Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = chimeric virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4051 KiB  
Article
Chimeric Vesicular Stomatitis Virus Bearing Western Equine Encephalitis Virus Envelope Proteins E2-E1 Is a Suitable Surrogate for Western Equine Encephalitis Virus in a Plaque Reduction Neutralization Test
by Kerri L. Miazgowicz, Bailey E. Maloney, Melinda A. Brindley, Mattie Cassaday, Raegan J. Petch, Paul Bates, Aaron C. Brault and Amanda E. Calvert
Viruses 2025, 17(8), 1067; https://doi.org/10.3390/v17081067 - 31 Jul 2025
Abstract
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory [...] Read more.
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory diagnosis and surveillance in affected countries were hindered by a lack of facilities equipped with BSL-3 laboratories, as confirmatory serodiagnosis for WEEV requires live virus in the plaque reduction neutralization test (PRNT). To expand serodiagnosis for WEEV in the Americas, we developed a virus chimera composed of vesicular stomatitis virus (VSV) engineered to display the E2-E1 glycoproteins of WEEV (VSV/WEEV) in place of the VSV glycoprotein (G). PRNT90 and IC90 values of parental WEEV and VSV/WEEV were analogous using sera collected from mice, horses, and chickens. VSV/WEEV rapidly formed plaques with clear borders and reduced the assay readout time by approximately 8 h compared to the parental virus. Overall, we demonstrate that chimeric VSV/WEEV is a suitable surrogate for WEEV in a diagnostic PRNT. Use of chimeric VSV/WEEV in place of authentic WEEV will dramatically expand testing capacity by enabling PRNTs to be performed at BSL-2 containment, while simultaneously decreasing the health risk to testing personnel. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

27 pages, 5867 KiB  
Article
Distinct Virologic Properties of African and Epidemic Zika Virus Strains: The Role of the Envelope Protein in Viral Entry, Immune Activation, and Neuropathogenesis
by Ashkan Roozitalab, Chenyu Zhang, Jiantao Zhang, Ge Li, Chengyu Yang, Wangheng Hou, Qiyi Tang and Richard Y. Zhao
Pathogens 2025, 14(7), 716; https://doi.org/10.3390/pathogens14070716 - 19 Jul 2025
Viewed by 286
Abstract
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in [...] Read more.
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in humans? Phylogenetic studies have identified two genetically distinct ZIKV, the African and Asian lineages, which differ in their pathogenicity. Previous studies including ours suggest that the envelope (E) protein plays a key role in viral entry, immune activation, and neuropathogenesis. This study aimed to further elucidate virologic and pathogenic differences between these lineages by assessing their ability to bind and replicate in host cells, induce apoptotic cell death, trigger inflammatory responses, and influence human neural progenitor cell (hNPC)-derived neurosphere formation. We compared a historic African ZIKV strain (MR766) with an epidemic Brazilian strain (BR15) and evaluated the effects of the E protein inhibitor quercetin-3-β-O-D-glucoside (Q3G) and an E protein-neutralizing antibody (AbII). Our results revealed distinct virologic properties and that MR766 exhibited stronger inhibition of neurosphere formation due to enhanced viral binding to neuronal SH-SY5Y cells, while BR15 infection triggered a heightened pro-inflammatory cytokine response with reduced viral binding. Chimeric virus studies suggested that the E protein likely influences viral binding, replication efficiency, immune activation, and neuropathogenesis. Notably, Q3G exhibited antiviral activities against both MR766 and BR15, whereas AbII preferentially inhibited MR766. These findings highlight the virological differences between ancestral and epidemic viral strains, as well as the critical role of E protein in viral permissiveness, immune response, and neuropathogenesis, providing insights for developing targeted antiviral strategies. Full article
Show Figures

Figure 1

26 pages, 3044 KiB  
Article
Optimization of YF17D-Vectored Zika Vaccine Production by Employing Small-Molecule Viral Sensitizers to Enhance Yields
by Sven Göbel, Tilia Zinnecker, Ingo Jordan, Volker Sandig, Andrea Vervoort, Jondavid de Jong, Jean-Simon Diallo, Peter Satzer, Manfred Satzer, Kai Dallmeier, Udo Reichl and Yvonne Genzel
Vaccines 2025, 13(7), 757; https://doi.org/10.3390/vaccines13070757 - 16 Jul 2025
Viewed by 786
Abstract
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised [...] Read more.
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised in antiviral pathways, the redundancy of innate signaling complicates host cell optimization by genetic engineering. Small molecules that are hypothesized to target antiviral pathways (Viral Sensitizers, VSEs) added to the culture media offer a versatile alternative to genetic modifications to increase permissiveness and, thus, viral yields across multiple cell lines. Methods: To explore how the yield for a chimeric Zika vaccine candidate (YF-ZIK) could be further be increased in an intensified bioprocess, we used spin tubes or an Ambr15 high-throughput microbioreactor system as scale-down models to optimize the dosing for eight VSEs in three host cell lines (AGE1.CR.pIX, BHK-21, and HEK293-F) based on their tolerability. Results: Addition of VSEs to an already optimized infection process significantly increased infectious titers by up to sevenfold for all three cell lines tested. The development of multi-component VSE formulations using a design of experiments approach allowed further synergistic titer increases in AGE1.CR.pIX cells. Scale-up to 1 L stirred-tank bioreactors and 3D-printed mimics of 200 or 2000 L reactors resulted in up to threefold and eightfold increases, respectively. Conclusions: Addition of single VSEs or combinations thereof allowed a further increase in YF-ZIK titers beyond the yield of an already optimized, highly intensified process. The described approach validates the use of VSEs and can be instructive for optimizing other virus production processes. Full article
Show Figures

Graphical abstract

31 pages, 9276 KiB  
Article
Annotation of the Extracellular Enveloped Form of Monkeypox Virus for the Design, Screening, Validation, and Simulation of a Chimeric Vaccine Construct
by Mohammad Asrar Izhari, Essa Ajmi Alodeani, Siraj B. Alharthi, Ahmad H. A. Almontasheri, Foton E. Alotaibi, Rakan E. Alotaibi, Wael A. Alghamdi, Osama Abdulaziz, Fahad Alghamdi, Ali Alisaac, Mansoor Alsahag and Ahmed R. A. Gosady
Biology 2025, 14(7), 830; https://doi.org/10.3390/biology14070830 - 8 Jul 2025
Viewed by 266
Abstract
Recent outbreaks caused by hMPXV, especially hMPXV lineages/sub-lineages, represent public health threats necessitating stringent prophylactic measures to ameliorate their colossal impact. The current study annotated the EEV form of hMPXV’s target proteins to formulate a reverse vaccinology-dependent hMPXV multiepitope vaccine. Epitope determination, followed [...] Read more.
Recent outbreaks caused by hMPXV, especially hMPXV lineages/sub-lineages, represent public health threats necessitating stringent prophylactic measures to ameliorate their colossal impact. The current study annotated the EEV form of hMPXV’s target proteins to formulate a reverse vaccinology-dependent hMPXV multiepitope vaccine. Epitope determination, followed by vaccine formulation, was undertaken. The promising formulation was validated for its potential to trigger immune responses immunoinformatically. The MPXV-1-Beta formulation was characterised as a promising candidate based on antigenicity score, physicochemical properties, solubility score, ProSA Z-score, and Ramachandran plot. Docking, normal mode analysis, and molecular dynamic simulation of MPXV-1-Beta with TLRs and MHCs authenticated rigid docking and its efficacy in enhancing immune receptor activation under physiological conditions. MPXV-1-Beta was discerned to trigger a sustained immune response (IR) with a broader average population coverage of 97.526, SD = 12.44. The proposed MPXV-1-Beta candidate showed significant potential. The findings of this study provide a preliminary framework for developing an efficacious hMPXV vaccine; however, extensive in vitro, in vivo, and clinical evaluations are required to substantiate the computational insights. Full article
(This article belongs to the Special Issue Artificial Intelligence Research for Complex Biological Systems)
Show Figures

Figure 1

15 pages, 1000 KiB  
Review
Advances and Prospects of Fowl Adenoviruses Vaccine Technologies in the Past Decade
by Chunhua Zhu, Pei Yang, Jiayu Zhou, Xiaodong Liu, Yu Huang and Chunhe Wan
Int. J. Mol. Sci. 2025, 26(13), 6434; https://doi.org/10.3390/ijms26136434 - 4 Jul 2025
Viewed by 285
Abstract
Over the past decade, diseases associated with fowl adenoviruses (FAdVs) have exhibited a new epidemic trend worldwide. The presence of numerous FAdVs serotypes, combined with the virus’s broad host range, positions it as a significant pathogen in the poultry industry. In the current [...] Read more.
Over the past decade, diseases associated with fowl adenoviruses (FAdVs) have exhibited a new epidemic trend worldwide. The presence of numerous FAdVs serotypes, combined with the virus’s broad host range, positions it as a significant pathogen in the poultry industry. In the current context of intensive poultry production and global trade, co-infections involving multiple FAdVs serotypes, as well as co-infections with FAdVs alongside infectious bursal disease or infectious anemia virus, may occur within the same region or even on the same farm. The frequency of these outbreaks complicates the prevention and control of FAdVs. Therefore, the development of effective, targeted vaccines is essential for providing technical support in the management of FAdVs epidemics. Ongoing vaccine research aims to improve vaccine efficacy and address the challenges posed by emerging FAdVs outbreaks. This review focuses on vaccines developed and studied worldwide for various serotypes of FAdVs in the past decade. It encompasses inactivated vaccines, live attenuated vaccines, e.g., host-adapted attenuated vaccines and gene deletion vaccines, viral vector vaccines, and subunit vaccines (including VLP proteins and chimeric proteins). The current limitations and future development directions of FAdVs vaccine development are also proposed to provide a reference for new-generation vaccines and innovative vaccination strategies against FAdVs, as well as for the rapid development of highly effective vaccines. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

11 pages, 2696 KiB  
Article
The Baculovirus Expression System Expresses Chimeric RHDV VLPs as Bivalent Vaccine Candidates for Classic RHDV (GI.1) and RHDV2 (GI.2)
by Yan Wang, Yiyang Fan, Ruixiang Bi, Yapeng Zhao, Wanning Gao, Derong Zhang and Jialin Bai
Vaccines 2025, 13(7), 695; https://doi.org/10.3390/vaccines13070695 - 27 Jun 2025
Viewed by 293
Abstract
Background: Rabbit hemorrhagic disease (RHD) is an acute, hemorrhagic and highly lethal infectious disease caused by rabbit hemorrhagic disease virus (RHDV), which causes huge economic losses to the rabbit breeding industry. Moreover, there is limited cross-protection between the two different serotypes of classic [...] Read more.
Background: Rabbit hemorrhagic disease (RHD) is an acute, hemorrhagic and highly lethal infectious disease caused by rabbit hemorrhagic disease virus (RHDV), which causes huge economic losses to the rabbit breeding industry. Moreover, there is limited cross-protection between the two different serotypes of classic RHDV (GI.1) and RHDV2 (GI.2). The shortcomings of traditional inactivated vaccines have led to the development of novel subunit vaccines that can protect against both strains, and the VP60 capsid protein is the ideal antigenic protein. This study focused on developing a bivalent RHDV vaccine that can prevent infection with both GI.1 and GI.2 strains. Methodology: Baculovirus vectors containing classic RHDV and RHDV2 VP60 were co-transfected with linearized baculovirus into sf9 cells and transferred to baculovirus via homologous recombination of the VP60 gene. Infected sf9 cells were lysed, and after purification via Ni-NTA chromatography, VLPs were observed using transmission electron microscopy (TEM). In order to evaluate the immunogenicity of the chimeric RHDV VLP vaccine in rabbits, the RHDV VP60-specific antibody, IL-4, IFN-γ and neutralizing antibody titers were analyzed in serum using ELISA and HI. Results: The recombinant baculovirus system successfully expressed chimeric RHDV VLPs with a diameter of 32–40 nm. After immunization, it could produce specific antibodies, IL-4 and IFN-γ. Following the second immunization, neutralizing antibodies, determined using hemagglutination inhibition (HI) assays, were elicited. Conclusions: These data show that the chimeric RHDV VLP bivalent vaccine for immunized New Zealand rabbits can induce humoral immunity and cellular immunity in vivo, and the immunization effect of the high-dose group is similar to that of the current commercial vaccine. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

14 pages, 2471 KiB  
Article
Optimized Production of Virus-like Particles in a High-CHO-Cell-Density Transient Gene Expression System for Foot-and-Mouth Disease Vaccine Development
by Ana Clara Mignaqui, Alejandra Ferella, Cintia Sánchez, Matthew Stuible, Romina Scian, Jorge Filippi, Sabrina Beatriz Cardillo, Yves Durocher and Andrés Wigdorovitz
Vaccines 2025, 13(6), 581; https://doi.org/10.3390/vaccines13060581 - 29 May 2025
Viewed by 728
Abstract
Background/Objectives: Foot-and-mouth disease virus (FMDV) poses a continuous threat to livestock health and agricultural economies. Current vaccines require high biosafety standards and are costly to produce. While novel vaccine technologies have been explored, most fail to meet industrial scalability, cost-efficiency, or multiserotype flexibility [...] Read more.
Background/Objectives: Foot-and-mouth disease virus (FMDV) poses a continuous threat to livestock health and agricultural economies. Current vaccines require high biosafety standards and are costly to produce. While novel vaccine technologies have been explored, most fail to meet industrial scalability, cost-efficiency, or multiserotype flexibility required for effective FMD control. This study aimed to evaluate the feasibility of using a high-cell density transient gene expression (TGE) system in CHO cells for the production of FMDV virus-like particles (VLPs) as a recombinant vaccine platform. Methods: VLP expression was optimized by adjusting cDNA and polyethyleneimine (PEI) concentrations. Expression yields were compared at 24 and 48 h post-transfection to determine optimal harvest timing. We further tested the system’s capacity to express different serotypes and chimeric constructs, incorporating VP1 sequences from various FMDV strains. Immunogenicity was evaluated in swine using VLPs from the A2001 Argentina strain as a model. Results: Optimal VLP expression was achieved at 24 h post-transfection. Chimeric constructs incorporating heterologous VP1 regions were successfully expressed. Immunized pigs developed protective antibody titers as measured by a virus neutralization test (VNT, log10 titer 1.43) and liquid-phase blocking ELISA (LPBE, titer 2.20) at 28 days post-vaccination (dpv). Titers remained above protective thresholds up to 60 dpv with a single dose. A booster at 28 dpv further elevated titers to levels comparable to those induced by the inactivated vaccine. Conclusions: Our results demonstrate the feasibility of using CHO cell-based TGE for producing immunogenic FMDV VLPs. This platform shows promise for scalable, cost-effective, and biosafe development of recombinant FMD vaccines. Full article
(This article belongs to the Special Issue Vaccines and Passive Immune Strategies in Veterinary Medicine)
Show Figures

Figure 1

19 pages, 2727 KiB  
Article
Single Amino Acid Residue W33 of tva Receptor Is Critical for Viral Entry and High-Affinity Binding of Avian Leukosis Virus Subgroup K
by Eliška Gáliková, David Přikryl, Salomé Prost, Dana Kučerová, Kateřina Trejbalová and Jiří Hejnar
Viruses 2025, 17(5), 709; https://doi.org/10.3390/v17050709 - 15 May 2025
Viewed by 384
Abstract
Avian leukosis virus (ALV), the prototypical alpharetrovirus, causes tumorigenesis, immunosuppression, and wasting disease in poultry. The ALV genus is classified into ten subgroups, which differ in their host range, cell tropism, and receptor usage. The subgroups A, B, K, and J cause significant [...] Read more.
Avian leukosis virus (ALV), the prototypical alpharetrovirus, causes tumorigenesis, immunosuppression, and wasting disease in poultry. The ALV genus is classified into ten subgroups, which differ in their host range, cell tropism, and receptor usage. The subgroups A, B, K, and J cause significant economic losses worldwide. The most recently discovered subgroup, ALV-K, which is now widespread in China, has been shown to use the tva cell receptor and share it with ALV-A. However, the specific amino acid residues crucial for ALV-K host cell entry remain unknown. Using precise tva expression and chimeric tva receptors, we further elucidated the significance of the cysteine-rich domain in mediating interactions with both ALV-A and ALV-K. Through a comprehensive analysis of mutated tva receptor variants, we pinpointed tryptophan at position 33 (W33) as a pivotal amino acid residue essential for ALV-K virus binding and entry. Of note is the finding that the substitution of W33 induced resistance to ALV-K while preserving sensitivity to ALV-A. This study not only represents an advance in the understanding of the specificity of the tva receptor for ALV-K, but also offers a biotechnological strategy for the prevention of ALV-K infections in poultry. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 762 KiB  
Article
Perinatal Mother-to-Child Chikungunya Virus Infection: Screening of Cognitive and Learning Difficulties in a Follow-Up Study of the Chimere Cohort on Reunion Island
by Raphaëlle Sarton, Magali Carbonnier, Stéphanie Robin, Duksha Ramful, Sylvain Sampériz, Pascale Gauthier, Marc Bintner, Brahim Boumahni and Patrick Gérardin
Viruses 2025, 17(5), 704; https://doi.org/10.3390/v17050704 - 14 May 2025
Viewed by 635
Abstract
In this cohort study, we evaluated the cognitive and learning difficulties of school-age children perinatally infected with Chikungunya virus (CHIKV) on Reunion Island using the Evaluation of Cognitive Functions and Learning in Children (EDA) battery screening test compared to the healthy children cohort [...] Read more.
In this cohort study, we evaluated the cognitive and learning difficulties of school-age children perinatally infected with Chikungunya virus (CHIKV) on Reunion Island using the Evaluation of Cognitive Functions and Learning in Children (EDA) battery screening test compared to the healthy children cohort used for EDA development. Of the 19 infected children, 11 (57.9%) exhibited subnormal or abnormal scores, of whom 3 were classified as high risk, and 8 were classified as at risk for cognitive and learning difficulties. Children who had encephalopathy were at higher risk for displaying at least one difficulty than non-encephalopathic children (relative risk 2.13; 95% CI 1.05–4.33). The difficulties observed affected verbal functions, non-verbal functions, and learning abilities, such as phonology, lexical evocation and comprehension, graphism, selective visual attention, planning, visual–spatial reasoning, dictation and mathematics, as well as core executive functions, such as inhibitory control, shifting, and working memory. Neurocognitive dysfunctions could be linked to severe brain damage, as evidenced by severe white matter reduction mainly in the frontal lobes and corpus callosum and potentially in all functional networks involved in difficulties. These results should motivate further investigation of intellectual and adaptive functioning to diagnose intellectual deficiency and severe maladaptive behaviour in children perinatally infected with Chikungunya virus. Full article
(This article belongs to the Special Issue Long-Term Developmental Outcomes of Congenital Virus Infections)
Show Figures

Graphical abstract

19 pages, 3320 KiB  
Article
Generation of Chimeric African Swine Fever Viruses Through In Vitro and In Vivo Intergenotypic Gene Complementation
by Tomoya Kitamura, Kentaro Masujin, Mitsutaka Ikezawa, Aruna Ambagala and Takehiro Kokuho
Vaccines 2025, 13(5), 462; https://doi.org/10.3390/vaccines13050462 - 25 Apr 2025
Viewed by 850
Abstract
Background/Objectives: African swine fever (ASF), a fatal febrile hemorrhagic disease in domestic pigs and Eurasian wild boars, is caused by ASF virus (ASFV). ASF continues to spread across the globe, causing a significant impact on the world’s pig industry. Recently, highly virulent [...] Read more.
Background/Objectives: African swine fever (ASF), a fatal febrile hemorrhagic disease in domestic pigs and Eurasian wild boars, is caused by ASF virus (ASFV). ASF continues to spread across the globe, causing a significant impact on the world’s pig industry. Recently, highly virulent chimeric ASFV (chASFV) strains with recombined genomes of the p72 genotype I and II viruses have been reported in China, Vietnam and Russia. Methods: In order to understand the propensity of ASFV genome for recombination, we attempted to experimentally generate chASFVs both in vitro and in vivo employing two distinct attenuated ASFV strains: OUR T88/3 (genotype I) and AQSΔB119L (genotype II). Results: When IPKM cells were co-infected with ASFV OUR T88/3 and AQSΔB119L strains, three genetically distinct chASFV emerged. When pigs were inoculated with the individual chASFV isolates, all pigs developed acute ASF. When four pigs were co-infected with ASFV OUR T88/3 and AQSΔB119L, all of them developed acute ASF and died or were euthanized. Three chASFV strains were successfully isolated from splenic homogenates from each pig. Conclusions: Our research indicates that genotype I and II chASFV with diverse genomes can be easily generated experimentally both in vitro and in vivo. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

18 pages, 307 KiB  
Review
Immunotherapy in Breast Cancer: Beyond Immune Checkpoint Inhibitors
by Yeonjoo Choi, Jiayi Tan, David Lin, Jin Sun Lee and Yuan Yuan
Int. J. Mol. Sci. 2025, 26(8), 3920; https://doi.org/10.3390/ijms26083920 - 21 Apr 2025
Viewed by 1275
Abstract
The systemic treatment of breast cancer has evolved remarkably over the past decades. With the introduction of immune checkpoint inhibitors (ICIs), clinical outcomes for solid tumor malignancies have significantly improved. However, in breast cancer, the indication for ICIs is currently limited to triple-negative [...] Read more.
The systemic treatment of breast cancer has evolved remarkably over the past decades. With the introduction of immune checkpoint inhibitors (ICIs), clinical outcomes for solid tumor malignancies have significantly improved. However, in breast cancer, the indication for ICIs is currently limited to triple-negative breast cancer (TNBC) only. In high-risk luminal B hormone receptor-positive (HR+) breast cancer (BC) and HER2-positive (HER2+) BC, modest efficacy of ICI and chemotherapy combinations were identified in the neoadjuvant setting. To address the unmet need, several novel immunotherapy strategies are being tested in ongoing clinical trials as summarized in the current review: bispecific antibodies, chimeric antigen receptor T-cell therapy (CAR-T), T-cell receptors (TCRs), tumor-infiltrating lymphocytes (TILs), tumor vaccines, and oncolytic virus therapy. Full article
(This article belongs to the Special Issue Breast Cancers: From Molecular Basis to Therapy)
Show Figures

Graphical abstract

13 pages, 3901 KiB  
Article
Comparison of Differentially Expressed Genes in Human Versus in Chimeric Mouse Livers Following HBV Infection
by Huarui Bao, Masataka Tsuge, Serami Murakami, Yasutoshi Fujii, Shinsuke Uchikawa, Hatsue Fujino, Atsushi Ono, Eisuke Murakami, Tomokazu Kawaoka, Daiki Miki, Clair Nelson Hayes and Shiro Oka
Livers 2025, 5(2), 18; https://doi.org/10.3390/livers5020018 - 14 Apr 2025
Viewed by 606
Abstract
Background/Objectives: Hepatitis B virus (HBV) infection is a worldwide health problem responsible for chronic liver disease and hepatocellular carcinoma. Both innate immunity and the adaptive immune response play central roles in the development of chronic hepatitis and liver cancer. We previously performed a [...] Read more.
Background/Objectives: Hepatitis B virus (HBV) infection is a worldwide health problem responsible for chronic liver disease and hepatocellular carcinoma. Both innate immunity and the adaptive immune response play central roles in the development of chronic hepatitis and liver cancer. We previously performed a comprehensive analysis of gene expression in the livers of HBV-infected chimeric mice and found that several genes associated with cell growth or carcinogenesis via hypoxia and KRAS signaling were upregulated by HBV infection. However, due to the absence of adaptive immunity in uPA/SCID chimeric mice, we were unable to analyze the effect of the host immune response. Methods: In this study, we compared gene expression profiles in the livers obtained from HBV-infected chimeric mice with those of HBV carriers. Results: After HBV infection, the expression of genes associated with inflammation and immune response, especially involving the Th1 and Th2 activation pathways, was altered as HBV-specific intracellular immune responses both in vivo and in clinical samples. Interestingly, the proinflammatory gene IL12A was induced by HBV infection in the chimeric mouse livers but not in the human livers, and associated genes, such as SRDA5A2, AR, and CCR3, showed differential alteration by HBV infection between the chimeric mouse and human livers. Conclusions: These results suggest that hepatocarcinogenesis may be suppressed by host immunity in HBV carriers. This study highlights potential new implications for inhibiting the progression of HBV-related liver diseases, including hepatocarcinogenesis. Full article
Show Figures

Figure 1

9 pages, 1103 KiB  
Article
Protective Efficacy of a Chimeric Pestivirus KD26_E2LOM Vaccine Against Classical Swine Fever Virus Infection of Pigs
by Young-Hyeon Lee, Bo-Kyoung Jung, Song-Yi Kim, Dohyun Kim, Min-Kyung Jang, SeEun Choe, Byung-Hyun An, Jae-Jo Kim, Yun Sang Cho and Dong-Jun An
Viruses 2025, 17(4), 529; https://doi.org/10.3390/v17040529 - 5 Apr 2025
Viewed by 412
Abstract
A chimeric pestivirus KD26_E2LOM strain can induce antibodies that can be partially distinguished from antibodies from classical swine fever virus (CSFV) infection. The chimeric pestivirus vaccine strain was created using bovine viral diarrhea virus as the backbone; however, the entire BVDV E2 gene [...] Read more.
A chimeric pestivirus KD26_E2LOM strain can induce antibodies that can be partially distinguished from antibodies from classical swine fever virus (CSFV) infection. The chimeric pestivirus vaccine strain was created using bovine viral diarrhea virus as the backbone; however, the entire BVDV E2 gene region was replaced with the E2 gene, which encodes the major target for neutralizing antibodies against CSFV. Pigs were vaccinated once or twice with the chimeric pestivirus KD26_E2LOM strain, and protective efficacy was evaluated after subsequent challenge with virulent CSFV. Pigs inoculated with the chimeric pestivirus KD26_E2LOM strain did not have a high temperature or leukopenia, and CSFV neutralizing antibodies (>64-fold) were observed from 28 days postvaccination (dpv). In addition, the level of anti-CSFV E2 antibody positivity was >0.8 (s/p value) from 30 dpv, and there were no antibody-positive individuals among the sentinel pigs. In control pigs, CSF antigen was detected in blood, nasal, and fecal samples at 5, 7, 10, 14, and 21 days postchallenge (dpc) and in several organs; however, no CSFV was detected in the organs of pigs vaccinated with the chimeric pestivirus KD26_E2LOM strain, and no virus shedding or CSF antigen was detected on any dpc. Thus, the chimeric pestivirus KD26_E2LOM strain protects pigs against horizontal transmission of virulent CSFV; however, this strain may have only partial potential for the differential detection of CSFV Erns antibodies. Full article
(This article belongs to the Special Issue Pestivirus 2025)
Show Figures

Figure 1

24 pages, 4096 KiB  
Review
Gene and Cell Therapy for Sarcomas: A Review
by Sant P. Chawla, Skyler S. Pang, Darshit Jain, Samantha Jeffrey, Neal S. Chawla, Paul Y. Song, Frederick L. Hall and Erlinda M. Gordon
Cancers 2025, 17(7), 1125; https://doi.org/10.3390/cancers17071125 - 27 Mar 2025
Cited by 1 | Viewed by 1818
Abstract
Background: The heterogeneity of sarcomas and resulting distinct sub-type specific characteristics, their high recurrence rates, and tendency for distant metastasis, continue to present significant challenges to providing optimal treatments. Objective: To provide a comprehensive review of current literature and clinical trials [...] Read more.
Background: The heterogeneity of sarcomas and resulting distinct sub-type specific characteristics, their high recurrence rates, and tendency for distant metastasis, continue to present significant challenges to providing optimal treatments. Objective: To provide a comprehensive review of current literature and clinical trials in gene and cell therapies for sarcomas. Methods: A comprehensive literature search was conducted utilizing the following databases: PubMed, Medline, Google Scholar and clinicaltrials.gov. Search terms included “gene therapy”, “cell therapy”, “NK cell therapy, “CAR-T therapy”, “virotherapy”, “sarcoma”, “gene therapy”, and “solid tumors”. Additional sources were identified through manual searching for references of relevant studies. No language restrictions were set. The NCT number, study status, condition, and phase were noted for clinical trials. Results: There are only three gene and cell therapies for sarcomas that have been approved by a federal regulatory agency. Rexin-G: the first tumor-targeted gene therapy vector designed to target all advanced solid malignancies, including chemo-refractory osteosarcomas and soft tissue sarcomas, was approved by the Philippine FDA in 2007. Gendicine was the first oncolytic virus approved for intratumoral delivery in China in 2003. Afami-cel, an innovative chimeric antigen receptor (CAR) T cell therapy, was approved for synovial sarcoma in the United States in 2024. Other promising therapies are discussed in the text. Conclusions: The future of gene and cell therapy for sarcomas holds great promise, as research moves to late-stage clinical development. The integration of gene and cell therapies into standard sarcoma treatment protocols has the potential to significantly improve the quality of life and outcomes for patients with this rare and challenging group of cancers. Full article
(This article belongs to the Special Issue Gene and Cell Therapy for Cancers)
Show Figures

Figure 1

26 pages, 2782 KiB  
Article
Foot-and-Mouth Disease Vaccines by Design; Production of Capsid-Modified Foot-and-Mouth Disease Viruses with Improved Cell Culture Growth
by Stephen Berryman, Femke Feenstra, Amin Asfor, Jose Coco-Martin, Terry Jackson and Tobias J. Tuthill
Vaccines 2025, 13(3), 281; https://doi.org/10.3390/vaccines13030281 - 6 Mar 2025
Cited by 1 | Viewed by 1325
Abstract
Background/Objectives: Vaccination is important for controlling foot-and-mouth disease (FMD) in endemic regions and to lessen the effects of outbreaks in FMD-free countries. The adaptation of FMD virus to BHK cells is a necessary but time-consuming and costly step in vaccine production and can [...] Read more.
Background/Objectives: Vaccination is important for controlling foot-and-mouth disease (FMD) in endemic regions and to lessen the effects of outbreaks in FMD-free countries. The adaptation of FMD virus to BHK cells is a necessary but time-consuming and costly step in vaccine production and can prove problematic for some isolates. Adaptation is, in part, driven by receptor availability and selects variants with altered receptor specificity that result from amino acid substitutions in the capsid proteins. Methods: To bypass the need for cell culture adaptation, we generated chimeric viruses with field-strain capsids and introduced amino acid substitutions associated with cell culture adaptation. We targeted two sites on the capsid: the canonical heparan sulphate binding site and the icosahedral 5-fold symmetry axes. Results: Our results show that some viruses with unmodified wild-type (wt) capsids grew well in BHK cells (suspension and adherent), whereas others showed poor growth. For viruses that showed good growth, the introduction of amino acid changes associated with cell culture adaptation improved the rate of growth but not virus titres or yields of 146S particles, whereas growth and 146S yields for viruses that grew poorly in BHK cells were greatly enhanced by some of the amino acid changes. For the latter viruses, the introduced changes did not appear to adversely affect virion stability or antigenicity. Conclusions: For FMD viruses that grow poorly in BHK cells, this approach could be a viable alternative to protracted adaptation by serial passage and could expedite the production of a new vaccine strain from a field virus. Full article
(This article belongs to the Special Issue Vaccines and Animal Health)
Show Figures

Figure 1

Back to TopTop