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Abstract: Novel three-component liquid crystalline mixtures composed of chiral and achiral (racemic)
liquid crystalline materials were designed and studied by polarizing optical microscopy, differential
scanning calorimetry, and UV–VIS spectroscopy. The compositions of liquid crystalline mixtures
were developed based on the composition of a two-component (binary) mixture marked as W-1000
with the following phase sequence: Cr ↔ SmCA* ↔ SmC* ↔ SmA* ↔ Iso. This mixture has an
antiferroelectric (SmCA*) phase over a wide temperature range and exhibits a helical pitch inversion
in this phase. All newly obtained mixtures occur in a wide temperature range of the SmCA* phase,
while the ferroelectric (SmC*) phase and the orthogonal (SmA*) phase occur in a narrow temperature
range. The new mixtures also have a very long helical pitch in the antiferroelectric phase and a short
helical pitch in the ferroelectric phase.

Keywords: (S) enantiomers; racemate; mixtures; antiferroelectric phase; helical pitch

1. Introduction

Liquid crystal technology has significantly impacted many fields of science, engineer-
ing, and device technology. Applications for this unique type of material are continually
being developed, and they continue to offer efficient answers to a wide range of issues. The
liquid crystalline phases can be observed in organic compounds characterized by specific
chemical structures. Liquid crystals can be divided into different categories. An essential
division concerns how they are created. Thermotropic liquid crystals (TLC) are formed
when solid crystals are heated; they can occur as enantiotropic or monotropic, depending
on whether they pass through different mesophases as the temperature increases. Ly-
otropic liquid crystals (LLC) are created by being dissolved in an appropriate isotropic
solvent that participates in the construction of this phase. Thermotropic liquid crystals
are very often single compounds or mixtures thereof. However, lyotropic compounds
are always solutions or systems of at least two compounds. An exciting example of the
lyotropic liquid crystal is the amphiphilic crystal, created by molecules consisting of two
parts with opposite properties—hydrophobic and hydrophilic [1]. Some mesogens, which
are called amphotropics, may exhibit the properties of both phases. Due to the shape of
the molecules, we can distinguish liquid crystals as calamitic (rod-like), discotic (disc-like),
flat (board-like), pyramidal, circular, polychain, or dovetail. The thermotropic liquid crys-
tals of elongated molecules are mainly subdivided into nematic and smectic mesophases.
Nematic liquid crystals, marked with the symbol N, have the least ordered structure, and
only have orientational order along the longitudinal axis of the molecules. This axis has a
precisely defined direction, which we call the director, n. The molecules’ average direction
determines the system’s optical axis. The molecules are parallel to some extent and can
move in three directions but cannot rotate around the short axis. The center of gravity is
isotropically distributed in all directions, as shown in Figure 1. Among the nematic phases,
we can also distinguish chiral nematic phases, which are marked with the symbol N* and
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are called cholesteric liquid crystals (ChLC). Unlike nematic achiral phases, they have a
layered structure. A characteristic feature of cholesterics is that the center of gravity of the
molecules in the layer is randomly located, and the layers are twisted towards each other
by a certain small angle. As a result of the twisting of the layers, a helix is formed [1].
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Liquid crystals belonging to smetics have a more ordered structure than nematics.
In addition to orientational order, they also show positional order, which results in the
formation of layers of molecules. Smectic liquid crystals include compounds with only a
smectic phase or those that form a smectic phase at lower temperatures and a nematic phase
at higher temperatures. The common feature of all classes is the layered structure. Still, they
differ in the arrangement of molecules in the layer, the range and type of intermolecular
interactions, and the range of positional and orientational ordering. Smectic phases are
divided into orthogonal and oblique phases. There are many types of smectic phases, and
most of the compounds synthesized by our research group (at the Military University of
Technology) have A, C, and CA phases. In the smectic A phase (SmA), the director and the
optical axis are perpendicular to the layer surface but simultaneously parallel to the normal
to layer, k, as shown in Figure 2.

Important applications have chiral smectic liquid crystals with ferroelectric and an-
tiferroelectric phases [1–8]. When molecules are chiral, a macroscopic helical structure
is created, characterized by the helical pitch, p. The phase that exhibits the ferroelectric
properties is the chiral synclinic (SmC*) phase [9]. The molecules of this phase form a
layered structure, the centers of gravity of the molecules are randomly distributed, and
the molecules themselves are tilted by an angle of 13–45◦. The subsequent layers are
twisted. The structure of the SmC* phase allows for spontaneous polarization to occur.
This phenomenon can be explained as follows: spontaneous polarization, Ps, is a vector
representing symmetry breaking. If the properties of the liquid crystal are independent of
the direction of the director, Ps, if present, must be locally perpendicular to n. In the case
of the SmA phase, which has rotational symmetry, spontaneous polarization disappears,
similar to the SmC phase, which has mirror symmetry. This symmetry is broken thanks to
the chiral center present in the SmC* phase.

Chiral smectic phases with antiferroelectric properties were discovered in 1989 [10,11].
This phase differs from the ferroelectric phase in that two adjacent layers are opposed in
the chiral anticlinic phase (SmCA*).
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In many applications, liquid crystalline mixtures are used because single compounds
are insufficient to obtain the desired properties [12–26]. It has been shown that the proper-
ties of their binary mixtures can be predicted by using mixtures of two liquid crystalline
materials with the ferroelectric phase with previously known properties, such as vis-
coelastic properties [27,28]. Several dozen mixtures with excellent physicochemical and
electro-optical properties have been prepared at the Military University of Technology
Institute of Chemistry. One well-studied mixture, which shows a very wide orthoconic
antiferroelectric phase and a very long helical pitch, is the binary mixture W-1000 [29–31]
and its modifications [32–35]. Orthoconic antiferroelectric liquid crystals (OAFLCs) are
compounds in which molecules are tilted in layers by 45◦. In this case, the optical prop-
erties of the orthoconic antiferroelectrics change significantly [7,18,26,29,31–36]. The first
publications on high-tilted compounds with the antiferroelectric phase appeared in the
1990s; a tilt angle of Θ ≈ 40◦ was detected in siloxane liquid crystalline compounds. The
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first orthoconics with antiferroelectric properties that were not dimers of two compounds
were obtained at the Military University of Technology in the research group of Prof. R.
Dąbrowski [2,3,7]. Compared to conventional antiferroelectric liquid crystalline materials,
they have fewer structural defects in liquid crystalline cells. Studies have demonstrated
excellent electro-optical properties of the mixture W-1000, including extraordinary optical
contrast and optical switching without light leakage. All articles about this mixture either
describe its properties or the properties after doping this mixture with some chiral com-
pound(s) or racemate(s) (racemic equivalents of the components of this mixture have never
been used as dopants). Usually, better properties have been observed after doping, and we
used a completely different approach. Since the mixture has excellent properties, what will
happen if it is partially racemized? We decided to replace one of the chiral components
(dominant) in 50%, 25%, and 10% with the racemate, while the other chiral compound
remained unchanged. We did not decide to replace one of the components at 100% with
the racemate because then only one of the mixture’s components would be in a chiral form.

In this work, we investigated how the amount of the added racemate affected the
mixtures’ mesomorphic and thermodynamic properties and helical pitch, and compared
them with the base mixture.

2. Compositions of Mixtures

The basis for the preparation of the new mixtures with the acronyms W-462, W-463,
and W-464 was the mixture W-1000. The formulas of all mesogens used to prepare the
mixtures are presented in Table 1. A total of 100 mg of each new liquid crystalline mixture
was prepared by weighing the appropriate amount of each component, heating them to the
isotropic phase, and mixing them several times.

Table 1. All mixture components and phase transition temperatures (from DSC measurements) [36].

Acronyms Structure of Enantiomers/Racemate

1.(S)
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Tables 2 and 3 show the compositions and percentages of the components of all mix-
tures. The synthesis of the components used to prepare all mixtures is described in [36,37].
All mesogens were synthesized using the same classical pathway by treating the chiral or
achiral phenol with benzoic acid chloride in the presence of pyridine. The mesogens were
purified using a combination of column chromatography and recrystallization. The purity
was checked using a Shimadzu prominence chromatograph with an SPD-M20A diode
array detector. All mesogens have a purity higher than 99%. MS data for the mesogens are
provided in the Supplementary Materials, see Figures S1–S3. The purity of the mesogens
was also checked using thin-layer chromatography (TLC).
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Table 2. Weight composition of the base mixture W-1000.

Acronyms of Enantiomers Weight Ratio [%]

1.(S) 52.52

2.(S) 47.48

Table 3. Weight compositions of the mixtures W-462, W-463, and W-464.

Mixtures Acronyms of
Enantiomers/Racemate Weight Ratio [%]

W-462

1.(S) 26.26

3.(R,S) 26.26

2.(S) 47.48

W-463

1.(S) 39.39

3.(R,S) 13.13

2.(S) 47.48

W-464

1.(S) 47.27

3.(R,S) 5.25

2.(S) 47.48

The mixture W-1000 is a eutectic mixture prepared from two chiral rod-like compounds
with a phenyl biphenyl core and a terminal perfluoroalkoxyalkoxy chain, differing, however,
in the length of the oligomethylene spacer 7 and 5, respectively, and the different position
of the fluorine atom in the rigid core. For this mixture, we observed the following phase
sequence, as shown in Scheme 1:
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Scheme 1. The designation of phase sequence and temperatures.

3. Results and Discussion
3.1. Mesomorphic Properties of Mixtures

Phase transitions and phase sequences were observed using the polarizing microscope
(OLYMPUS BX51, Japan), which was equipped with a heating stage (Linkam THMS-600)
and temperature controller (Linkam TMS-93). Observations were performed over the
heating and cooling cycle at 2 ◦C/min. The phase transition temperatures were confirmed
using a calorimeter NETZSCH, model STA 449F5 JUPITER (Germany). The measurements
were carried out in the heating and cooling cycles in temperatures ranging from 30 ◦C
to 120 ◦C, with a temperature change of 2 ◦C per minute in an argon atmosphere. The
weight of each sample was 10 mg. Phase transition temperatures from microscopic and
DSC measurements are compared in Table 4. One type of phase transition sequence
can be observed regardless of the amount of racemate added; examples of the observed
microphotograph textures of the smectic phases for one of the mixtures are shown in
Figure 3. All phases were easily recognized based on microscopic textures without resorting
to other identification methods. All prepared mixtures had similar transition temperatures,
as shown in Figure 4. The enthalpies from the DSC measurements are compared in Table 5.
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Table 4. Phase transition temperatures of all mixtures from the optical polarizing microscope and the
differential scanning calorimeter.

Mixtures SmCA* T1 SmC* T2 SmA* T3 Iso

W-462 •

98.7–98.8

•

101.2–101.6

•

104.9–106.7

•
96.1–96.9 100.7–101.5 103.8–105.7

96.6 99.3 102.8

93.2 98.0 101.0

W-463 •

97.1–98.1

•

99.1–100.0

•

101.7–103.7

•
93.2–95.6 98.5–99.0 100.6–102.8

97.4 99.4 102.8

94.9 98.2 100.8

W-464 •

97.3–97.6

•

99.0–99.6

•

101.5–103.5

•
95.4–96.1 98.5–99.1 100.6–102.5

97.9 99.7 102.6

95.6 98.3 100.7

W-1000 •

100.5

•

103.6

•

106.1

•
101.7 103.4 105.7

99.8 101.3 103.3

98.2 101.2 102.4

First row: POM measurements in the heating cycle [◦C]. Second row: POM measurements in the cooling cycle
[◦C]. Third row: DSC measurements in the heating cycle [◦C]. Fourth row: DSC measurements in the cooling
cycle [◦C].
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Figure 3. Photos of microscopic textures obtained for different mesophases for the mixture W-462: 
(a) SmA* phase at T = 103.8 °C; (b) SmC* phase at T = 100.7 °C; and (c) SmCA* phase at T = 96.1 °C 
on the cooling cycle. The width of all microphotographs corresponds to ~600 μm. 

Figure 3. Photos of microscopic textures obtained for different mesophases for the mixture W-462:
(a) SmA* phase at T = 103.8 ◦C; (b) SmC* phase at T = 100.7 ◦C; and (c) SmCA* phase at T = 96.1 ◦C
on the cooling cycle. The width of all microphotographs corresponds to ~600 µm.
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Figure 4. The temperatures of phase transition of all liquid crystalline mixtures from DSC measure-
ments observed during the heating cycle (from 60 ◦C to 110 ◦C).

Table 5. Values of phase transition enthalpies for the mixture W-1000 and new mixtures (in the
heating cycle).

Mixture W-1000 Mixture W-462 Mixture W-463 Mixture W-464
[J/g] [J/g] [J/g] [J/g]

SmCA*-SmC* 0.11 0.03 0.06 0.07

SmC*-SmA* 1.19 1.05 1.03 0.89

SmA*-Iso 4.80 4.63 4.55 4.41

All the prepared mixtures have a wide temperature range in the antiferroelectric phase,
while the ferroelectric phase and the smectic A* phase exist in a narrow temperature range.
Comparing the obtained results with the phase transition temperatures of the base mixture
W-1000, it can be seen that the mixture W-1000 is characterized by a narrower range of
the SmC* and SmA* phases than the prepared mixtures. Comparing all three prepared
mixtures with each other, the chiral smectic phase with ferroelectric properties and the
SmA* phase occurs in the widest temperature range for the mixture W-462, where the
addition of the racemate reaches the highest percentage value (50%). The narrowest range
of these liquid crystalline phases appears for the mixture W-464, where the percentage of
the racemate is 10%.

The clearing points for all mixtures are similar, with the prepared mixtures having
slightly lower clearing points than the mixture W-1000 (by approximately 1–2 ◦C). It was
impossible to determine the mixtures’ melting or crystallization temperatures because the
measurements were performed from 30 ◦C (the air-cooled measurement system).

The mixture W-1000 has higher phase transition enthalpies than the three new mixtures.
In the case of the new mixtures, we observe a certain irregularity because the mixture
W-464 (with the lowest percentage of the racemate) has the lowest enthalpy values, and the
mixture W-462 (with the highest percentage of the racemate) has the highest values for the
transitions: SmC*-SmA*, and SmA*-Iso. The transition SmCA*–SmC* is characterized by
very low enthalpy values both for the base mixture and for the new mixtures, which is why
it is difficult to compare them as the differences are negligible.
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3.2. Helical Pitch of Mixtures

The helical pitch was determined using the standard optical technique [38], which
resorts to selective reflection. A free drop of the liquid crystalline mixture was placed
on a glass plate coated with a CTAB (cetyltrimethylammonium bromide) layer, ensuring
homeotropic order. A LIGA spectrophotometer was used for the research, enabling mea-
surement in the UV–VIS range in transmitted light. The transmittance was measured as a
function of wavelength. The pitch p was calculated for the antiferroelectric phase from the
dependence:

λmax = n · p (1)

The pitch p was calculated for he ferroelectric phase from the dependence:

λmax = 2n · p (2)

where n is the average refractive index, the value n = 1.5 was taken to calculate [39]. The
results were obtained during the cooling cycle.

The values of the dependence of light transmittance on the wavelength of selective
reflection did not allow for the determination of the helical pitch in the tested spectral range
(380–790 nm) for the mixture W-462, as shown in Figure 5.
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Figure 5. The dependence of transmittance on wavelength for the mixture W-462.

Based on the analysis of the UV–VIS spectrum and selective light reflection for the
mixture W-463, the value of the selective reflection wavelength does not change significantly
at the tested temperatures. It is in the range of 715.41 nm and 730.17 nm in the temperature
range from 99.8 ◦C to 86.5 ◦C in the cooling cycle, as shown in Figure 6.
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Figure 6. The dependence of transmittance on wavelength for the mixture W-463.

In the mixture W-464, selective reflection appears in the temperature range from
99.0 ◦C to 96.5 ◦C in the cooling cycle, and is approximately 661 nm. No selective reflection
was observed above or below this temperature range, as shown in Figure 7.
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On this basis, the helical pitch in the ferroelectric phase for the mixture W-463 can
be calculated at p = 318–324 nm (approx. 320 nm), and for the mixture W-464, the helical
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pitch is 294 nm. Figure 8 shows the dependence of the helical pitch on temperature for the
mixtures W-1000, W-463, and W-464. The helical pitch could not be determined for new
mixtures in the antiferroelectric phase. The pitch values are outside the measurement range
of the spectrophotometer used, so they cannot be compared with the pitch for the base
mixture. As can be seen, the mixture W-1000 shows the inversion of the helical pitch in the
SmCA* phase. Above 20 ◦C, the helical pitch exceeds the value of 1000 nm. In the SmC*
phase, the pitch values are outside the measurement range of the spectrophotometer used.

Crystals 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

On this basis, the helical pitch in the ferroelectric phase for the mixture W-463 can be 
calculated at p = 318–324 nm (approx. 320 nm), and for the mixture W-464, the helical pitch 
is 294 nm. Figure 8 shows the dependence of the helical pitch on temperature for the mix-
tures W-1000, W-463, and W-464. The helical pitch could not be determined for new mix-
tures in the antiferroelectric phase. The pitch values are outside the measurement range 
of the spectrophotometer used, so they cannot be compared with the pitch for the base 
mixture. As can be seen, the mixture W-1000 shows the inversion of the helical pitch in 
the SmCA* phase. Above 20 °C, the helical pitch exceeds the value of 1000 nm. In the SmC* 
phase, the pitch values are outside the measurement range of the spectrophotometer used. 

 
Figure 8. The helical pitch versus temperature for the mixtures W-1000, W-463, and W-464. (“(+)”- 
right-handed helix, “(-)”- left-handed helix). The arrow indicates the temperature at which the helix 
is unwound. 

As expected, adding optically inactive mesogen to the base mixture causes an in-
crease in the helical pitch in the SmCA* phase, which has been observed previously [33–
35,40–42]. 

4. Summary and Conclusions 
Both chiral and achiral (racemic) materials have great application significance, which 

has been proven many times [43–50]. The influence of adding the racemate to the mixture 
on the physicochemical properties and helical pitch was confirmed in this study, which 
aimed to prepare three mixtures containing (S) enantiomers and racemate, examine their 
mesomorphic and thermodynamic properties and helical pitch, and compare them with 
the base mixture. All newly prepared mixtures have a wide temperature range in the an-
tiferroelectric (SmCA*) phase, while the ferroelectric (SmC*) phase and the smectic A* 
phase exist in a narrow temperature range. The temperature ranges of phase transitions 
and the clearing points for the prepared mixtures are comparable to those occurring for 
the mixture W-1000. The temperature ranges of the SmC* phase are wider by 1.2 °C, 0.5 
°C, and by 0.3 °C for the mixtures W-462, W-463, and W-464, respectively, compared to 
the mixture W-1000. The temperature ranges of the SmA* phase are wider by 1.5 °C, 1.4 

Figure 8. The helical pitch versus temperature for the mixtures W-1000, W-463, and W-464.
(“(+)”- right-handed helix, “(-)”- left-handed helix). The arrow indicates the temperature at which
the helix is unwound.

As expected, adding optically inactive mesogen to the base mixture causes an increase
in the helical pitch in the SmCA* phase, which has been observed previously [33–35,40–42].

4. Summary and Conclusions

Both chiral and achiral (racemic) materials have great application significance, which
has been proven many times [43–50]. The influence of adding the racemate to the mixture
on the physicochemical properties and helical pitch was confirmed in this study, which
aimed to prepare three mixtures containing (S) enantiomers and racemate, examine their
mesomorphic and thermodynamic properties and helical pitch, and compare them with
the base mixture. All newly prepared mixtures have a wide temperature range in the
antiferroelectric (SmCA*) phase, while the ferroelectric (SmC*) phase and the smectic A*
phase exist in a narrow temperature range. The temperature ranges of phase transitions
and the clearing points for the prepared mixtures are comparable to those occurring for the
mixture W-1000. The temperature ranges of the SmC* phase are wider by 1.2 ◦C, 0.5 ◦C,
and by 0.3 ◦C for the mixtures W-462, W-463, and W-464, respectively, compared to the
mixture W-1000. The temperature ranges of the SmA* phase are wider by 1.5 ◦C, 1.4 ◦C,
and 0.9 ◦C for the mixtures W-462, W-463, and W-464, respectively, compared to the W-1000
mixture. The enthalpy values of phase transitions of the prepared mixtures are lower than
those for the mixture W-1000. The helical pitch in the SmC* phase for the mixture W-463 is
from 318 nm to 324 nm (approx. 320 nm); for the mixture W-464, the pitch is 294 nm. The
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helical pitch is short in the ferroelectric phase and does not change upon heating. In the
SmCA* phase, the pitch exceeds the measurement range of the spectrophotometer used.

The presented results are promising from an application point of view. Since the
mixture W-1000 is orthoconic [51–56], electro-optical measurements (spontaneous polariza-
tion and tilt angle of molecules) will be performed for the newly developed mixtures in
further stages of the research. At room temperature, the tilt angle for the mixture W-1000
is ≈43–45◦. The spontaneous polarization of this mixture decreases with increases in
temperature, reaching a maximum of almost 300 nC/cm2 [29].

It can be concluded that adding the racemate to the chiral mixture positively affects the
new mixtures’ mesomorphic properties and helical pitch. For these mixtures, we observed
a wide range of the SmCA* phase (ideally, only this phase would be present, and there
would be no other smectic phases) [12], and low clearing points. The helical pitch is, in
turn, one of the basic parameters determining the possibilities of using OAFLC materials.
The pitch of most OAFLCs is below one µm, which makes OAFLCs difficult to stabilize on
the surface. This also causes an asymmetry in the electro-optical response. Therefore, we
look for materials with a longer helical pitch by adding different amounts of the racemate
to the chiral base mixture.

The racemates can be successfully used as components or admixtures for the antiferro-
electric chiral mixtures, which has also been demonstrated in other works [40–42].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst14020147/s1, Figure S1: Mass spectrum of the enantiomer 1.(S);
Figure S2: Mass spectrum of the enantiomer 2.(S); Figure S3: Mass spectrum of the racemate 3.(R,S).
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