoring of environmental water quality, multiple sensors, temperature sensing, biosensing, substance inspection and ambient monitoring and other relevant optical applications. Full article
(This article belongs to the Special Issue Optical Metasurfaces: Recent Advances and Future Directions)
Show Figures

Figure 1

Back to TopTop