Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = chilling injuries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4805 KiB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 207
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 261
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

17 pages, 3490 KiB  
Article
Flexible Visible Spectral Sensing for Chilling Injuries in Mango Storage
by Longgang Ma, Zhengzhong Wan, Zhencan Yang, Xunjun Chen, Ruihua Zhang, Maoyuan Yin and Xinqing Xiao
Eng 2025, 6(7), 158; https://doi.org/10.3390/eng6070158 - 10 Jul 2025
Viewed by 326
Abstract
Mango, as an important economic crop in tropical and subtropical regions, suffers from chilling injuries caused by postharvest low-temperature storage, which seriously affect its quality and economic benefits. Traditional detection methods have limitations such as low efficiency and strong destructiveness. This study designs [...] Read more.
Mango, as an important economic crop in tropical and subtropical regions, suffers from chilling injuries caused by postharvest low-temperature storage, which seriously affect its quality and economic benefits. Traditional detection methods have limitations such as low efficiency and strong destructiveness. This study designs and implements a flexible visible light spectral sensing system based on visible light spectral sensing technology and low-cost environmentally friendly flexible circuit technology. The system is structured based on a perception-analysis-warning-processing framework, utilizing laser-induced graphene electroplated copper integrated with laser etching technology for hardware fabrication, and developing corresponding data acquisition and processing functionalities. Taking Yunnan Yumang as the research object, a three-level chilling injury label dataset was established. After Z-Score standardization processing, the prediction accuracy of the SVM (Support Vector Machine) model reached 95.5%. The system has a power consumption of 230 mW at 4.5 V power supply, a battery life of more than 130 days, stable signal transmission, and a monitoring interface integrating multiple functions, which can provide real-time warning and intervention, thus offering an efficient and intelligent solution for chilling injury monitoring in mango cold chain storage. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

20 pages, 1466 KiB  
Article
Understanding Chilling Injury and Sugar Metabolism-Related Genes and Metabolites in ‘Red Haven’ Peaches
by Macarena Farcuh
Plants 2025, 14(14), 2133; https://doi.org/10.3390/plants14142133 - 10 Jul 2025
Viewed by 402
Abstract
Although cold storage is commonly used to extend peach fruit shelf-life, chilling injury (CI) can develop during low-temperature storage conditions and be expressed during exposure to ambient temperature. Therefore, the objectives of this study were to characterize and compare the differences in CI [...] Read more.
Although cold storage is commonly used to extend peach fruit shelf-life, chilling injury (CI) can develop during low-temperature storage conditions and be expressed during exposure to ambient temperature. Therefore, the objectives of this study were to characterize and compare the differences in CI occurrence as well as sugar metabolism-related genes and metabolites in ‘Red Haven’ peaches stored at 0 °C and 5 °C, followed or not by storage for 3 days (d) at 20 °C (to simulate retail shelf conditions for the evaluation of CI incidence), together with fruit stored at 20 °C, and to identify significant associations between peach CI and sugar metabolism via multivariate analysis. Fruit collected at commercial maturity was stored at 0 °C, 5 °C, and 20 °C and assessed at harvest (0 d) and at 1, 3, 5, 15, and 30 d of storage, followed or not by storage for 3 d at 20 °C. Peaches kept for 30 d at 5 °C plus 3 d at 20 °C exhibited CI, expressed as decreased expressible juice. CI susceptibility was associated with reduced sucrose and increased glucose and fructose, while sorbitol contents were also lower in fruit stored at 5 °C, compared to those stored at 0 °C. This was paralleled by decreased expression of sucrose biosynthesis-related genes and by increased expression of sucrose and sorbitol breakdown-related genes as early as after 5 d of storage at 5 °C. Sugar metabolism changes that occurred during cold storage were maintained after exposure for 3 d to a temperature of 20 °C. The correlations between the evaluated features implied that alterations in sugar metabolism can modulate changes in CI susceptibility. These findings suggest that storage at 0 °C better preserves the sucrose homeostasis of ‘Red Haven’ peaches, reducing CI risk. Full article
Show Figures

Figure 1

18 pages, 2164 KiB  
Article
Pre-Chilling CGA Application Alleviates Chilling Injury in Tomato by Maintaining Photosynthetic Efficiency and Altering Phenylpropanoid Metabolism
by Yanmei Li, Luis A. J. Mur, Qiang Guo and Xiangnan Xu
Plants 2025, 14(13), 2026; https://doi.org/10.3390/plants14132026 - 2 Jul 2025
Viewed by 318
Abstract
Chilling injury can limit the productivity of tomato (Solanum lycopersicum L.), especially in over-wintering greenhouse. We here explored the effect of the pre-application of chlorogenic acid (CGA) in mitigating the impact of chilling on tomato. Flowering plants subjected to either chilling (15 [...] Read more.
Chilling injury can limit the productivity of tomato (Solanum lycopersicum L.), especially in over-wintering greenhouse. We here explored the effect of the pre-application of chlorogenic acid (CGA) in mitigating the impact of chilling on tomato. Flowering plants subjected to either chilling (15 °C/5 °C, day/night) or pre-treatment with CGA followed by chilling for 6 days and then by a two-day control recovery period were compared to plants maintained at control conditions (25 °C/18 °C, day/night). Chilling significantly affected the expression of PSII CP43 Chlorophyll Apoprotein, NAD (P) H-Quinone Oxidoreductase Subunit 5 and ATP Synthase CF1 Beta Subunit, reduced leaf Fv/Fm and increased malondialdehyde (MDA) levels, suggesting elevated oxidative stress. These correlated with reduced shoot biomass. All these aspects were mitigated by pretreatment with CGA. Transcriptomic and metabolomic co-analysis indicated that CGA also suppressed the shikimate pathway, phenylpropanoid biosynthesis and phenylalanine accumulation but enhanced cinnamic acid and indole acetate synthesis. Hence, the pre-chilling CGA protected the tomato plant from chilling injury by maintaining light energy utilization and reprograming secondary metabolism. This study describes the mechanism through which CGA pre-treatment can be used to maintain tomato productivity under chilling conditions. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

18 pages, 3572 KiB  
Article
DNA Methylation Profile Changes in CpG Islands of Ethylene-Signaling Genes Regulated by Melatonin Were Involved in Alleviating Chilling Injury of Postharvest Tomato Fruit
by Jingrui Yan, Shuangshuang Shan, Jiangkuo Li, Zhengke Zhang, Jiali Yang, Wanli Zhang, Hongmiao Song, Xiangbin Xu and Wenhui Duan
Int. J. Mol. Sci. 2025, 26(13), 6170; https://doi.org/10.3390/ijms26136170 - 26 Jun 2025
Viewed by 289
Abstract
Melatonin (MT) has been reported to alleviate chilling injury (CI) in postharvest tomato fruit during low-temperature storage. In the present study, the DNA methylation profile changes in the CpG islands of ethylene signaling genes regulated by MT in postharvest tomato fruit during low-temperature [...] Read more.
Melatonin (MT) has been reported to alleviate chilling injury (CI) in postharvest tomato fruit during low-temperature storage. In the present study, the DNA methylation profile changes in the CpG islands of ethylene signaling genes regulated by MT in postharvest tomato fruit during low-temperature storage were detected. The MT treatment increased the content of total soluble solids (TSS) and enhanced the ethylene production of tomato fruit. Moreover, it decreased titratable acidity (TA) content, inhibited the activity of polygalacturonase (PG), and kept the firmness of tomato fruit under low-temperature storage. In the MT-treated tomato fruit, significant changes in DNA methylation of CpG island of SlACS10, LeCTR1, LeEIN3, SlERF-A1, and LeERT10 genes were induced; the expression of LeCTR1 was inhibited; and the expression of SlACS10, LeEIN3, and SlERF-A1 genes was increased, by which the ethylene signaling might be influenced and the CI was alleviated. The present results provide evidence that the CI of postharvest tomato fruit alleviated by MT might be related to the changes in DNA methylation of ethylene-signaling genes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 3193 KiB  
Case Report
Uncommon Urinary Actinomycosis Mimicking Upper Urinary Tract Urothelial Tumor: Case Report and Literature Review
by Patricia A. Meza-Meneses, Rodrigo Pérez Becerra, Gerardo Garza Sainz, Luis Trujillo Ortiz, Adrián Martinez Correa, Alan Rodrigo Pérez Soriano, Ruben Miguel Angel Santiago González, Aarón Delgado Corral, Omar Vieyra Valdez, Genaro Argüelles Morales, Mario Alberto Toledo Díaz, Alberto Saldivar Luna, Carlos Alberto Castro-Fuentes and Victor Osornio Sánchez
Microorganisms 2025, 13(5), 1033; https://doi.org/10.3390/microorganisms13051033 - 30 Apr 2025
Viewed by 745
Abstract
Urinary actinomycosis is a rare condition, often mimicking a urinary tract tumor. Due to its low prevalence, it can be challenging to diagnose and may be mistaken for malignancies. A 33-year-old female patient with a history of type 2 Diabetes Mellitus and recurrent [...] Read more.
Urinary actinomycosis is a rare condition, often mimicking a urinary tract tumor. Due to its low prevalence, it can be challenging to diagnose and may be mistaken for malignancies. A 33-year-old female patient with a history of type 2 Diabetes Mellitus and recurrent urinary tract infections presented to the emergency room with right renal fossa pain radiating to the right hypochondrium, fever with chills, nausea, and vomiting. Physical examination revealed a positive Giordano sign and tenderness at the ipsilateral middle and upper ureteral points. A contrast-enhanced CT scan showed a mass infiltrating the distal third of the right ureter, causing retrograde dilatation and hydronephrosis. Additionally, a liver injury with both liquid and solid components was observed. Therefore, given the suspicion of a urothelial tumor, a diagnostic cystoscopy and ureteroscopy were performed. Using interventional radiology, an abscessed liver lesion was drained, yielding purulent fluid. The histopathological examination revealed no evidence of malignancy. However, due to the strong suspicion of upper urinary tract urothelial carcinoma, a right radical nephroureterectomy with bladder cuff excision and retroperitoneal lymphadenectomy was performed. Histopathological examination ultimately confirmed urinary actinomycosis. Consequently, antibiotic therapy with oral amoxicillin 2 g every 12 h was initiated, leading to a good clinical response. Despite its low incidence, urinary actinomycosis should be considered as a differential diagnosis in cases suspected of urothelial tumors in the upper urinary tract. Increased awareness of this rare condition may help prevent unnecessary surgical interventions. Full article
Show Figures

Figure 1

23 pages, 11275 KiB  
Review
The Role and Regulatory Mechanism of Methionine Sulfoxide Reductase (Msr) in the Process of Chilling Injury of Fruits and Vegetables: A Review
by Feilong Yin, Liang Shuai, Mohd Termizi Yusof, Nurul Shazini Ramli, Azizah Misran, Yunfen Liu, Meiying He, Yuanli Liang and Mohd Sabri Pak Dek
Horticulturae 2025, 11(4), 422; https://doi.org/10.3390/horticulturae11040422 - 15 Apr 2025
Viewed by 686
Abstract
The failure to promptly eliminate excessive reactive oxygen species (ROS) leads to the oxidation of biological macromolecules such as proteins, which is a key factor in chilling injury (CI) in harvested fruits and vegetables. Methionine sulfoxide reductase (Msr) is a class of redox [...] Read more.
The failure to promptly eliminate excessive reactive oxygen species (ROS) leads to the oxidation of biological macromolecules such as proteins, which is a key factor in chilling injury (CI) in harvested fruits and vegetables. Methionine sulfoxide reductase (Msr) is a class of redox proteins that reduce methionine sulfoxide (MetSO) in oxidized proteins back to methionine (Met), thereby restoring protein function. In recent years, the role of Msr in protecting fruits and vegetables from CI has attracted increasing research interest. This review summarizes the classification, distribution, and subcellular localization of Msr in plants and examines its roles and regulatory mechanisms in mitigating CI. The discussion focuses on postharvest CI, ROS dynamics, and Msr-related regulatory pathways. This review provides insights into improving plant quality and enhancing cold resistance through genetic engineering. Full article
Show Figures

Figure 1

15 pages, 3178 KiB  
Article
Comparative Analysis of Chilling Injury in Banana Fruit During Storage: Physicochemical and Microstructural Changes, and Early Optical-Based Nondestructive Identification
by Hui Ma, Lingmeng Hu, Jingyuan Zhao, Jie He, Anqi Wen, Daizhu Lv, Zhi Xu, Weijie Lan and Leiqing Pan
Foods 2025, 14(8), 1319; https://doi.org/10.3390/foods14081319 - 11 Apr 2025
Cited by 1 | Viewed by 1080
Abstract
Chilling injury (CI) during postharvest storage seriously impairs bananas’ quality and marketability. This study systematically investigated CI mechanisms through physicochemical, microstructural, and optical analyses and innovatively developed a hyperspectral imaging (HSI)-based approach for early CI detection. Bananas stored at suboptimal (7 °C) and [...] Read more.
Chilling injury (CI) during postharvest storage seriously impairs bananas’ quality and marketability. This study systematically investigated CI mechanisms through physicochemical, microstructural, and optical analyses and innovatively developed a hyperspectral imaging (HSI)-based approach for early CI detection. Bananas stored at suboptimal (7 °C) and optimal (13 °C) conditions exhibited distinct physicochemical changes. CI progression was related to increased browning symptoms, an abnormal moisture redistribution (reduced pulp moisture content), and delayed softening. Microstructural analysis revealed membrane destabilization, cellular lysis, intercellular cavity formation, and inhibited starch hydrolysis under chilling stress. Hyperspectral microscope imaging (HMI) captured chilling-induced spectral variations (400–1000 nm), enabling the t-SNE-based clustering of CI-affected tissues. Machine learning models using first derivative (1-st)-processed spectra achieved a high accuracy. Both PLS-DA and RF had a 99% calibration accuracy and 98.5% prediction accuracy for CI classification. Notably, HSI detected spectral signatures of early CI (2 days post-chilling treatment) before visible symptoms, achieving a 100% identification accuracy with an optimized PLS-DA combined with 1-st processing. This study provides a theoretical basis for studying fruit CI mechanisms and a novel nondestructive optical method for early CI monitoring in postharvest supply chains. Full article
Show Figures

Figure 1

14 pages, 1475 KiB  
Article
Alleviation of Chilling Injury in Postharvest Sweet Basil (Ocimum basilicum L.) with Silicon and Abscisic Acid Applications
by Vivian Ly and Youbin Zheng
Agriculture 2025, 15(6), 643; https://doi.org/10.3390/agriculture15060643 - 18 Mar 2025
Viewed by 565
Abstract
Sweet basil (Ocimum basilicum L.) is highly susceptible to chilling injury (CI), resulting in the development of CI symptoms during cold storage that reduce postharvest quality and shelf life. This study evaluated whether silicon (Si) and abscisic acid (ABA) applications can mitigate [...] Read more.
Sweet basil (Ocimum basilicum L.) is highly susceptible to chilling injury (CI), resulting in the development of CI symptoms during cold storage that reduce postharvest quality and shelf life. This study evaluated whether silicon (Si) and abscisic acid (ABA) applications can mitigate these symptoms. In Trial 1, basil plants had a Si solution (189 mg/L Si from potassium silicate) or deionised water (control) applied during cultivation via rootzone irrigation or foliar spray. Some plants were also foliar sprayed with ABA (1000 mg/L) before harvest. In Trial 2, wollastonite was added to the growing media (0, 1, 2, 3, 4, 5 mL/L) as the Si source. Applying the Si solution using either method reduced leaf necrosis, fresh weight loss, and electrolyte leakage, extending shelf life to at least 14 days. There were also no negative impacts on plant performance during cultivation (chlorophyll content, shoot height, and canopy width). The ABA solution, alone or in combination with Si solution, reduced symptoms but less effectively, extending shelf life up to 8 days. Wollastonite had no positive effects. These findings suggest that Si solution applications are a promising strategy to alleviate CI during postharvest cold storage of basil at 3.5 °C. Full article
Show Figures

Figure 1

23 pages, 977 KiB  
Review
Molecular and Physiological Responses of Plants that Enhance Cold Tolerance
by Lixia Zhou, Fazal Ullah, Jixin Zou and Xianhai Zeng
Int. J. Mol. Sci. 2025, 26(3), 1157; https://doi.org/10.3390/ijms26031157 - 29 Jan 2025
Cited by 6 | Viewed by 2430
Abstract
Low-temperature stress, including chilling and freezing injuries, significantly impacts plant growth in tropical and temperate regions. Plants respond to cold stress by activating mechanisms that enhance freezing tolerance, such as regulating photosynthesis, metabolism, and protein pathways and producing osmotic regulators and antioxidants. Membrane [...] Read more.
Low-temperature stress, including chilling and freezing injuries, significantly impacts plant growth in tropical and temperate regions. Plants respond to cold stress by activating mechanisms that enhance freezing tolerance, such as regulating photosynthesis, metabolism, and protein pathways and producing osmotic regulators and antioxidants. Membrane stability is crucial, with cold-resistant plants exhibiting higher lipid unsaturation to maintain fluidity and normal metabolism. Low temperatures disrupt reactive oxygen species (ROS) metabolism, leading to oxidative damage, which is mitigated by antioxidant defenses. Hormonal regulation, involving ABA, auxin, gibberellins, and others, further supports cold adaptation. Plants also manage osmotic balance by accumulating osmotic regulators like proline and sugars. Through complex regulatory pathways, including the ICE1-CBF-COR cascade, plants optimize gene expression to survive cold stress, ensuring adaptability to freezing conditions. This study reviews the recent advancements in genetic engineering technologies aimed at enhancing the cold resistance of agricultural crops. The goal is to provide insights for further improving plant cold tolerance and developing new cold-tolerant varieties. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Defense against Abiotic Stress 2.0)
Show Figures

Figure 1

16 pages, 1970 KiB  
Article
Effects of IMAZALIL on the Storage Stability and Quality of ‘Sefri Ouled Abdellah’ and ‘Kingdom’ Pomegranate Varieties
by Chaimae El-Rhouttais, Zahra El Kettabi, Salah Laaraj, Abdelaziz Ed-Dra, Samir Fakhour, Ammadi Abdelillah, Kaoutar Elfazazi and Souad Salmaoui
Foods 2025, 14(3), 337; https://doi.org/10.3390/foods14030337 - 21 Jan 2025
Viewed by 1140
Abstract
Employing post-harvest treatments to maintain pomegranate fruit quality during storage is a prevalent practice within the food industry. IMAZALIL (IMZ), a fungicide, has demonstrated efficacy in reducing both the incidence of chilling injury symptoms and the presence of pathogenic fungi. This study aims [...] Read more.
Employing post-harvest treatments to maintain pomegranate fruit quality during storage is a prevalent practice within the food industry. IMAZALIL (IMZ), a fungicide, has demonstrated efficacy in reducing both the incidence of chilling injury symptoms and the presence of pathogenic fungi. This study aims to assess the impact of IMZ treatment on the technological quality (weight loss, color attributes (C* and h°), pH, titratable acidity, and total soluble solids), nutritional properties (total sugars content), and functional properties (total phenolic compounds (TPC) and total anthocyanin content (TAC)) in pomegranate fruits of the ‘Sefri Ouled Abdellah’ and ‘Kingdom’ cultivars. These fruits were collected in the Beni Mellal region and immediately stored at 4 °C for 120 days. Untreated pomegranates exhibited significant degradation in overall quality when stored in cold conditions. The fruits treated with IMZ are characterized by a major loss in weight (3.41% to 20.11%) compared to the control fruits (1.62% to 13.19%). This was accompanied by more pronounced color degradation in the IMZ-treated fruits relative to the control. This study substantiates the effectiveness of IMZ treatment in prolonging the post-harvest quality of pomegranates during cold storage, demonstrating superior efficacy in delaying losses in bioactive compounds by 39.44% and enhancing nutritional properties by 18.84%. This finding initiates the exploration of optimal IMZ concentrations and the best treatments to maintain the overall quality of pomegranate fruits. Full article
Show Figures

Figure 1

15 pages, 2875 KiB  
Article
Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs
by Shiliang Cao, Tao Yu, Gengbin Yang, Wenyue Li, Xuena Ma and Jianguo Zhang
Agriculture 2024, 14(11), 2048; https://doi.org/10.3390/agriculture14112048 - 14 Nov 2024
Viewed by 859
Abstract
Chilling injury during the germination stage (CIGS) of maize significantly hinders production, particularly in middle- and high-latitude regions, leading to slow germination, seed decay, and increased susceptibility to pathogens. This study dissects the genetic architecture of CIGS resistance expressed in terms of the [...] Read more.
Chilling injury during the germination stage (CIGS) of maize significantly hinders production, particularly in middle- and high-latitude regions, leading to slow germination, seed decay, and increased susceptibility to pathogens. This study dissects the genetic architecture of CIGS resistance expressed in terms of the relative germination rate (RGR) in maize through association mapping using genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs). A natural panel of 287 maize inbred lines was evaluated across multiple environments. The results revealed a broad-sense heritability of 0.68 for chilling tolerance, with 12 significant QTLs identified on chromosomes 1, 3, 5, 6, and 10. A genomic prediction analysis demonstrated that the rr-BLUP model outperformed other models in accuracy, achieving a moderate prediction accuracy of 0.44. This study highlights the potential of genomic selection (GS) to enhance chilling tolerance in maize, emphasizing the importance of training population size, marker density, and significant markers on prediction accuracy. These findings provide valuable insights for breeding programs aimed at improving chilling tolerance in maize. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

17 pages, 3747 KiB  
Article
The Application of 1-MCP in Combination with GABA Reduces Chilling Injury and Extends the Shelf Life in Tomato (Cv. Conquista)
by María C. Ruiz-Aracil, Fabián Guillén, Salvador Castillo, Domingo Martínez-Romero and Juan M. Valverde
Agriculture 2024, 14(11), 2040; https://doi.org/10.3390/agriculture14112040 - 13 Nov 2024
Cited by 1 | Viewed by 1447
Abstract
Tomatoes have a short shelf life, and refrigeration is commonly used to extend tomato quality. However, suboptimal temperatures can lead to chilling injury (CI), reducing their marketability. In this study, the combined application of 10 mM γ-aminobutyric acid (GABA) and 0.5 µL L [...] Read more.
Tomatoes have a short shelf life, and refrigeration is commonly used to extend tomato quality. However, suboptimal temperatures can lead to chilling injury (CI), reducing their marketability. In this study, the combined application of 10 mM γ-aminobutyric acid (GABA) and 0.5 µL L−1 of 1-methylcyclopropene (1-MCP) were used as strategies to reduce postharvest CI and prolong storability during tomato commercialization. Both treatments have individually demonstrated their effectiveness in lowering physiological disorders in tomatoes. When applied, the combined treatment resulted in the lowest CI and rot incidence levels compared with the control and individual treatments. Additionally, the combined application effectively delayed weight loss, fruit softening, respiration rate, ethylene production, and increased chlorophyll and flavonoid content. The synergistic application of these substances improved the postharvest quality during storage, reducing quality losses. For this reason, the combination of GABA and 1-MCP could be an effective tool to minimize tomato waste during commercialization by increasing resilience to cold storage and extending the overall fruit shelf life during refrigerated storage. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Graphical abstract

26 pages, 12845 KiB  
Article
Early Chilling Injury Symptom Development and Recovery of Mature Green Banana: Involvement of Ethylene under Different Severities of Chilling Stress
by Lan-Yen Chang and Jeffrey K. Brecht
Horticulturae 2024, 10(10), 1050; https://doi.org/10.3390/horticulturae10101050 - 1 Oct 2024
Cited by 1 | Viewed by 2082
Abstract
The involvement of stress ethylene in early chilling injury (CI) symptom development of mature-green (MG) banana fruit was examined using the ethylene action inhibitor, 1-methyclopropene (1-MCP). MG banana fruit pretreated with 0 or 50 μg L−1 1-MCP were stored at two chilling [...] Read more.
The involvement of stress ethylene in early chilling injury (CI) symptom development of mature-green (MG) banana fruit was examined using the ethylene action inhibitor, 1-methyclopropene (1-MCP). MG banana fruit pretreated with 0 or 50 μg L−1 1-MCP were stored at two chilling temperatures, 5 °C or 10 °C, for 0, 1, 12, or 72 h (different CI stresses), then transferred to 20 °C (rewarming) for 2 d. Irreversible CI symptoms that developed during 72 h storage at 5 or 10 °C included vascular browning and epidermal color parameters (L*, chroma, and hue angle). Some CI symptoms drastically intensified during exposure to 5 or 10 °C for 72 h, even being exacerbated after rewarming. Fruit in the other treatments suffered milder CI, and the recovery response progressed from slight and reversible to severe and irreversible with longer durations of exposure to lower temperatures. The effect of 1-MCP pretreatment was to attenuate the effect of chilling in terms of the CI symptom development (i.e., the browning of sub-epidermal tissues and the increasing of electrolyte efflux) and to promote recovery after rewarming, especially for the fruit stored at 5 °C, indicating the potential involvement of ethylene in membrane structural alterations under CI stress. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

Back to TopTop