Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (411)

Search Parameters:
Keywords = chiral design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3589 KiB  
Review
Progress in Stereoselective Haloamination of Olefins
by Guo Zhong, Jiayu Zhou, Bin Cui and Hui Sun
Molecules 2025, 30(15), 3217; https://doi.org/10.3390/molecules30153217 - 31 Jul 2025
Viewed by 192
Abstract
The regio- and stereoselective adjacent bifunctionalization of olefins with amine and halogen groups can be effectively accomplished through catalytic haloamination methods. Stereoselective haloamination has emerged as a pivotal methodology for the introduction of halogen functional groups into chiral amines, demonstrating substantial applications in [...] Read more.
The regio- and stereoselective adjacent bifunctionalization of olefins with amine and halogen groups can be effectively accomplished through catalytic haloamination methods. Stereoselective haloamination has emerged as a pivotal methodology for the introduction of halogen functional groups into chiral amines, demonstrating substantial applications in medicinal chemistry and organic synthesis. Since 1999, significant advancements have been achieved in this field, driven by innovations in catalytic systems and methodologies. The stereoselective haloamination of both functionalized and nonfunctionalized alkenes employing chiral catalysts has emerged as a prominent area of research. This review provides a comprehensive overview of the research progress in stereoselective haloamination reactions from 1999 to 2023. It examines the innovations in catalyst design that have facilitated more efficient and selective transformations. The review also analyzes the optimization of reaction conditions, which has been crucial in improving the overall performance and applicability of these reactions. Furthermore, it explores the diverse range of haloamination reactions that have been developed, emphasizing their potential for the synthesis of complex and valuable chemical structures. Additionally, this review offers insightful perspectives on future research directions in stereoselective haloamination reactions. Full article
Show Figures

Scheme 1

19 pages, 4094 KiB  
Article
Precision Molecular Engineering of Alternating Donor–Acceptor Cycloparaphenylenes: Multidimensional Optoelectronic Response and Chirality Modulation via Polarization-Driven Charge Transfer
by Danmei Zhu, Xinwen Gai, Yi Zou, Ying Jin and Jingang Wang
Molecules 2025, 30(15), 3127; https://doi.org/10.3390/molecules30153127 - 25 Jul 2025
Viewed by 169
Abstract
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, [...] Read more.
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, excited-state dynamics, and optical behavior were elucidated through density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results show that the alternating D–A design significantly reduced the HOMO–LUMO energy gap (e.g., 3.11 eV for [12]CPP 2a), enhanced charge transfer characteristics, and induced pronounced red-shifted absorption. The introduction of an imide-based acceptor ([12]CPP 2a) further strengthened the electron push-pull interaction, exhibiting superior performance in two-photon absorption, while the symmetrically multifunctionalized structure ([12]CPP 3a) predominantly exhibited localized excitation with the highest absorption intensity but lacked charge transfer features. Chiral analysis reveals that the alternating D–A architecture modulated the distribution of chiral signals, with [12]CPP 1a displaying a strong Cotton effect in the low-wavelength region. These findings not only provide a theoretical basis for the molecular design of functionalized CPP derivatives, but also lay a solid theoretical foundation for expanding their application potential in optoelectronic devices and chiral functional materials. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 223
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 223
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

25 pages, 1889 KiB  
Review
Biosynthesis Strategies and Application Progress of Mandelic Acid Based on Biomechanical Properties
by Jingxin Yin, Yi An and Haijun Gao
Microorganisms 2025, 13(8), 1722; https://doi.org/10.3390/microorganisms13081722 - 23 Jul 2025
Viewed by 489
Abstract
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development [...] Read more.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity. Significant progress has been made in enzyme engineering modifications, metabolic pathway design, and process optimization. Importantly, biomechanical research provides a transformative perspective for this field. By analyzing the mechanical response characteristics of microbial cells in bioreactors, biomechanics facilitates the regulation of relevant environmental factors during the fermentation process, thereby improving synthesis efficiency. Molecular dynamics simulations are also employed to uncover stability differences in enzyme–substrate complexes, providing a structural mechanics basis for the rational design of highly catalytically active enzyme variants. These biomechanic-driven approaches lay the foundation for the future development of intelligent, responsive biosynthesis systems. The deep integration of biomechanics and synthetic biology is reshaping the process paradigm of green MA manufacturing. This review will provide a comprehensive summary of the applications of MA and recent advances in its biosynthesis, with a particular focus on the pivotal role of biomechanical characteristics. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 278
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

15 pages, 7120 KiB  
Article
A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope
by Tikhon V. Reztsov, Aleksey V. Chernykh, Tetiana Orlova and Nikolay V. Petrov
Polymers 2025, 17(13), 1849; https://doi.org/10.3390/polym17131849 - 2 Jul 2025
Viewed by 397
Abstract
Topological orientation structures in chiral nematic liquid crystals, such as torons, exhibit promising optical properties and are of increasing interest for applications in photonic devices. However, despite this attention, their polarization and phase dynamics during formation remain insufficiently explored. In this work, we [...] Read more.
Topological orientation structures in chiral nematic liquid crystals, such as torons, exhibit promising optical properties and are of increasing interest for applications in photonic devices. However, despite this attention, their polarization and phase dynamics during formation remain insufficiently explored. In this work, we investigate the dynamic optical response of a toron generated by focused femtosecond infrared laser pulses. A custom-designed polarization holographic microscope is employed to simultaneously record four polarization-resolved interferograms in a single exposure. This enables the real-time reconstruction of the Jones matrix, providing a complete description of the local polarization transformation introduced by the formation of the topological structure. The study demonstrates that torons can facilitate spin–orbit coupling of light in a manner analogous to q-plates, highlighting their potential for advanced vector beam shaping and topological photonics applications. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 5017 KiB  
Article
Constructing Hydrazone-Linked Chiral Covalent Organic Frameworks with Different Pore Sizes for Asymmetric Catalysis
by Haichen Huang, Kai Zhang, Yuexin Zheng, Hong Chen, Dexuan Cai, Shengrun Zheng, Jun Fan and Songliang Cai
Catalysts 2025, 15(7), 640; https://doi.org/10.3390/catal15070640 - 30 Jun 2025
Viewed by 332
Abstract
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived [...] Read more.
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived dihydrazide chiral monomer (L-DBP-Boc), which was subjected to Schiff-base reactions with two aromatic aldehydes of different lengths, 1,3,5-triformyl phloroglucinol (BTA) and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TZ), to construct two hydrazone-linked chiral COFs with distinct pore sizes (L-DBP-BTA COF and L-DBP-TZ COF). Interestingly, the Boc protecting groups were removed in situ during COF synthesis. We systematically investigated the catalytic performance of these two chiral COFs in asymmetric aldol reactions and found that their pore sizes significantly influenced both catalytic activity and enantioselectivity. The large-pore L-DBP-TZ COF (pore size: 3.5 nm) exhibited superior catalytic performance under aqueous conditions at room temperature, achieving a yield of 98% and an enantiomeric excess (ee) value of 78%. In contrast, the small-pore L-DBP-BTA COF (pore size: 2.0 nm) showed poor catalytic performance. Compared to L-DBP-BTA COF, L-DBP-TZ COF demonstrated a 1.69-fold increase in yield and a 1.56-fold enhancement in enantioselectivity, possibly attributed to the facilitated diffusion and transport of substrates and products within the larger pore, thus improving the accessibility of active sites. This study presents a facile synthesis of pyrrolidine-functionalized chiral COFs and establishes the possible structure–activity relationship in their asymmetric catalysis, offering new insights for the design of efficient chiral COF catalysts. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Graphical abstract

13 pages, 4458 KiB  
Article
Effect of Vacancy Defect on Mechanical Properties of Single Wall Carbon Nanotube
by Nachiket S. Makh and Ajit D. Kelkar
Appl. Nano 2025, 6(3), 12; https://doi.org/10.3390/applnano6030012 - 27 Jun 2025
Viewed by 467
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s [...] Read more.
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s structure, with chiral CNTs denoted by indices (n, m), where m > 0 and m ≠ n. The mechanical properties and structural stability of CNTs are highly sensitive to defects and impurities within their atomic framework. Among these, point defects such as single-atom vacancies are the most prevalent and can significantly degrade mechanical performance. These defects alter stress distribution, reduce stiffness, and impair strength, thereby limiting the functional reliability of CNTs in advanced applications such as nanocomposites, sensors, and electronic devices. This study examines the influence of vacancy defects on CNT mechanical behavior through a multiscale modeling framework. Molecular dynamics (MD) simulations are conducted using LAMMPS, with structural visualization via Visual Molecular Dynamics (VMD). Concurrently, a finite element (FE) model is developed in ANSYS, where the CNT is idealized as a space frame of elastic beam elements representing carbon–carbon bonds. The integration of atomistic and continuum approaches offers a comprehensive understanding of defect-induced mechanical degradation. The MD and FEM results are in strong agreement with findings in existing literature, validating the adopted methodology. These findings contribute valuable insights into the design and optimization of CNT-based materials for high-performance engineering applications. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

18 pages, 16058 KiB  
Article
Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers
by Jakub Lisiecki and Damian Nieckarz
Molecules 2025, 30(12), 2656; https://doi.org/10.3390/molecules30122656 - 19 Jun 2025
Viewed by 414
Abstract
Precise control over the morphology of surface-supported supramolecular patterns is a significant challenge, requiring the careful selection of suitable molecular building blocks and the fine-tuning of experimental conditions. In this contribution, we demonstrate the utility of lattice Monte Carlo computer simulations for predicting [...] Read more.
Precise control over the morphology of surface-supported supramolecular patterns is a significant challenge, requiring the careful selection of suitable molecular building blocks and the fine-tuning of experimental conditions. In this contribution, we demonstrate the utility of lattice Monte Carlo computer simulations for predicting the topology of adsorbed overlayers formed by star-shaped tetratopic molecules with vicinal interaction centers. The investigated tectons were found to self-assemble into a range of structurally diverse architectures, including two-dimensional crystals, aperiodic mosaics, Sierpiński-like aggregates, and one-dimensional strands. The theoretical insights presented herein deepen our understanding of molecular self-assembly and may aid in the rational design of novel nanomaterials with tunable porosity, chirality, connectivity, and molecular packing. Full article
(This article belongs to the Special Issue Molecular Self-Assembly in Interfacial Chemistry)
Show Figures

Graphical abstract

24 pages, 5160 KiB  
Review
Chiral Perovskite Single Crystals: Toward Promising Design and Application
by Lin Wang, Jie Ren and Hanying Li
Materials 2025, 18(11), 2635; https://doi.org/10.3390/ma18112635 - 4 Jun 2025
Viewed by 740
Abstract
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. [...] Read more.
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. Herein, the recent advances in various synthesis strategies for chiral perovskite single crystals (SCs) are systematically demonstrated. Then, we elucidate an in-depth understanding of the chirality transfer mechanisms from chiral organic ligands to perovskite inorganic frameworks. Furthermore, representative examples of chiral perovskite SC-based applications are comprehensively discussed, including circularly polarized light (CPL) photodetection, nonlinear optical (NLO) responses, and other emerging chirality-dependent applications. In the end, an outlook for future challenges and research opportunities is provided, highlighting the transformative potential of chiral perovskites in next-generation optoelectronic devices. Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Graphical abstract

12 pages, 4125 KiB  
Article
Dynamic Compression Mechanical Behavior of Three-Dimensional Chiral Mechanical Metamaterials: Effects of Geometric Parameters and Size
by Shidi Qin, Zhenyang Huang, Weidong Cao, Xiaofei Cao and Yongshui Lin
Materials 2025, 18(11), 2584; https://doi.org/10.3390/ma18112584 - 1 Jun 2025
Viewed by 474
Abstract
The coupled compression–torsion effects of three-dimensional chiral mechanical metamaterials have attracted widespread attention from researchers in recent years. However, the deformation rules and mechanisms through which geometric parameters and size affect their quasi-static and low-speed dynamic compression behavior are still unclear. This paper [...] Read more.
The coupled compression–torsion effects of three-dimensional chiral mechanical metamaterials have attracted widespread attention from researchers in recent years. However, the deformation rules and mechanisms through which geometric parameters and size affect their quasi-static and low-speed dynamic compression behavior are still unclear. This paper numerically investigates the quasi-static and low-speed dynamic compression mechanical behavior of three-dimensional chiral mechanical metamaterials, and the effects of geometric parameters and size are discussed. The numerical results are validated by their comparison with the experimental data. The testing results indicate that the geometric parameters as well as number of arrays in different directions have a significant effect on the quasi-static and dynamic compression twist angle per axial strain and the effective modulus. Interestingly, the values of the twist angle per axial strain under static and dynamic compression are almost the same under the same strain, but the effective modulus decreases more sharply under dynamic loading conditions, which may be due to inertia. Our work elucidates the mechanism through which geometric parameters and size affect the quasi-static and dynamic deformation behavior of three-dimensional chiral mechanical metamaterials, which provides design references for their practical engineering applications. Full article
(This article belongs to the Special Issue Bioinspired Materials: From Concepts to Applications)
Show Figures

Figure 1

7 pages, 446 KiB  
Article
Photophysical Properties of a Chiral Iridium-Based Photosensitizer as an Efficient Photodynamic Therapy Agent: A Theoretical Investigation
by Maciej Spiegel
Int. J. Mol. Sci. 2025, 26(11), 5062; https://doi.org/10.3390/ijms26115062 - 24 May 2025
Cited by 1 | Viewed by 471
Abstract
This study employs time-dependent density functional theory to explore the photophysical properties of a chiral iridium(III) complex designed as a photosensitizer for photodynamic therapy. Key properties analyzed include one-photon absorption energies, singlet–triplet energy gaps, spin–orbit coupling constants, and intersystem crossing rate constants. The [...] Read more.
This study employs time-dependent density functional theory to explore the photophysical properties of a chiral iridium(III) complex designed as a photosensitizer for photodynamic therapy. Key properties analyzed include one-photon absorption energies, singlet–triplet energy gaps, spin–orbit coupling constants, and intersystem crossing rate constants. The potential for operation in a Type I PDT mechanism was assessed through ionization potential and electron affinity calculations. The results demonstrate that the complex is a promising PDT candidate, primarily operating in a Type II mechanism, while offering conditional viability for Type I photoreactivity under specific electronic and environmental conditions. Full article
Show Figures

Figure 1

11 pages, 2649 KiB  
Article
Design of an Integrated Circularly Polarized HgCdTe Photodetector Based on Silicon Metasurfaces
by Bo Cheng, Yuxiao Zou, Zihui Ge, Hanxiao Shao, Kunpeng Zhai and Guofeng Song
Photonics 2025, 12(5), 519; https://doi.org/10.3390/photonics12050519 - 21 May 2025
Viewed by 456
Abstract
Compared with conventional detectors, a circularly polarized detector operating at 4.26 μm effectively suppresses background noise (e.g., solar scattering and atmospheric interference), enabling high-precision CO2 monitoring across ecosystems like farmland, forests, and wetlands. This capability allows the precise quantification of carbon sink [...] Read more.
Compared with conventional detectors, a circularly polarized detector operating at 4.26 μm effectively suppresses background noise (e.g., solar scattering and atmospheric interference), enabling high-precision CO2 monitoring across ecosystems like farmland, forests, and wetlands. This capability allows the precise quantification of carbon sink potential and ecosystem health. Our design employs a mid-wave HgCdTe detector—a well-established platform—combined with a CMOS-compatible Si/SiO2 metasurface. Geometric displacements were applied to break C2 symmetry, achieving a chiral design. Through multiparameter optimization, we realized a circularly polarized photodetector (CPPD) with a CPER of 18 dB, expected to demonstrate superior CO2 monitoring performance. These advances may offer researchers and practitioners a robust tool for both fundamental studies and field deployments. Full article
(This article belongs to the Special Issue Latest Advances in Optical Diffraction, Imaging and Display)
Show Figures

Figure 1

13 pages, 12842 KiB  
Article
Strong Coupling Based on Quasibound States in the Continuum of Nanograting Metasurfaces in Near-Infrared Region
by Yulun Zhao, Junqiang Li, Yuchang Liu, Yadong Yue, Yongchuan Dang, Yilin Wang, Kun Liang and Li Yu
Photonics 2025, 12(5), 508; https://doi.org/10.3390/photonics12050508 - 19 May 2025
Viewed by 571
Abstract
Quasibound states in the continuum (qBICs) have aroused much attention as a feasible stage to investigate optical strong coupling due to their extremely high-quality factors (Q-factors) and extraordinary electromagnetic field enhancement. However, current demonstrations of strong coupling based on qBICs have primarily focused [...] Read more.
Quasibound states in the continuum (qBICs) have aroused much attention as a feasible stage to investigate optical strong coupling due to their extremely high-quality factors (Q-factors) and extraordinary electromagnetic field enhancement. However, current demonstrations of strong coupling based on qBICs have primarily focused on the visible spectral range, while research in the near-infrared (NIR) regime remains scarce. In this work, we design a nanograting metasurface supporting Friedrich–Wintgen bound states in the continuum (FW BICs). We demonstrate that FW BIC formation stems from destructive interference between Fabry–Pérot cavity modes and metal–dielectric hybrid guided-mode resonances. To investigate the qBIC–exciton coupling system, we simulated the interaction between MoTe2 excitons and nanograting metasurfaces. A Rabi splitting of 55.4 meV was observed, which satisfies the strong coupling criterion. Furthermore, a chiral medium layer is modeled inside the nanograting metasurface by rewriting the weak expression and boundary conditions. A mode splitting of the qBIC–chiral medium system in the circular dichroism (CD) spectrum demonstrates that the chiral response successfully transferred from the chiral medium layer to the exciton–polaritons systems through strong coupling. In comparison to the existing studies, our work demonstrates a significantly larger CD signal under the same Pascal parameters and with a thinner chiral dielectric layer. Our work provides a new ideal platform for investigating the strong coupling based on quasibound states in the continuum, which exhibits promising applications in near-infrared chiral biomedical detection. Full article
Show Figures

Figure 1

Back to TopTop