Annotation of the Extracellular Enveloped Form of Monkeypox Virus for the Design, Screening, Validation, and Simulation of a Chimeric Vaccine Construct
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Target Proteins, Their Acquisition, Query Dataset Generation, and Antigenicity Determination
2.2. Determination of Epitopes
2.2.1. Linear B-Cell Epitopes (LBEs)
2.2.2. CTL Epitopes (CTLEs)
2.2.3. HTL Epitopes (HTLEs)
2.3. Multi-Faceted Assessment of Epitopes (LBEs, CTLEs, and HTLEs) for Screening Epitopes Suitable for Vaccine Design
2.4. Vaccine Model Construction (Formulation) and Screening for Efficient Vaccine Prototypes
2.5. Secondary-Level Structural Analysis of the Vaccine
2.6. The Three-Dimensional Structure of MPXV-1-Beta and Its Computational Refinement
2.7. Docking and Normal Mode Analyses of MPXV-1-Beta Vaccine for Gaining Analytical Insight into Molecular Interactions
2.8. GROMACS-Based Molecular Dynamics Simulation of the TLR-Receptor (TLR-4 and TLR-2)-MPXV-1-Beta Complexes
2.9. Codon-Adaption Execution and Vector-Based Cloning of MPXV-1-Beta Formulation
2.10. Simulation for Evaluating IR
2.11. Population Coverage
3. Results
3.1. Eligibility Assessment of the Target Proteins
3.2. LBE Determination
3.3. CTLEs Determination
3.4. Determination of Potential HTLEs
3.5. Epitope Conservancy, Autoimmune Risk, and Off-Target Effect Analyses
3.6. Vaccine Formulation and Screening for Potential Vaccine Formulation (Construct)
3.7. Secondary Structure of MPXV-1-Beta
3.8. 3D Structural Evaluation of MPXV-1-Beta
3.9. Docking of MPXV-1-Beta Formulation with TLRs and Major Histocompatibility Complex Molecules (MHC Molecules) for Interaction Evaluation
3.10. NMA of MPXV-1-Beta Formulation with TLR-Receptors and MHC Molecules
3.11. MDS of TLRs-MPXV-1-Beta Vaccine
3.12. MPXV-1-Beta’s Immune Potency (Immune Simulation)
3.13. Optimisation of MPXV-1-Beta Codon and Gene Cloning
3.14. MPXV-1-Beta’s Population Coverage
4. Discussion
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beeson, A.; Styczynski, A.; Hutson, C.L.; Whitehill, F.; Angelo, K.M.; Minhaj, F.S.; Morgan, C.; Ciampaglio, K.; Reynolds, M.G.; McCollum, A.M. Mpox respiratory transmission: The state of the evidence. Lancet Microbe 2023, 4, e277–e283. [Google Scholar] [CrossRef]
- Venkatesan, P. Monkeypox transmission—What we know so far. Lancet Respir. Med. 2022, 10, e101. [Google Scholar] [CrossRef]
- Wang, X.; Lun, W. Skin manifestation of human monkeypox. J. Clin. Med. 2023, 12, 914. [Google Scholar] [CrossRef]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S. Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Otu, A.; Ebenso, B.; Walley, J.; Barceló, J.M.; Ochu, C.L. Global human monkeypox outbreak: Atypical presentation demanding urgent public health action. Lancet Microbe 2022, 3, e554–e555. [Google Scholar] [CrossRef]
- Parker, S.; Nuara, A.; Buller, R.M.L.; Schultz, D.A. Human monkeypox: An emerging zoonotic disease. Future Microbiol. 2007, 2, 17–34. [Google Scholar] [CrossRef]
- McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis. 2014, 58, 260–267. [Google Scholar] [CrossRef]
- Cho, C.T.; Wenner, H.A. Monkeypox virus. Bacteriol. Rev. 1973, 37, 1–18. [Google Scholar] [CrossRef]
- Hakim, M.S.; Widyaningsih, S.A. The recent re-emergence of human monkeypox: Would it become endemic beyond Africa? J. Infect. Public Health 2023, 16, 332–340. [Google Scholar] [CrossRef]
- Hraib, M.; Jouni, S.; Albitar, M.M.; Alaidi, S.; Alshehabi, Z. The outbreak of monkeypox 2022: An overview. Ann. Med. Surg. 2022, 79, 104069. [Google Scholar] [CrossRef]
- Moss, B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat. Microbiol. 2024, 9, 1408–1416. [Google Scholar] [CrossRef]
- Lansiaux, E.; Jain, N.; Laivacuma, S.; Reinis, A. The virology of human monkeypox virus (hMPXV): A brief overview. Virus Res. 2022, 322, 198932. [Google Scholar] [CrossRef]
- Cabanillas, B.; Murdaca, G.; Guemari, A.; Torres, M.J.; Azkur, A.K.; Aksoy, E.; Vitte, J.; Fernández-Santamaria, R.; Karavelia, A.; Castagnoli, R. Monkeypox 2024 outbreak: Fifty essential questions and answers. Allergy 2024, 79, 3285–3309. [Google Scholar] [CrossRef]
- Titanji, B.K.; Hazra, A.; Zucker, J. Mpox clinical presentation, diagnostic approaches, and treatment strategies: A review. JAMA 2024, 332, 1652–1662. [Google Scholar] [CrossRef]
- Petersen, B.W. Use of vaccinia virus smallpox vaccine in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses—Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015. MMWR. Morb. Mortal. Wkly. Rep. 2016, 65, 257–262. [Google Scholar] [CrossRef]
- Rao, A.K. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 734–742. [Google Scholar] [CrossRef]
- Reynolds, M.G.; Damon, I.K. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol. 2012, 20, 80–87. [Google Scholar] [CrossRef]
- Lum, F.-M.; Torres-Ruesta, A.; Tay, M.Z.; Lin, R.T.P.; Lye, D.C.; Rénia, L.; Ng, L.F.P. Monkeypox: Disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 2022, 22, 597–613. [Google Scholar] [CrossRef]
- Otter, A.D.; Jones, S.; Hicks, B.; Bailey, D.; Callaby, H.; Houlihan, C.; Rampling, T.; Gordon, N.C.; Selman, H.; Satheshkumar, P.S. Monkeypox virus-infected individuals mount comparable humoral immune responses as Smallpox-vaccinated individuals. Nat. Commun. 2023, 14, 5948. [Google Scholar] [CrossRef]
- Nalca, A.; Zumbrun, E.E. ACAM2000™: The new smallpox vaccine for United States Strategic National Stockpile. Drug Des. Dev. Ther. 2010, 25, 71–79. [Google Scholar] [CrossRef]
- Shi, D.; He, P.; Song, Y.; Cheng, S.; Linhardt, R.J.; Dordick, J.S.; Chi, L.; Zhang, F. Kinetic and structural aspects of glycosaminoglycan–monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules 2022, 27, 5898. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, C.; Chuai, X.; Chiu, S. Monkeypox virus: A re-emergent threat to humans. Virol. Sin. 2022, 37, 477–482. [Google Scholar] [CrossRef]
- Shchelkunov, S.; Totmenin, A.; Safronov, P.; Mikheev, M.; Gutorov, V.; Ryazankina, O.; Petrov, N.; Babkin, I.; Uvarova, E.; Sandakhchiev, L. Analysis of the monkeypox virus genome. Virology 2002, 297, 172–194. [Google Scholar] [CrossRef]
- Roper, R.L.; Wolffe, E.J.; Weisberg, A.; Moss, B. The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J. Virol. 1998, 72, 4192–4204. [Google Scholar] [CrossRef]
- Sagdat, K.; Batyrkhan, A.; Kanayeva, D. Exploring monkeypox virus proteins and rapid detection techniques. Front. Cell. Infect. Microbiol. 2024, 14, 1414224. [Google Scholar] [CrossRef]
- Fang, Z.; Monteiro, V.S.; Renauer, P.A.; Shang, X.; Suzuki, K.; Ling, X.; Bai, M.; Xiang, Y.; Levchenko, A.; Booth, C.J. Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigens. Cell Res. 2023, 33, 407–410. [Google Scholar] [CrossRef]
- Ishack, S.; Lipner, S.R. Bioinformatics and immunoinformatics to support COVID-19 vaccine development. J. Med. Virol. 2021, 93, 5209–5211. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef]
- Consortium, U. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 2006, 65, 40–48. [Google Scholar] [CrossRef]
- Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct. 2013, 8, 30. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G.P. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. 2013, 2013, 263952. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Consortium, O.S.D.D.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef]
- Hon, J.; Marusiak, M.; Martinek, T.; Kunka, A.; Zendulka, J.; Bednar, D.; Damborsky, J. SoluProt: Prediction of soluble protein expression in Escherichia coli. Bioinformatics 2021, 37, 23–28. [Google Scholar] [CrossRef]
- Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A server for in silico prediction of allergens. BMC Bioinform. 2013, 14 (Suppl. S6), S4. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Martin, D.R.; Goboza, M.; Klein, A.; Madiehe, A.M.; Meyer, M. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci. Rep. 2021, 11, 19707. [Google Scholar] [CrossRef]
- Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 1986, 44, 283–292. [Google Scholar] [CrossRef]
- Liu, Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 2005, 81, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, I.; Lira, S.S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. Macromol. 2020, 162, 820–837. [Google Scholar] [CrossRef]
- Kreiter, S.; Selmi, A.; Diken, M.; Sebastian, M.; Osterloh, P.; Schild, H.r.; Huber, C.; Tureci, O.; Sahin, U. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol. 2008, 180, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Gallie, D.R. The cap and poly (A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991, 5, 2108–2116. [Google Scholar] [CrossRef] [PubMed]
- Munroe, D.; Jacobson, A. mRNA poly (A) tail, a 3′ enhancer of translational initiation. Mol. Cell. Biol. 1990, 10, 3441–3455. [Google Scholar]
- Bernstein, P.; Ross, J. Poly (A), poly (A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 1989, 14, 373–377. [Google Scholar] [CrossRef]
- Zhao, Y.; Moon, E.; Carpenito, C.; Paulos, C.M.; Liu, X.; Brennan, A.L.; Chew, A.; Carroll, R.G.; Scholler, J.; Levine, B.L. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010, 70, 9053–9061. [Google Scholar] [CrossRef]
- Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, Ö.; Sahin, U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009–4017. [Google Scholar] [CrossRef]
- Pourseif, M.M.; Parvizpour, S.; Jafari, B.; Dehghani, J.; Naghili, B.; Omidi, Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: Development of self-amplifying mRNA and peptide vaccines. BioImpacts BI 2020, 11, 65. [Google Scholar] [CrossRef]
- Wang, Z.; Day, N.; Trifillis, P.; Kiledjian, M. An mRNA stability complex functions with poly (A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 1999, 19, 4552–4560. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Panda, S.; Singh, R.; Behera, A.; Biswal, P.; Mech, P.; Ramaiyan, K. In silico structural delineation of nucleocapsid protein of SARS-CoV-2. J. Entomol. Zool. Stud. 2020, 8, 06–10. [Google Scholar]
- Buchan, D.W.; Jones, D.T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The vienna RNA websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 1–14. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41, W384–W388. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef]
- López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res. 2014, 42, W271–W276. [Google Scholar] [CrossRef]
- Kutzner, C.; Kniep, C.; Cherian, A.; Nordstrom, L.; Grubmüller, H.; de Groot, B.L.; Gapsys, V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model. 2022, 62, 1691–1711. [Google Scholar] [CrossRef] [PubMed]
- Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526–W531. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Liang, Y.; Zhong, X.; Pan, Z.; Huang, L.; Zhang, H.; Xu, Y.; Zhou, W.; Liu, Z. Codon optimization with deep learning to enhance protein expression. Sci. Rep. 2020, 10, 17617. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.T.; Zinnia, M.A.; Islam, A.B.M.M.K. Modeling mRNA-based vaccine YFV. E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J. Biomol. Struct. Dyn. 2023, 41, 1617–1638. [Google Scholar] [CrossRef]
- Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 2010, 5, e9862. [Google Scholar] [CrossRef]
- Bui, H.-H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006, 7, 153. [Google Scholar] [CrossRef]
- Ladnyj, I.; Ziegler, P.; Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972, 46, 593. [Google Scholar]
- Lim, H.X.; Lim, J.; Jazayeri, S.D.; Poppema, S.; Poh, C.L. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomed. J. 2021, 44, 18–30. [Google Scholar] [CrossRef]
- Yang, Z.; Bogdan, P.; Nazarian, S. An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Sci. Rep. 2021, 11, 3238. [Google Scholar] [CrossRef]
- Mortazavi, B.; Molaei, A.; Fard, N.A. Multi-epitope vaccines, from design to expression; an in silico approach. Hum. Immunol. 2024, 85, 110804. [Google Scholar] [CrossRef]
- Yin, D.; Li, L.; Song, X.; Li, H.; Wang, J.; Ju, W.; Qu, X.; Song, D.; Liu, Y.; Meng, X. A novel multi-epitope recombined protein for diagnosis of human brucellosis. BMC Infect. Dis. 2016, 16, 219. [Google Scholar] [CrossRef]
- Bui, H.H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform. 2007, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Patwary, N.I.; Islam, M.S.; Sohel, M.; Ara, I.; Sikder, M.O.; Shahik, S.M. In silico structure analysis and epitope prediction of E3 CR1-beta protein of Human Adenovirus E for vaccine design. Biomed. J. 2016, 39, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Moody, R.; Wilson, K.L.; Boer, J.C.; Holien, J.K.; Flanagan, K.L.; Jaworowski, A.; Plebanski, M. Predicted B Cell Epitopes Highlight the Potential for COVID-19 to Drive Self-Reactive Immunity. Front. Bioinform. 2021, 1, 709533. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.K.; Mahajan, S.; Paul, S.; Yan, Z.; Kim, H.; Jespersen, M.C.; Jurtz, V.; Andreatta, M.; Greenbaum, J.A.; Marcatili, P. IEDB-AR: Immune epitope database—Analysis resource in 2019. Nucleic Acids Res. 2019, 47, W502–W506. [Google Scholar] [CrossRef]
- Meza, J.A. Developing A Novel SARS-COV-2 DNA Vaccine to Elicit an Adaptive Immune Response Using A Padre Motif. Master’s Thesis, Johns Hopkins University, Baltimore, MD, USA, 2024. [Google Scholar]
- Chauhan, V.; Rungta, T.; Goyal, K.; Singh, M.P. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci. Rep. 2019, 9, 2517. [Google Scholar] [CrossRef]
- Aiman, S.; Alhamhoom, Y.; Ali, F.; Rahman, N.; Rastrelli, L.; Khan, A.; Farooq, Q.u.A.; Ahmed, A.; Khan, A.; Li, C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques—A bioinformatics and immunoinformatics approach. Front. Immunol. 2022, 13, 985450. [Google Scholar] [CrossRef]
- Kumar, N.; Sood, D.; Sharma, N.; Chandra, R. Multiepitope subunit vaccine to evoke immune response against acute encephalitis. J. Chem. Inf. Model. 2019, 60, 421–433. [Google Scholar] [CrossRef]
- Aiman, S.; Ali, Y.; Malik, A.; Alkholief, M.; Ahmad, A.; Akhtar, S.; Ali, S.; Khan, A.; Li, C.; Shams, S. Immunoinformatic-guided novel mRNA vaccine designing to elicit immunogenic responses against the endemic Monkeypox virus. J. Biomol. Struct. Dyn. 2024, 42, 6292–6306. [Google Scholar] [CrossRef]
- Thoma-Uszynski, S.; Stenger, S.; Takeuchi, O.; Ochoa, M.T.; Engele, M.; Sieling, P.A.; Barnes, P.F.; Rollinghoff, M.; Bolcskei, P.L.; Wagner, M. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001, 291, 1544–1547. [Google Scholar] [CrossRef]
- Monterrubio-López, G.P.; González-Y-Merchand, J.A.; Ribas-Aparicio, R.M. Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. BioMed Res. Int. 2015, 2015, 483150. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Implications of Toll-like receptors in Ebola infection. Expert Opin. Ther. Targets 2017, 21, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.C.; Shirey, K.A.; Pletneva, L.M.; Boukhvalova, M.S.; Garzino-Demo, A.; Vogel, S.N.; Blanco, J.C. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol. 2014, 9, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Mahafujul Alam, S.S.; Mir, S.A.; Samanta, A.; Nayak, B.; Ali, S.; Hoque, M. Immunoinformatics based designing of a multi-epitope cancer vaccine targeting programmed cell death ligand 1. Sci. Rep. 2025, 15, 12420. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Shamkh, I.M.; Khan, M.S.; Lotfy, M.M.; Nzeyimana, J.B.; Abutayeh, R.F.; Hamdy, N.M.; Hamza, D.; Chanu, N.R.; Khanal, P. Multi-epitope vaccine design against monkeypox virus via reverse vaccinology method exploiting immunoinformatic and bioinformatic approaches. Vaccines 2022, 10, 2010. [Google Scholar] [CrossRef]
- Tahir ul Qamar, M.; Rehman, A.; Tusleem, K.; Ashfaq, U.A.; Qasim, M.; Zhu, X.; Fatima, I.; Shahid, F.; Chen, L.-L. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS ONE 2020, 15, e0244176. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.; Al-Khafaji, K.; Sarker, M.; Taskin-Tok, T.; Rana, A.; Rahman, M. Design of a multi-epitope vaccine against SARS-CoV-2: Immunoinformatic and computational methods. RSC Adv. 2022, 12, 4288–4310. [Google Scholar] [CrossRef]
- Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 2012, 30, 1102–1107. [Google Scholar] [CrossRef]
- Morla, S.; Makhija, A.; Kumar, S. Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene 2016, 584, 1–6. [Google Scholar] [CrossRef]
- Young-Xu, Y.; Korves, C.; Roberts, J.; Powell, E.I.; Zwain, G.M.; Smith, J.; Izurieta, H.S. Coverage and estimated effectiveness of mRNA COVID-19 vaccines among US veterans. JAMA Netw. Open 2021, 4, e2128391. [Google Scholar] [CrossRef]
- Groot, A.S.D.; Rappuoli, R. Genome-derived vaccines. Expert Rev. Vaccines 2004, 3, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Flower, D.R.; Macdonald, I.K.; Ramakrishnan, K.; Davies, M.N.; Doytchinova, I.A. Computer aided selection of candidate vaccine antigens. Immunome Res. 2010, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Patronov, A.; Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 2013, 3, 120139. [Google Scholar] [CrossRef] [PubMed]
Parameters | A35R/EEV | B6R/EEV |
---|---|---|
Allergenicity | Non-allergen | Non-allergen |
Antigenicity/score | Ag/0.4976 | Ag/0.5786 |
Residue toxicity | Nontoxic | Nontoxic |
AA Length | 181 | 317 |
Mw/TpI | 20,050.55/5.59 | 35,145.87/4.67 |
AI | 73.81 | 77.98 |
GRAVY | −0.305 | −0.182 |
Ii | 42.34 | 41.79 |
EHL-MR | 30 h | 30 h |
EHL-Y | >20 h | >20 h |
EHL-E | >10 h | >10 h |
EC (M−1cm−1) | 24,410 | 42,860 |
E. solubility | 0.719 | 0.557 |
Proteins IDs/Proteins | LBL-Epitope Designation | LBL-Epitope | ABCP(s) | Ag(s) | Toxicity | Allergenicity |
---|---|---|---|---|---|---|
QJQ40286.1/A35R/EEV | LBE-1/A35R | VVSSTTQYDHKESCNG | 0.9 | 0.8364 | NT | NA |
LBE-2/A35R | TKTTSDYQDSDVSQEV | 0.88 | 0.7943 | NT | NA | |
LBE-3/A35R | CIRISMVISLLSMITM | 0.58 | 1.1317 | NT | NA | |
AAL40625.1/B6R/EEV | LBE-4/B6R | PTCVRSNEEFDPVDDG | 0.88 | 1.1564 | NT | NA |
LBE-5/B6R | KLTSTETSFNDKQKVT | 0.83 | 1.199 | NT | NA | |
LBE-6/B6R | TGSPSSTCIDGKWNPI | 0.83 | 1.059 | NT | NA | |
Proteins IDs/Proteins | CTL-epitope designation | CTL-epitope | IC50-value | Ag(s) | Toxicity | Allergenicity |
QJQ40286.1/A35R/EEV | CTL-1/A35R | GLCIRISMV | 23.45 | 2.0951 | NT | NA |
CTL-2/A35R | AAASSTHRK | 72.79 | 1.0499 | NT | NA | |
CTL-3/A35R | RISMVISLL | 86.55 | 0.9423 | NT | NA | |
AAL40625.1/B6R/EEV | CTL-4/B6R | CIDGKWNPI | 85.98 | 1.734 | NT | NA |
CTL-5/B6R | ETSFNDKQK | 24.5 | 1.4922 | NT | NA | |
CTL-6/B6R | STETSFNDK | 58.49 | 1.441 | NT | NA |
Proteins IDs/Proteins | HTL-Epitope Designation | HTL-Epitope | IC50-Value | Ag(s) | II/IL-4 Score | Tox/Aller |
---|---|---|---|---|---|---|
QJQ40286.1/A35R/EEV | HTL-1/A35R | KRKRVIGLCIRISMV | 36.1 | 1.8051 | 0.29 | NT/NA |
HTL-2/A35R | RKRVIGLCIRISMVI | 56.3 | 1.5987 | 0.27 | NT/NA | |
HTL-3/A35R | GKNKRKRVIGLCIRI | 14.3 | 1.3714 | 0.29 | NT/NA | |
AAL40625.1/B6R/EEV | HTL-4/B6R | NAKLTSTETSFNDKQ | 90.9 | 1.4473 | 1.16 | NT/NA |
HTL-5/B6R | DSGYHSLDPNAVCET | 30.7 | 0.9057 | 0.28 | NT/NA | |
HTL-6/B6R | DGKWNPILPTCVRSN | 9.6 | 0.6373 | 1.33 | NT/NA | |
Proteins IDs/Proteins | IFN-γ-epitope designation | IFN-gamma Epitope | IC50-value | Ag(s) | IFN-γ scores | Tox/Aller |
QJQ40286.1/A35R/EEV | IFN-γ-1/A35R | SMVISLLSMITMSAF | 80.6 | 0.573 | 1.267 | NT/NA |
Epitope Sequence | Epitope Length | Percent of Protein Sequence Matches at Identity ≤ 100% | Minimum Identity | Maximum Identity |
---|---|---|---|---|
VVSSTTQYDHKESCNG | 16 | 100.00% (30/30) | 93.75% | 100.00% |
TKTTSDYQDSDVSQEV | 16 | 100.00% (30/30) | 100.00% | 100.00% |
CIRISMVISLLSMITM | 16 | 100.00% (30/30) | 100.00% | 100.00% |
GLCIRISMV | 9 | 100.00% (30/30) | 100.00% | 100.00% |
AAASSTHRK | 9 | 100.00% (30/30) | 100.00% | 100.00% |
RISMVISLL | 9 | 100.00% (30/30) | 100.00% | 100.00% |
KRKRVIGLCIRISMV | 15 | 100.00% (30/30) | 100.00% | 100.00% |
RKRVIGLCIRISMVI | 15 | 100.00% (30/30) | 100.00% | 100.00% |
GKNKRKRVIGLCIRI | 15 | 100.00% (30/30) | 100.00% | 100.00% |
SMVISLLSMITMSAF | 15 | 100.00% (30/30) | 100.00% | 100.00% |
PTCVRSNEEFDPVDDG | 16 | 89.74% (35/39) | 25.00% | 100.00% |
KLTSTETSFNDKQKVT | 16 | 89.74% (35/39) | 18.75% | 100.00% |
TGSPSSTCIDGKWNPI | 16 | 87.18% (34/39) | 18.75% | 100.00% |
CIDGKWNPI | 9 | 89.74% (35/39) | 33.33% | 100.00% |
ETSFNDKQK | 9 | 89.74% (35/39) | 33.33% | 100.00% |
STETSFNDK | 9 | 89.74% (35/39) | 33.33% | 100.00% |
NAKLTSTETSFNDKQ | 15 | 89.74% (35/39) | 26.67% | 100.00% |
DSGYHSLDPNAVCET | 15 | 89.74% (35/39) | 20.00% | 100.00% |
DGKWNPILPTCVRSN | 15 | 89.74% (35/39) | 33.33% | 100.00% |
Parameters | MPXV-1- Hbha | MPXV-1- Beta | MPXV-1- Ribo | MPXV-2-Hbha | MPXV-2-Beta | MPXV-2-Ribo |
---|---|---|---|---|---|---|
Allergenicity | Non-allergen | Non-allergen | Non-allergen | Non-allergen | Non-allergen | Non-allergen |
Antigenicity/score | Ag/0.712 | Ag/0.7953 | Ag/0.6938 | Ag/0.7596 | Ag/0.6859 | Ag/0.6659 |
Residue toxicity/score | Nontoxic/0.16 | Nontoxic/0.27 | Nontoxic/0.27 | Nontoxic/0.2 | Nontoxic/0.17 | Nontoxic/0.2 |
AA Length | 426 | 312 | 397 | 313 | 427 | 398 |
Mw/TpI | 44,981.24/8.7 | 32,513.79/9.76 | 40,793.07/8.77 | 32,427.54/9.48 | 44,894.99/6.13 | 40,706.83/6.33 |
AI | 81.27 | 74.23 | 84.71 | 55.97 | 67.87 | 70.33 |
Gravy | −0.248 | −0.187 | −0.009 | −0.539 | −0.506 | −0.286 |
Ii | 34 | 30.62 | 25 | 29.36 | 33.17 | 24.62 |
EHL-MR | 1 h | 1 h | 1 h | 1 h | 1 h | 1 h |
EHL-Y | 30 min | 30 min | 30 min | 30 min | 30 min | 30 min |
EHL-E | >10 h | >10 h | >10 h | >10 h | >10 h | >10 h |
EC (M−1cm−1) | 31,775 | 30,660 | 27,305 | 37,525 | 38,640 | 34,170 |
E. solubility | 0.698 | 0.920 | 0.660 | 1.138 | 0.855 | 0.833 |
E. solubility/suloscore | ISE/0.185 | SE/0.830 | ISE/0.42 | SE/0.883 | ISE/0.398 | SE/0.612 |
Complex Description | No. of Residues in the Interface | Count of Salt Bridges | Count of Hydrogen Bonds | Count of Non-Bonded Contacts | Interface Area (Å2) |
---|---|---|---|---|---|
TLR-4 | 38 | 04 | 22 | 198 | 1627 |
MPXV-1-Beta | 32 | 1792 | |||
TLR-2 | 22 | 04 | 19 | 135 | 1050 |
MPXV-1-Beta | 19 | 1125 | |||
MHC-I-MPXV-1-Beta-Complex | 23–23 (A–C) | 07 (A–C) | 10 (A–C) | 143 (A–C) | 1198–1256 (A–C) |
05–06 (B–C) | 03 (B–C) | 03 (A–C) | 31 (A–C) | 353–329 (B–C) | |
MHC-II-MPXV-1-Beta-Complex | 19–23 (A–C) | 06 (A–C) | 13 (A–C) | 154 (A–C) | 1062–1017 (A–C) |
15–17 (B–C) | 0 (B–C) | 05 (B–C) | 97 (B–C) | 802–823 (B–C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izhari, M.A.; Alodeani, E.A.; Alharthi, S.B.; Almontasheri, A.H.A.; Alotaibi, F.E.; Alotaibi, R.E.; Alghamdi, W.A.; Abdulaziz, O.; Alghamdi, F.; Alisaac, A.; et al. Annotation of the Extracellular Enveloped Form of Monkeypox Virus for the Design, Screening, Validation, and Simulation of a Chimeric Vaccine Construct. Biology 2025, 14, 830. https://doi.org/10.3390/biology14070830
Izhari MA, Alodeani EA, Alharthi SB, Almontasheri AHA, Alotaibi FE, Alotaibi RE, Alghamdi WA, Abdulaziz O, Alghamdi F, Alisaac A, et al. Annotation of the Extracellular Enveloped Form of Monkeypox Virus for the Design, Screening, Validation, and Simulation of a Chimeric Vaccine Construct. Biology. 2025; 14(7):830. https://doi.org/10.3390/biology14070830
Chicago/Turabian StyleIzhari, Mohammad Asrar, Essa Ajmi Alodeani, Siraj B. Alharthi, Ahmad H. A. Almontasheri, Foton E. Alotaibi, Rakan E. Alotaibi, Wael A. Alghamdi, Osama Abdulaziz, Fahad Alghamdi, Ali Alisaac, and et al. 2025. "Annotation of the Extracellular Enveloped Form of Monkeypox Virus for the Design, Screening, Validation, and Simulation of a Chimeric Vaccine Construct" Biology 14, no. 7: 830. https://doi.org/10.3390/biology14070830
APA StyleIzhari, M. A., Alodeani, E. A., Alharthi, S. B., Almontasheri, A. H. A., Alotaibi, F. E., Alotaibi, R. E., Alghamdi, W. A., Abdulaziz, O., Alghamdi, F., Alisaac, A., Alsahag, M., & Gosady, A. R. A. (2025). Annotation of the Extracellular Enveloped Form of Monkeypox Virus for the Design, Screening, Validation, and Simulation of a Chimeric Vaccine Construct. Biology, 14(7), 830. https://doi.org/10.3390/biology14070830