Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = chiral analyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 818 KB  
Article
Evaluation of Chromatographic Separation, with a Focus on LC-MS/MS, for the Determination of Stereoisomeric Cypermethrin and Other Synthetic Pyrethroids in Apples
by Iwona Wenio, Damian Kwiatkowski, Dorota Derewiaka and Iwona Bartosiewicz
Appl. Sci. 2026, 16(2), 846; https://doi.org/10.3390/app16020846 - 14 Jan 2026
Viewed by 106
Abstract
Pyrethroids, synthetic analogues of natural pyrethrins, are extensively used in agriculture and household pest control due to their high insecticidal activity and relatively low toxicity to mammals. Due to the presence of multiple chiral centres, many pyrethroids exist as complex mixtures of stereoisomers [...] Read more.
Pyrethroids, synthetic analogues of natural pyrethrins, are extensively used in agriculture and household pest control due to their high insecticidal activity and relatively low toxicity to mammals. Due to the presence of multiple chiral centres, many pyrethroids exist as complex mixtures of stereoisomers with significantly different biological activities, toxicities, and environmental behaviours. Consequently, accurate determination of these stereoisomeric forms, particularly compounds such as cypermethrin, is critical for food safety monitoring. Determining pyrethroid residues in food matrices presents a significant analytical challenge due to the structural diversity and stereochemical complexity of these compounds. This study presents the development of an analytical method for determining the stereoisomeric forms of cypermethrin and other synthetic pyrethroids in food matrices using both LC-MS/MS and GC-MS/MS techniques. The method meets the performance criteria outlined in SANTE/11312/2021 v2, demonstrating satisfactory recovery rates (91.6%), precision (RSDR 1.9%), and low limits of quantification (LOQ 0.010 µg/kg) for the quantification of alpha-cypermethrin. This approach offers a reliable tool for regulatory monitoring and risk assessment of pyrethroid residues, especially those with complex stereochemistry. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plant-Based Foods)
Show Figures

Figure 1

11 pages, 1072 KB  
Article
Effect of the Dzyaloshinskii–Moriya Interaction on Magnonic Activity in Ferromagnetic Nanotubes
by Mingming Yang and Ming Yan
Symmetry 2026, 18(1), 120; https://doi.org/10.3390/sym18010120 - 8 Jan 2026
Viewed by 132
Abstract
The magnonic activity refers to a chiral effect in the field of magnetization dynamics that exhibits a high degree of analogy to optical activity. It manifests as the azimuthal continuous rotation of standing-wave nodes in the cross-section of spin waves during propagation in [...] Read more.
The magnonic activity refers to a chiral effect in the field of magnetization dynamics that exhibits a high degree of analogy to optical activity. It manifests as the azimuthal continuous rotation of standing-wave nodes in the cross-section of spin waves during propagation in ferromagnetic nanowire waveguides. The study employs micromagnetic simulation methods to theoretically investigate the influence of the interfacial Dzyaloshinskii–Moriya interaction (iDMI) on the magnonic activity in longitudinally magnetized ferromagnetic nanotubes. The results demonstrate that iDMI-induced chirality effectively controls the magnonic activity’s rotatory power, which relies on the values of the iDMI constant D (from 0.5 mJ/m2 to 1 mJ/m2). Additionally, nanotube thickness variations (from 3 nm to 15 nm) alter effective curvature, further influencing the rotatory power of the magnonic activity. Numerical simulations and semi-analytical calculations show excellent agreement, providing a theoretical foundation for chiral spin-wave manipulation in 3D curved nanostructures. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Condensed Matter Physics)
Show Figures

Figure 1

24 pages, 3841 KB  
Review
The Neglected Dimension in Pesticide Residues: Emerging Green and Enantioselective Strategies for the Analysis and Removal of Chiral Pesticides
by Binbin Liu, Ziyan Gong and Haixiang Gao
Separations 2026, 13(1), 4; https://doi.org/10.3390/separations13010004 - 23 Dec 2025
Viewed by 366
Abstract
Chirality remains the most neglected axis of pesticide residue science. Many active ingredients are sold as racemates although their enantiomers differ in potency, persistence, transport, and toxicology; as a result, total concentration is a poor surrogate for risk. This review synthesizes green and [...] Read more.
Chirality remains the most neglected axis of pesticide residue science. Many active ingredients are sold as racemates although their enantiomers differ in potency, persistence, transport, and toxicology; as a result, total concentration is a poor surrogate for risk. This review synthesizes green and enantioselective strategies spanning the full analytical–remediation continuum. We survey solvent-minimized sample preparation approaches (SPME/TF-SPME, FPSE, µSPE, DLLME with DES/NADES), MS-compatible chiral separations (immobilized polysaccharide CSPs in LC and SFC, cyclodextrin-based selectors in GC, CE/CEC), and HRMS-enabled confirmation and suspect screening. Complex matrices (e.g., fermented beverages such as wine and high-sugar products) are critically discussed, together with practical matrix-tolerant workflows and the complementary role of chiral GC for hydrophobic residues. We then examine emerging enantioselective materials—MIPs, MOFs/COFs, and cyclodextrin-based sorbents—for extraction and preconcentration and evaluate stereoselective removal via adsorption, biodegradation, and chiral photocatalysis. Finally, we propose toxicity-weighted enantiomeric fraction (EF) metrics for decision-making, outline EF-aware green treatment strategies, and identify metrological and regulatory priorities (CRMs, ring trial protocols, FAIR data). Our thesis is simple: to reduce hazards efficiently and sustainably, laboratories and practitioners must measure—and manage—pesticide residues in the chiral dimension. Full article
(This article belongs to the Special Issue New Techniques for Extraction and Removal of Pesticide Residues)
Show Figures

Graphical abstract

24 pages, 8157 KB  
Article
Large In-Plane Tensile Deformation of a Novel Pre-Wound Six-Ligament Chiral Structure
by Naixin He, Yanping Song, Pengfei Huang and Jiachen Zeng
Materials 2025, 18(24), 5514; https://doi.org/10.3390/ma18245514 - 8 Dec 2025
Viewed by 282
Abstract
The anti-pillow effect of mesh antennas has adverse effects on satellite communication. The curvature isotropy of a negative Poisson’s ratio material is expected to be applied and solved for the anti-pillow effect of mesh deployable antennas. Based on the tension characteristics of mesh [...] Read more.
The anti-pillow effect of mesh antennas has adverse effects on satellite communication. The curvature isotropy of a negative Poisson’s ratio material is expected to be applied and solved for the anti-pillow effect of mesh deployable antennas. Based on the tension characteristics of mesh antennas, our research group has proposed a novel pre-wound six-ligament chiral material, and provided the analytical solutions of Poisson’s ratio and Young’s modulus under the assumption of a small deformation. Following on from the above work, this paper takes into account the variable curvature deformation of pre-wound ligaments and the bending deformation of straight ligaments. The analytical solutions of Poisson’s ratio and Young’s modulus under large deformations are derived, and verified by finite element simulation combined for both small and large deformations. The results show that theoretical solutions considering large deformation of the ligament are more consistent with the simulation results in the large-strain range of anisotropy in the material plane. The analytical solution of Young’s modulus derived from the energy equivalent principle of elastic deformation with a curved beam and a straight beam is consistent with the simulation results under large tensile strain. It has been verified that the existence of a pre-wound ligament can slow down the deformation of the node and reduce the loss of in-plane isotropy to a certain extent, so it is easier to maintain the negative Poisson’s ratio characteristic and maintain an excellent in-plane isotropic deformation mechanism over a larger strain range under tensile load. This characteristic proves the reliability of the prospects applying the pre-wound six-ligament chiral structure in deployable mesh antennas, which lays a theoretical foundation for the subsequent prototype. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

33 pages, 3012 KB  
Review
β-Blockers in the Environment: Challenges in Understanding Their Persistence and Ecological Impact
by Anna Dzionek
Molecules 2025, 30(23), 4630; https://doi.org/10.3390/molecules30234630 - 2 Dec 2025
Viewed by 446
Abstract
β-blockers are among the most highly consumed cardiovascular drugs worldwide, resulting in their classification as persistent and bioactive pharmaceutical pollutants. This review provides a mechanistically oriented synthesis of their environmental release, stereochemical and matrix-dependent transformation, biotic and abiotic degradation, and the ecotoxicological significance [...] Read more.
β-blockers are among the most highly consumed cardiovascular drugs worldwide, resulting in their classification as persistent and bioactive pharmaceutical pollutants. This review provides a mechanistically oriented synthesis of their environmental release, stereochemical and matrix-dependent transformation, biotic and abiotic degradation, and the ecotoxicological significance of their degradation products. Wastewater treatment plants are identified as the primary, yet variably efficient, emission sources to aquatic systems. Molecular structure, chirality, and interactions with environmental matrices are highlighted as key factors influencing transformation behaviour and residue persistence. Current evidence indicates that β-blockers and several transformation products retain pharmacological activity, driving organism- and community-level effects at environmentally relevant exposures. Major limitations in the field stem from methodological heterogeneity and uneven regional and temporal coverage, which continue to weaken long-term risk evaluation. By unifying analytical chemistry, pharmacological mechanistics, and environmental toxicology evidence, this review advances the narrative from descriptive occurrence reports toward systematic evaluation of transformation product persistence, mechanism-dependent residue stability, and their ecological implications. Full article
Show Figures

Graphical abstract

67 pages, 2775 KB  
Review
Differentiation of Therapeutic and Illicit Drug Use via Metabolite Profiling
by Stanila Stoeva-Grigorova, Nadezhda Hvarchanova, Silvia Gancheva, Miroslav Eftimov, Kaloyan D. Georgiev and Maya Radeva-Ilieva
Metabolites 2025, 15(11), 745; https://doi.org/10.3390/metabo15110745 - 17 Nov 2025
Viewed by 1563
Abstract
Objectives: The therapeutic use of controlled substances, particularly opioids, stimulants, and benzodiazepines, has significantly increased in recent decades. This is often accompanied by non-medical use and diversion, posing challenges for healthcare professionals and forensic experts monitoring potential misuse. As a result, the [...] Read more.
Objectives: The therapeutic use of controlled substances, particularly opioids, stimulants, and benzodiazepines, has significantly increased in recent decades. This is often accompanied by non-medical use and diversion, posing challenges for healthcare professionals and forensic experts monitoring potential misuse. As a result, the blurred boundary between legitimate therapy and substance abuse complicates the interpretation of toxicological results in clinical, legal, and occupational contexts. Methods: This review summarizes recent strategies for distinguishing therapeutic from illicit drug use through the analysis of substances and their metabolites in biological samples using sensitive and specific analytical methods. Results: Traditional drug abuse testing methods, based on parent substance detection, often lack the specificity needed to differentiate therapeutic use from illicit intake. Therefore, advanced analytical methods are required to accurately differentiate the source, route, and adherence to therapy. Therapeutic and illicit forms of the same substance can exhibit distinct metabolic profiles, with certain metabolites serving as biomarkers for illicit drug use. In some cases, chiral analysis may also aid in determining the drug source. Other studies have shown that the ratio of the parent compound to its metabolites (or between different metabolites) may reflect the pattern of use, such as chronic versus acute use or the route of administration. Illicit drugs may also contain synthesis by-products or cutting agents, detectable through advanced techniques. Conclusions: Metabolite profiling offers a robust approach for differentiating therapeutic from illicit drug use and is expected to be increasingly applied in clinical toxicology, forensic investigations, workplace testing, and/or doping control. Full article
(This article belongs to the Special Issue Drug Metabolism: Latest Advances and Prospects)
Show Figures

Figure 1

40 pages, 8122 KB  
Review
Rational Design of Covalent Organic Frameworks for Enhanced Reticular Electrochemiluminescence and Biosensing Applications
by Bing Sun and Lin Cui
Biosensors 2025, 15(11), 760; https://doi.org/10.3390/bios15110760 - 16 Nov 2025
Viewed by 1131
Abstract
Electrochemiluminescence (ECL) has evolved into a powerful analytical technique due to its ultra-high sensitivity, low background noise, and precise electrochemical control. The development of efficient ECL emitters is central to advancing this technology for practical applications. Covalent organic frameworks (COFs) have recently emerged [...] Read more.
Electrochemiluminescence (ECL) has evolved into a powerful analytical technique due to its ultra-high sensitivity, low background noise, and precise electrochemical control. The development of efficient ECL emitters is central to advancing this technology for practical applications. Covalent organic frameworks (COFs) have recently emerged as promising candidates for constructing high-performance ECL systems. The tunable porosity, ordered π-conjugated structures, and versatile modular functionalities of COFs provide fast massive transport, effective electron transfer, rapid interfacial electrochemical reaction, and enhanced ECL emission performance. This review provides a comprehensive overview of the rational design strategies and structural engineering for COF-based ECL materials at the molecular level. Linkage chemistry, monomer selection (luminophores and π-conjugated non-ECL motifs), precise framework regulation, post-synthetic modification, composite formation, and other ECL enhancement strategies were discussed for developing COF-based ECL emitter. Both the incorporation of aggregation-induced emission and intramolecular charge transfer mechanisms are included to enhance ECL efficiency. Donor–acceptor conjugation, heteroatom element content, isomerism, substitution, and dimensional direction were regarded as effective strategies to regulate the electronic structure and band diagrams for designing high-performance ECL systems. The role of COFs as both active emitters and functional scaffolds for signal amplification is critically examined. Furthermore, their diverse analytical applications across biosensing, food safety, environmental monitoring, and chiral recognition are highlighted. By correlating structural features with ECL performance, this review offers insights into the design principles of next-generation reticular ECL materials and outlines future directions for their practical deployment in sensitive and selective sensing platforms. Full article
(This article belongs to the Special Issue Progress in Electrochemiluminescence Biosensors)
Show Figures

Figure 1

10 pages, 5326 KB  
Article
Probing Chirality of the Quantum Hall Effect via the Landauer–Büttiker Formalism with Two Current Sources
by Kyung Ho Kim
Mathematics 2025, 13(18), 2981; https://doi.org/10.3390/math13182981 - 15 Sep 2025
Viewed by 1037
Abstract
The quantum Hall effect is a paradigmatic example of topological order, characterized by precisely quantized Hall resistance and dissipationless edge transport. These edge states are chiral, propagating unidirectionally along the boundary, and their directionality is determined by the external magnetic field. While chirality [...] Read more.
The quantum Hall effect is a paradigmatic example of topological order, characterized by precisely quantized Hall resistance and dissipationless edge transport. These edge states are chiral, propagating unidirectionally along the boundary, and their directionality is determined by the external magnetic field. While chirality is a central feature of the quantum Hall effect, directly probing it remains experimentally nontrivial. In this study, we introduce a simple and effective method to probe the chirality of edge transport using two independently controlled current sources in a Hall bar geometry. The system under investigation is monolayer epitaxial graphene grown on a silicon carbide substrate, exhibiting robust quantum Hall states. By varying the configurations of the two current sources, we measure terminal voltages and analyze the transport characteristics. Our results demonstrate that the observed behavior can be understood as a linear superposition of chiral contributions to the edge transport. This superposition enables tunable combinations of longitudinal and Hall resistances and enables additive or canceling behavior of Hall voltages depending on current source configuration. The Landauer–Büttiker formalism provides a quantitative framework to describe these observations, capturing the interplay between edge state chirality and the measurement configuration. This research offers a simple yet effective experimental and analytical approach for probing chiral edge currents and highlights the linear superposition principle in the quantum Hall effect. Full article
(This article belongs to the Special Issue Mathematics Methods in Quantum Physics and Its Applications)
Show Figures

Figure 1

19 pages, 1098 KB  
Review
Deep Eutectic Solvents in Capillary Electromigration Techniques—A Review of Recent Advancements
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Molecules 2025, 30(18), 3674; https://doi.org/10.3390/molecules30183674 - 10 Sep 2025
Cited by 2 | Viewed by 1136
Abstract
Deep eutectic solvents (DESs) represent a versatile and sustainable class of solvents, characterized by their low volatility, favorable biodegradability, and the ability to tailor their viscosity, polarity, and hydrogen-bonding capacity through the choice of their individual components. These characteristics have established them as [...] Read more.
Deep eutectic solvents (DESs) represent a versatile and sustainable class of solvents, characterized by their low volatility, favorable biodegradability, and the ability to tailor their viscosity, polarity, and hydrogen-bonding capacity through the choice of their individual components. These characteristics have established them as powerful media in various analytical extraction and separation processes. This review presents a critical evaluation of the expanding role of DESs within the field of capillary electromigration techniques, summarizing key advancements from 2019 to mid-2025. We synthesize the current literature to delineate the benefits, persistent challenges, and future prospects of integrating DESs into capillary electrophoresis (CE)-based analytical workflows. Specifically, it systematically documents the following: (i) the diverse types of DESs employed in electrophoretic separations, (ii) proposed mechanisms underlying their influence on chiral compound resolution, and (iii) their utilization as separation media and pseudostationary phases (PSP) in capillary electromigration systems. By critically assessing their advantages and drawbacks, this review aims to provide a comprehensive perspective on the application of DESs in modern capillary electromigration techniques. Full article
Show Figures

Graphical abstract

32 pages, 2277 KB  
Hypothesis
POLETicians in the Mud: Preprokaryotic Organismal Lifeforms Existing Today (POLET) Hypothesis
by Douglas M. Ruden and Glen Ray Hood
Bacteria 2025, 4(3), 42; https://doi.org/10.3390/bacteria4030042 - 29 Aug 2025
Viewed by 1553
Abstract
The discovery of Asgard archaea has reshaped our understanding of eukaryotic origins, supporting a two-domain tree of life in which eukaryotes emerged from Archaea. Building on this revised framework, we propose the Pre-prokaryotic Organismal Lifeforms Existing Today (POLET) hypothesis, which suggests that relic [...] Read more.
The discovery of Asgard archaea has reshaped our understanding of eukaryotic origins, supporting a two-domain tree of life in which eukaryotes emerged from Archaea. Building on this revised framework, we propose the Pre-prokaryotic Organismal Lifeforms Existing Today (POLET) hypothesis, which suggests that relic pre-prokaryotic life forms—termed POLETicians—may persist in deep, anoxic, energy-limited environments. These organisms could represent a living bridge to the RNA world and other origin-of-life models, utilizing racemic oligoribonucleotides and peptides, non-enzymatic catalysis, and mineral-assisted compartmentalization. POLETicians might instead rely on radical-based redox chemistry or radiolysis for energy and maintenance. These biomolecules may be racemic or noncanonical, eluding conventional detection. New detection methods are required to determine such life. We propose generalized nanopore sequencing of any linear polymer—including mirror RNAs, mirror DNAs, or any novel genetic material—as a potential strategy to overcome chirality bias in modern sequencing technologies. These approaches, combined with chiral mass spectrometry and stereoisomer-resolved analytics, may enable the detection of molecular signatures from non-phylogenetic primitive lineages. POLETicians challenge the assumption that all life must follow familiar biochemical constraints and offer a compelling extension to our search for both ancient and extant forms of life hidden within Earth’s most extreme environments. Full article
Show Figures

Graphical abstract

16 pages, 2014 KB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Cited by 3 | Viewed by 1205
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

32 pages, 3113 KB  
Review
Exploring the Impact of Chirality of Synthetic Cannabinoids and Cathinones: A Systematic Review on Enantioresolution Methods and Enantioselectivity Studies
by Ana Sofia Almeida, Rita M. G. Santos, Paula Guedes de Pinho, Fernando Remião and Carla Fernandes
Int. J. Mol. Sci. 2025, 26(13), 6471; https://doi.org/10.3390/ijms26136471 - 4 Jul 2025
Cited by 1 | Viewed by 1543
Abstract
New psychoactive substances (NPSs) are emerging narcotics or psychotropics that pose a public health risk. The most commonly reported NPSs are synthetic cannabinoids and synthetic cathinones. Synthetic cannabinoids mimic the effects of Δ9-tetrahydrocannabinol (Δ9-THC), often with greater potency, while synthetic cathinones act as [...] Read more.
New psychoactive substances (NPSs) are emerging narcotics or psychotropics that pose a public health risk. The most commonly reported NPSs are synthetic cannabinoids and synthetic cathinones. Synthetic cannabinoids mimic the effects of Δ9-tetrahydrocannabinol (Δ9-THC), often with greater potency, while synthetic cathinones act as stimulants, frequently serving as cheaper alternatives to amphetamines, 3,4-methylenedioxymethamphetamine (MDMA) and cocaine. While some synthetic cannabinoids exhibit chirality depending on their synthesis precursors, synthetic cathinones are intrinsically chiral. Biotargets can recognize and differentiate between enantiomers, leading to distinct biological responses (enantioselectivity). Understanding these differences is crucial; therefore, the development of enantioresolution methods to assess the biological and toxicological effects of enantiomer is necessary. This work systematically compiles enantioselectivity studies and enantioresolution methods of synthetic cannabinoids and synthetic cathinones, following PRISMA guidelines. The main aim of this review is to explore the impact of chirality on these NPSs, improving our understanding of their toxicological behavior and evaluating advances in analytical techniques for their enantioseparation. Key examples from both groups are presented. This review highlights the importance of continuing research in this field, as demonstrated by the differing properties of synthetic cannabinoid and synthetic cathinone enantiomers, which are closely linked to variations in biological and toxicological outcomes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 902 KB  
Article
Cyclodextrin-Modified Capillary Zone Electrophoresis for the Chiral Analysis of Proline and Hydroxyproline Stereoisomers in Chicken Collagen Hydrolysates
by Milada Vodova, Elena Babini, Francesca Soglia, Martina Bordini, Martina Lioi, Sara Tengattini, Caterina Temporini and Roberto Gotti
Int. J. Mol. Sci. 2025, 26(12), 5832; https://doi.org/10.3390/ijms26125832 - 18 Jun 2025
Cited by 1 | Viewed by 1157
Abstract
The stability of collagen, the most abundant protein in humans and many animals, is related to the hydroxylation of L-proline, a post-translational modification occurring at carbon 3 and 4 on its pyrrolidine ring. Collagens of different origins have shown different proline hydroxylation levels, [...] Read more.
The stability of collagen, the most abundant protein in humans and many animals, is related to the hydroxylation of L-proline, a post-translational modification occurring at carbon 3 and 4 on its pyrrolidine ring. Collagens of different origins have shown different proline hydroxylation levels, making hydroxyprolines useful biomarkers in structure characterizations. The presence of two chiral carbon atoms, 3-hydroxyproline and 4-hydroxyproline, results in eight stereoisomers (four pairs of enantiomers) whose quantitation in collagen hydrolysates requires enantioselective analytical methods. Capillary electrophoresis was applied for the separation and quantitation of the eight stereoisomers of 3- and 4-hydroxyproline and D,L-proline in collagen hydrolysates. The developed method is based on the derivatization with the chiral reagent (R)-(-)-4-(3-Isothiocyanatopyrrolidin-yl)-7-nitro-2,1,3-benzoxadiazole, enabling the use of a light-emitting diode-induced fluorescence detector for high sensitivity. The separation of the considered compounds was accomplished in less than 10 min, using a 500 mM acetate buffer pH 3.5 supplemented with 5 mM of heptakis(2,6-di-O-methyl)-β-cyclodextrin as the chiral selector. The method was fully validated and showed the adequate sensitivity for the application to samples of collagen hydrolysates. The analysis of samples extracted from chicken Pectoralis major muscles affected by growth-related myopathies showed different stereoisomer patterns compared to those from the unaffected control samples. Full article
(This article belongs to the Special Issue Current Uses and Applications of Cyclodextrins)
Show Figures

Figure 1

15 pages, 675 KB  
Article
Edge States, Bulk Spectra, and Topological Phases of Szegedy’s Quantum Search on a One-Dimensional Cycle with Self-Loops
by Mengke Xu, Xi Li, Xunan Wang, Wanglei Mi and Xiao Chen
Entropy 2025, 27(6), 623; https://doi.org/10.3390/e27060623 - 12 Jun 2025
Viewed by 688
Abstract
Topological transitions are relevant for boundary conditions. Therefore, we investigate the bulk spectra, edge states, and topological phases of Szegedy’s quantum search on a one-dimensional (1D) cycle with self-loops, where the search operator can be formulated as an open boundary condition. By establishing [...] Read more.
Topological transitions are relevant for boundary conditions. Therefore, we investigate the bulk spectra, edge states, and topological phases of Szegedy’s quantum search on a one-dimensional (1D) cycle with self-loops, where the search operator can be formulated as an open boundary condition. By establishing an equivalence with coined quantum walks (QWs), we analytically derive and numerically illustrate the quasienergies dispersion relations of bulk spectra and edge states for Szegedy’s quantum search. Interestingly, novel gapless three-band structures are observed, featuring a flat band and three-fold degenerate points. We identify the topological phases ±2 as the Chern number. This invariant is computed by leveraging chiral symmetry in zero diagonal Hermitian Hamiltonians that satisfy our quasienergies constraints. Furthermore, we demonstrate that the edge states enhance searches on the marked vertices, while the nontrivial bulk spectra facilitate ballistic spread for Szegedy’s quantum search. Crucially, we find that gapless topological phases arise from three-fold degenerate points and are protected by chiral symmetry, distinguishing ill-defined topological transition boundaries. Full article
(This article belongs to the Special Issue Entanglement Entropy and Quantum Phase Transition)
Show Figures

Figure 1

14 pages, 3868 KB  
Article
Analytical Implementation of Electron–Phonon Scattering in a Schottky Barrier CNTFET Model
by Ibrahim L. Abdalla, Fatma A. Matter, Ahmed A. Afifi, Mohamed I. Ibrahem, Hesham F. A. Hamed and Eslam S. El-Mokadem
J. Low Power Electron. Appl. 2025, 15(2), 28; https://doi.org/10.3390/jlpea15020028 - 2 May 2025
Viewed by 998
Abstract
This paper elaborates on the proposal of a new analytical model for a non-ballistic transport scenario for Schottky barrier carbon nanotube field effect transistors (SB-CNTFETs). The non-ballistic transport scenario depends on incorporating the effects of acoustic phonon (A-Ph) and optical phonon (O-Ph) electron [...] Read more.
This paper elaborates on the proposal of a new analytical model for a non-ballistic transport scenario for Schottky barrier carbon nanotube field effect transistors (SB-CNTFETs). The non-ballistic transport scenario depends on incorporating the effects of acoustic phonon (A-Ph) and optical phonon (O-Ph) electron scattering mechanisms. The analytical model is rooted in the solution of the Landauer integral equation, which is modified to account for non-ballistic transport through a set of approximations applied to the Wentzel–Kramers–Brillouin (WKB) transmission probability and the Fermi–Dirac distribution function. Our proposed model was simulated to evaluate the total current and transconductance, considering scenarios both with and without the electron–phonon scattering effect. The simulation results revealed a substantial decrease of approximately 78.6% in both total current and transconductance due to electron–phonon scattering. In addition, we investigated the impact of acoustic phonon (A-Ph) and optical phonon (O-Ph) scattering on the drain current under various conditions, including different temperatures, gate lengths, and nanotube chiralities. This comprehensive analysis helps in understanding how these parameters influence device performance. Compared with experimental data, the model’s simulation results demonstrate a high degree of agreement. Furthermore, our fully analytical model achieves a significantly faster runtime, clocking in at around 2.726 s. This validation underscores the model’s accuracy and reliability in predicting the behavior of SB-CNTFETs under non-ballistic conditions. Full article
Show Figures

Figure 1

Back to TopTop