Uniqueness Results for Some Inverse Electromagnetic Scattering Problems with Phaseless Far-Field Data
Abstract
:1. Introduction
- (1)
- The interaction problem between the electromagnetic field and an elastic body;
- (2)
- Electromagnetic scattering by a chiral medium;
- (3)
- Electromagnetic scattering by an impedance cylinder at oblique incidence.
2. The Interaction Problem between the Electromagnetic Field and an Elastic Body
2.1. The Mathematical Formulation
2.2. An Inverse Scattering Problem
3. Electromagnetic Scattering by a Chiral Medium
3.1. The Mathematical Formulation
3.2. An Inverse Scattering Problem
4. Electromagnetic Scattering by an Impedance Cylinder at Oblique Incidence
4.1. The Mathematical Formulation
4.2. An Inverse Scattering Problem
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, 4th ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Cakoni, F.; Colton, D. A Qualitative Approach in Inverse Scattering Theory; Springer: New York, NY, USA, 2014. [Google Scholar]
- Kirsch, A.; Grinberg, N. The Factorization Method for Inverse Problems; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Lee, K.M. Shape reconstructions from phaseless data. Eng. Anal. Bound. Elem. 2016, 71, 174–178. [Google Scholar] [CrossRef]
- Ivanyshyn, O. Shape reconstruction of acoustic obstacles from the modulus of the far-field pattern. Inverse Probl. Imaging 2007, 1, 609–622. [Google Scholar] [CrossRef]
- Kress, R.; Rundell, W. Inverse obstacle scattering with modulus of the far-field pattern as data. In Inverse Problems in Medical Imaging and Nondestructive Testing; Springer: New York, NY, USA, 1997; pp. 75–92. [Google Scholar]
- Ammari, H.; Chow, Y.T.; Zou, J. Phased and phaseless domain reconstructions in the inverse scattering problem via scattering coefficients. SIAM J. Appl. Math. 2016, 76, 1000–1030. [Google Scholar] [CrossRef]
- Bao, G.; Zhang, L. Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data. Inverse Probl. 2016, 32, 085002. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, G. A direct imaging method for electromagnetic scattering data without phase information. SIAM J. Imaging Sci. 2016, 9, 1273–1297. [Google Scholar] [CrossRef]
- Klibanov, M.V.; Romanov, V.G. Reconstruction procedures for two inverse scattering problems without the phase information. SIAM J. Appl. Math. 2016, 76, 178–196. [Google Scholar] [CrossRef]
- Li, J.; Liu, H. Recovering a polyhedral obstacle by a few backscattering measurements. J. Differ. Equ. 2015, 259, 2101–2120. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Y.; Li, J.; Liu, H. Retrieval of acoustic sources from multi-frequency phaseless data. Inverse Probl. 2018, 34, 094001. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H. Recovering scattering obstacles by multi-frequency phaseless far-field data. J. Comput. Phys. 2017, 345, 58–73. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B. Unique determination of a sound-soft ball by the modulus of a single far-field datum. J. Math. Anal. Appl. 2010, 365, 619–624. [Google Scholar] [CrossRef]
- Majda, A. High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering. Commun. Pure Appl. Math. 1976, 29, 261–291. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, B.; Zhang, H. Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency. SIAM J. Appl. Math. 2018, 78, 1737–1753. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, B.; Zhang, H. Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency II. SIAM J. Appl. Math. 2018, 78, 3024–3039. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Y. Uniqueness results on phaseless inverse scattering with a reference ball. Inverse Probl. 2018, 34, 085002. [Google Scholar] [CrossRef]
- Dong, H.; Lai, J.; Li, P. Inverse obstacle scattering problem for elastic waves with phased or phaseless far-field data. SIAM J. Imaging Sci. 2019, 12, 809–838. [Google Scholar] [CrossRef]
- Dong, H.; Lai, J.; Li, P. An inverse acoustic-elastic interaction problem with phased or phaseless far-field data. Inverse Probl. 2020, 36, 035014. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Guo, Y.; Li, J. Uniqueness in inverse cavity scattering problems with phaseless near-field data. Inverse Probl. 2020, 36, 025004. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, B.; Zhang, H. Uniqueness in inverse electromagnetic scattering problem with phaseless far-field data at a fixed frequency. IMA J. Appl. Math. 2020, 85, 823–839. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, D.; Guo, Y. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Probl. Imaging 2019, 13, 177–195. [Google Scholar] [CrossRef]
- Ji, X.; Liu, X.; Zhang, B. Inverse acoustic scattering with phaseless far-field data: Uniqueness, phase retrieval, and direct sampling methods. SIAM Imaging Sci. 2019, 12, 1163–1189. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H. Fast imaging of scattering obstacles from phaseless far-field measurements at a fixed frequency. Inverse Probl. 2018, 34, 104005. [Google Scholar] [CrossRef]
- Cakoni, F.; Hsiao, G.C. Mathematical model of the interaction problem between electromagnetic field and elastic body. In Acoustics, Mechanics, and the Related Topics of Mathematical Analysis; World Scientific: Singapore, 2002; pp. 48–54. [Google Scholar]
- Bernardo, A.; Marquez, A.; Meddahi, S. Analysis of an interaction problem between an electromagnetic field and an elastic body. Int. J. Numer. Anal. Mod. 2010, 7, 749–765. [Google Scholar]
- Gatica, G.N.; Hsiao, G.C.; Meddahi, S. A coupled mixed finite element method for the interaction problem between an electromagnetic field and an elastic body. SIAM J. Numer. Anal. 2010, 48, 1338–1368. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, J.; Zhang, B. Recovering a bounded elastic body by electromagnetic far-field measurements. Inverse Probl. Imaging 2022, 16, 1063–1083. [Google Scholar] [CrossRef]
- Lakhtakia, A. Beltrami Fields in Chiral Media; World Scientific: Singapore, 1994. [Google Scholar]
- Athanasiadis, C.; Stratis, I.G. Electromagnetic scattering by a chiral obstacle. IMA J. Appl. Math. 1997, 58, 83–91. [Google Scholar] [CrossRef]
- Ola, P. Boundary integral equations for the scattering of electromagnetic waves by a homogeneous chiral obstacle. J. Math. Phys. 1994, 35, 3969–3980. [Google Scholar] [CrossRef]
- Athanasiadis, C.; Stratis, I.G. Uniqueness of the inverse scattering problem for a chiral obstacle. Int. J. Appl. Electrom. 1998, 9, 123–133. [Google Scholar] [CrossRef]
- Athanasiadis, C.; Martin, P.A.; Stratis, I.G. Electromagnetic scattering by a homogeneous chiral obstacle: Scattering relations and the far-field operator. Math. Meth. Appl. Sci. 1999, 22, 1175–1188. [Google Scholar] [CrossRef]
- Nakamura, G.; Wang, H. Inverse scattering for obliquely incident polarized electromagnetic waves. Inverse Probl. 2012, 28, 105004. [Google Scholar] [CrossRef]
- Nakamura, G.; Wang, H. The direct electromagnetic scattering problem from an imperfectly conducting cylinder at oblique incidence. J. Math. Anal. Appl. 2013, 397, 142–155. [Google Scholar] [CrossRef]
- Wang, H.B.; Nakamura, G. The integral equation method for electromagnetic scattering problem at oblique incidence. Appl. Numer. Math. 2012, 62, 860–873. [Google Scholar] [CrossRef]
- Nakamura, G.; Wang, H. Reconstruction of an impedance cylinder at oblique incident from the far-field data. SIAM J. Appl. Math. 2015, 75, 252–274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Guo, J.; Wang, H. Uniqueness Results for Some Inverse Electromagnetic Scattering Problems with Phaseless Far-Field Data. Axioms 2023, 12, 1069. https://doi.org/10.3390/axioms12121069
Zhu X, Guo J, Wang H. Uniqueness Results for Some Inverse Electromagnetic Scattering Problems with Phaseless Far-Field Data. Axioms. 2023; 12(12):1069. https://doi.org/10.3390/axioms12121069
Chicago/Turabian StyleZhu, Xianghe, Jun Guo, and Haibing Wang. 2023. "Uniqueness Results for Some Inverse Electromagnetic Scattering Problems with Phaseless Far-Field Data" Axioms 12, no. 12: 1069. https://doi.org/10.3390/axioms12121069
APA StyleZhu, X., Guo, J., & Wang, H. (2023). Uniqueness Results for Some Inverse Electromagnetic Scattering Problems with Phaseless Far-Field Data. Axioms, 12(12), 1069. https://doi.org/10.3390/axioms12121069