Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = chemosensors, biosensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 885 KiB  
Review
Piezoelectric Chemosensors and Biosensors in Medical Diagnostics
by Miroslav Pohanka
Biosensors 2025, 15(3), 197; https://doi.org/10.3390/bios15030197 - 20 Mar 2025
Cited by 1 | Viewed by 3303
Abstract
This article explores the development and application of innovative piezoelectric sensors in point-of-care diagnostics. It highlights the significance of bedside tests, such as lateral flow and electrochemical tests, in providing rapid and accurate results directly at the patient’s location. This paper delves into [...] Read more.
This article explores the development and application of innovative piezoelectric sensors in point-of-care diagnostics. It highlights the significance of bedside tests, such as lateral flow and electrochemical tests, in providing rapid and accurate results directly at the patient’s location. This paper delves into the principles of piezoelectric assays, emphasizing their ability to detect disease-related biomarkers through mechanical stress-induced electrical signals. Various applications of piezoelectric chemosensors and biosensors are discussed, including their use in the detection of cancer biomarkers, pathogens, and other health-related analytes. This article also addresses the integration of piezoelectric materials with advanced sensing technologies to improve diagnostic accuracy and efficiency, offering a comprehensive overview of current advances and future directions in medical diagnostics. Full article
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 906
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

15 pages, 1459 KiB  
Article
New Torsional Surface Elastic Waves in Cylindrical Metamaterial Waveguides for Sensing Applications
by Piotr Kiełczyński, Krzysztof Wieja and Andrzej Balcerzak
Sensors 2025, 25(1), 143; https://doi.org/10.3390/s25010143 - 29 Dec 2024
Viewed by 778
Abstract
In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance [...] Read more.
In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude’s model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω. Negative elastic compliance (s44(1)ω<0) enables the emergence of new surface states, i.e., new types of surface elastic waves. In fact, the proposed torsional elastic surface waves can be considered as an elastic analog of Surface Plasmon Polariton (SPP) electromagnetic (optical) waves propagating along a metallic rod (cylinder) embedded in a dielectric medium. Consequently, we developed the corresponding analytical equations, for the dispersion relation and group velocity of the new torsional elastic surface wave. The newly discovered torsional elastic surface waves exhibit virtually all extraordinary properties of their electromagnetic SPP counterparts, such as strong subwavelength concentration of the wave energy in the vicinity of the cylindrical surface (r=a) of the guiding rod, very low phase and group velocities, etc. Therefore, the new torsional elastic surface waves can be used in: (a) near-field subwavelength acoustic imaging (super-resolution), (b) acoustic wave trapping (zero group and phase velocity), etc. Importantly, the newly discovered torsional elastic surface waves can form a basis for the development of a new generation of ultrasonic sensors (e.g., viscosity sensors), biosensors, and chemosensors with a very high mass sensitivity. Full article
(This article belongs to the Collection Ultrasound Transducers)
Show Figures

Figure 1

14 pages, 2350 KiB  
Article
Ultra-Selective and Sensitive Fluorescent Chemosensor Based on Phage Display-Derived Peptide with an N-Terminal Cu(II)-Binding Motif
by Marta Sosnowska, Tomasz Łęga, Dawid Nidzworski, Marcin Olszewski and Beata Gromadzka
Biosensors 2024, 14(11), 555; https://doi.org/10.3390/bios14110555 - 14 Nov 2024
Viewed by 1285
Abstract
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world’s water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both [...] Read more.
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world’s water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both low-cost and feasible, as well as ultra-selective and sensitive. This study explored the use of the NH2-Xxx-His motif-derived peptide from phage display technology for ultra-selective Cu2+ detection. Various Cu-binding M13 phage clones were isolated, and their affinity and cross-reactivity for different metal ions were determined. A detailed analysis of the amino acid sequence of the unique Cu-binding peptides was employed. For the development of an optical chemosensor, a peptide with an NH2-Xxx-His motif was selected. The dansyl group was incorporated during solid-phase peptide synthesis, and fluorescence detection assays were employed. The efficacy of the Cu2+-binding peptide was verified through spectroscopic measurements. In summary, we developed a highly selective and sensitive fluorescent chemosensor for Cu2+ detection based on a peptide sequence from a phage display library that carries the N-terminal Xxx-His motif. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

36 pages, 4519 KiB  
Review
MXene-Based Chemo-Sensors and Other Sensing Devices
by Ilya Navitski, Agne Ramanaviciute, Simonas Ramanavicius, Maksym Pogorielov and Arunas Ramanavicius
Nanomaterials 2024, 14(5), 447; https://doi.org/10.3390/nano14050447 - 28 Feb 2024
Cited by 26 | Viewed by 5008
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, [...] Read more.
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

18 pages, 1884 KiB  
Review
Simple Chemical and Cholinesterase Methods for the Detection of Nerve Agents Using Optical Evaluation
by Aneta Břízová and Vladimír Pitschmann
Biosensors 2023, 13(12), 995; https://doi.org/10.3390/bios13120995 - 22 Nov 2023
Cited by 5 | Viewed by 2403
Abstract
The extreme toxicity of nerve agents and the broad spectrum of their physical and chemical properties, enabling the use of these agents in a variety of tactical situations, is a continuing challenge in maintaining the knowledge and capability to detect them, as well [...] Read more.
The extreme toxicity of nerve agents and the broad spectrum of their physical and chemical properties, enabling the use of these agents in a variety of tactical situations, is a continuing challenge in maintaining the knowledge and capability to detect them, as well as in finding new effective methods. Despite significant advances in the instrumentation of the analysis of nerve agents, relatively simple methods based on the evaluation of colour signals (absorption and fluorescence), in particular those using the cholinesterase reaction, continue to be of importance. This review provides a brief presentation of the current status of these simple methods, with an emphasis on military applications, and illustrates the high interest of the professional community in their further development. At the same time, it also contains some peculiarities (high reliability and durability, resistance to extreme climatic conditions, work in deployed means of protection, low purchase prices, economic availability especially in a state of war, etc.) that the authors believe research and development of simple methods and means for the detection of nerve agents should respect. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

17 pages, 11569 KiB  
Article
Pysanka-Inspired Electrode Modification with Aptamer Encapsulation in ZIF-8 for Urine Creatinine Electrochemical Biosensing
by Antra Ganguly, Anirban Paul and Shalini Prasad
Chemosensors 2023, 11(11), 557; https://doi.org/10.3390/chemosensors11110557 - 6 Nov 2023
Cited by 4 | Viewed by 3604
Abstract
Drawing inspiration from the several thousand beautiful Pysanky egg art of Ukraine, we have developed a novel material, Aptamer–Gold Nanoparticles (AuNPs)@ZIF-8, that can be used for building sensitive and highly stable POC biosensors for longitudinal health mapping. Here, we demonstrate a sensitive and [...] Read more.
Drawing inspiration from the several thousand beautiful Pysanky egg art of Ukraine, we have developed a novel material, Aptamer–Gold Nanoparticles (AuNPs)@ZIF-8, that can be used for building sensitive and highly stable POC biosensors for longitudinal health mapping. Here, we demonstrate a sensitive and specific novel electrochemical biosensor, made of a novel synthesized in situ encapsulated aptamer-AuNPs@ZIF-8 composite, for monitoring levels of creatinine (0.1–1000 μg/mL). In this work, we have reported the synthetic protocol for the first-of-a-kind in situ encapsulation of aptamer and AuNPs together in a ZIF-8 matrix, and explored the characteristic properties of this novel material composite using standard analytical techniques and its application for biosensor application. The as-synthesized material, duly characterized using various physicochemical analytical methods, portrays the characteristics of the unique encapsulation strategy to develop the first-of-a-kind aptamer and AuNP encapsulation. Non-faradaic Electrochemical Impedance Spectroscopy (EIS) and Chronoamperometry were used to characterize the interfacial electrochemical properties. The biosensor performance was first validated using artificial urine in a controlled buffer medium. The stability and robustness were tested using a real human urine medium without filtration or sample treatment. Being versatile, this Ukrainian-art-inspired biosensor can potentially move the needle towards developing the next generation of sample-in-result-out robust POC diagnostics. Full article
Show Figures

Figure 1

22 pages, 11505 KiB  
Review
Interplay between Nanoparticles and Phosphorus Dendrimers, and Their Properties
by Anne-Marie Caminade
Molecules 2023, 28(15), 5739; https://doi.org/10.3390/molecules28155739 - 29 Jul 2023
Cited by 1 | Viewed by 2084
Abstract
This review presents the state of the art of interactions between two different families of nanoobjects: nanoparticles—mainly metal nanoparticles, and dendrimers—mainly phosphorhydrazone dendrimers (or dendrons). The review firstly presents the encapsulation/protection of existing nanoparticles (organic or metallic) by phosphorus-based dendrimers and dendrons. In [...] Read more.
This review presents the state of the art of interactions between two different families of nanoobjects: nanoparticles—mainly metal nanoparticles, and dendrimers—mainly phosphorhydrazone dendrimers (or dendrons). The review firstly presents the encapsulation/protection of existing nanoparticles (organic or metallic) by phosphorus-based dendrimers and dendrons. In the second part, several methods for the synthesis of metal nanoparticles, thanks to the dendrimer that acts as a template, are presented. The properties of the associations between dendrimers and nanoparticles are emphasized throughout the review. These properties mainly concern the elaboration of diverse types of hybrid materials, some of them being used as sensitive chemosensors or biosensors. Several examples concerning catalysis are also given, displaying in particular the efficient recovery and reuse of the catalytic entities. Full article
(This article belongs to the Special Issue Women in Nanochemistry)
Show Figures

Figure 1

20 pages, 1476 KiB  
Review
New Trends in Uric Acid Electroanalysis
by Ligia Chelmea, Mihaela Badea, Ioan Scarneciu, Marius Alexandru Moga, Lorena Dima, Patrizia Restani, Cecilia Murdaca, Daniel Ciurescu and Laura Elena Gaman
Chemosensors 2023, 11(6), 341; https://doi.org/10.3390/chemosensors11060341 - 9 Jun 2023
Cited by 16 | Viewed by 4162
Abstract
Considering the increasing incidence of hyperuricemia and oxidative stress-related diseases, quantification of uric acid has become essential. Therefore, the evolution on sensing devices being favorable, these questions are more often addressed to the field of medical researchers. As for many metabolites, (bio)sensors provide [...] Read more.
Considering the increasing incidence of hyperuricemia and oxidative stress-related diseases, quantification of uric acid has become essential. Therefore, the evolution on sensing devices being favorable, these questions are more often addressed to the field of medical researchers. As for many metabolites, (bio)sensors provide a reliable method for screening and evaluation of uric acid status. Due to the numerous categories of (bio)sensors available, choosing the appropriate one is a challenge. This study reviews the scientific information concerning the most suitable (bio)sensors for quantification of uric acid, presenting a list of sensors from the last decade, categorized by configurations and materials. In addition, this review includes a comparison of sensors according to their interference behavior and sensitivity, offering an objective perspective for identifying devices that are suitable for clinical applications. Full article
Show Figures

Graphical abstract

17 pages, 3218 KiB  
Article
The Peroxidase-like Nanocomposites as Hydrogen Peroxide-Sensitive Elements in Cholesterol Oxidase-Based Biosensors for Cholesterol Assay
by Olha Demkiv, Wojciech Nogala, Nataliya Stasyuk, Nadiya Grynchyshyn, Bohdan Vus and Mykhailo Gonchar
J. Funct. Biomater. 2023, 14(6), 315; https://doi.org/10.3390/jfb14060315 - 7 Jun 2023
Cited by 4 | Viewed by 2294
Abstract
Catalytically active nanomaterials, in particular, nanozymes, are promising candidates for applications in biosensors due to their excellent catalytic activity, stability and cost-effective preparation. Nanozymes with peroxidase-like activities are prospective candidates for applications in biosensors. The purpose of the current work is to develop [...] Read more.
Catalytically active nanomaterials, in particular, nanozymes, are promising candidates for applications in biosensors due to their excellent catalytic activity, stability and cost-effective preparation. Nanozymes with peroxidase-like activities are prospective candidates for applications in biosensors. The purpose of the current work is to develop cholesterol oxidase-based amperometric bionanosensors using novel nanocomposites as peroxidase (HRP) mimetics. To select the most electroactive chemosensor on hydrogen peroxide, a wide range of nanomaterials were synthesized and characterized using cyclic voltammetry (CV) and chronoamperometry. Pt NPs were deposited on the surface of a glassy carbon electrode (GCE) in order to improve the conductivity and sensitivity of the nanocomposites. The most HRP-like active bi-metallic CuFe nanoparticles (nCuFe) were placed on a previously nano-platinized electrode, followed by conjugation of cholesterol oxidase (ChOx) in a cross-linking film formed by cysteamine and glutaraldehyde. The constructed nanostructured bioelectrode ChOx/nCuFe/nPt/GCE was characterized by CV and chronoamperometry in the presence of cholesterol. The bionanosensor (ChOx/nCuFe/nPt/GCE) shows a high sensitivity (3960 A·M−1·m−2) for cholesterol, a wide linear range (2–50 µM) and good storage stability at a low working potential (−0.25 V vs. Ag/AgCl/3 M KCl). The constructed bionanosensor was tested on a real serum sample. A detailed comparative analysis of the bioanalytical characteristics of the developed cholesterol bionanosensor and the known analogs is presented. Full article
Show Figures

Figure 1

17 pages, 1601 KiB  
Review
The Use of Sensors in Blood-Brain Barrier-on-a-Chip Devices: Current Practice and Future Directions
by András Kincses, Judit P. Vigh, Dániel Petrovszki, Sándor Valkai, Anna E. Kocsis, Fruzsina R. Walter, Hung-Yin Lin, Jeng-Shiung Jan, Mária A. Deli and András Dér
Biosensors 2023, 13(3), 357; https://doi.org/10.3390/bios13030357 - 8 Mar 2023
Cited by 15 | Viewed by 4859
Abstract
The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier [...] Read more.
The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques. Full article
(This article belongs to the Special Issue Lab-on-a-Chip Devices and Biosensors to Model Biological Barriers)
Show Figures

Figure 1

22 pages, 6718 KiB  
Review
Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors
by Giancarla Alberti, Camilla Zanoni, Stefano Spina, Lisa Rita Magnaghi and Raffaela Biesuz
Chemosensors 2023, 11(2), 144; https://doi.org/10.3390/chemosensors11020144 - 15 Feb 2023
Cited by 18 | Viewed by 3674
Abstract
In recent years, plasmonic sensors have been used in various fields ranging from environmental monitoring, pharmaceutical analysis, medical diagnosis, and food quality assessment to forensics. A significant amount of information on plasmonic sensors and their applications already exists and there is a continuing [...] Read more.
In recent years, plasmonic sensors have been used in various fields ranging from environmental monitoring, pharmaceutical analysis, medical diagnosis, and food quality assessment to forensics. A significant amount of information on plasmonic sensors and their applications already exists and there is a continuing development of reliable, selective, sensitive, and low-cost sensors. Combining molecularly imprinting technology with plasmonic sensors is an increasingly timely and important challenge to obtain portable, easy-to-use, particularly selective devices helpful in detecting analytes at the trace level. This review proposes an overview of the applications of molecularly imprinted plasmonic chemosensors and biosensors, critically discussing the performances, pros, and cons of the more recently developed devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Plasmonic Sensor)
Show Figures

Figure 1

26 pages, 1573 KiB  
Review
Carbon Materials for Organophosphate Pesticide Sensing
by Tamara Lazarević-Pašti
Chemosensors 2023, 11(2), 93; https://doi.org/10.3390/chemosensors11020093 - 27 Jan 2023
Cited by 8 | Viewed by 3419
Abstract
Organophosphates are mainly used as pesticides to protect crops from pests. Because organophosphate pesticides’ use has expanded dramatically worldwide, accurate monitoring of their concentrations in the environment and food has become of utmost importance. Once considered acutely toxic due to acetylcholinesterase inhibition, nowadays [...] Read more.
Organophosphates are mainly used as pesticides to protect crops from pests. Because organophosphate pesticides’ use has expanded dramatically worldwide, accurate monitoring of their concentrations in the environment and food has become of utmost importance. Once considered acutely toxic due to acetylcholinesterase inhibition, nowadays organophosphates are classified as extremely dangerous compounds, with a broad spectrum of toxicity types, by the World Health Organization. Having in mind their extensive use and diverse harmful effects, it is necessary to develop easy, rapid, and highly sensitive methods for organophosphate detection. Regardless of numerous conventional techniques for organophosphate detection, the construction of portable sensors is required to make routine analysis possible. Extensive literature on the different sensors for organophosphate detection is available. Many of them rely on the use of various carbon materials. There are many classes of carbon materials used in sensing element construction, as well as supporting materials. This review focuses on electrochemical and optical sensors based on carbon materials. Special attention is paid to the selectivity, sensitivity, stability, and reusability of reviewed sensors. Full article
(This article belongs to the Special Issue Carbon Nanomaterials and Related Materials for Sensing Applications)
Show Figures

Figure 1

18 pages, 3597 KiB  
Review
Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors
by Vincentas Maciulis, Almira Ramanaviciene and Ieva Plikusiene
Nanomaterials 2022, 12(24), 4413; https://doi.org/10.3390/nano12244413 - 10 Dec 2022
Cited by 31 | Viewed by 5429
Abstract
Nanostructured materials formed from metal oxides offer a number of advantages, such as large surface area, improved mechanical and other physical properties, as well as adjustable electronic properties that are important in the development and application of chemical sensors and biosensor design. Nanostructures [...] Read more.
Nanostructured materials formed from metal oxides offer a number of advantages, such as large surface area, improved mechanical and other physical properties, as well as adjustable electronic properties that are important in the development and application of chemical sensors and biosensor design. Nanostructures are classified using the dimensions of the nanostructure itself and their components. In this review, various types of nanostructures classified as 0D, 1D, 2D, and 3D that were successfully applied in chemical sensors and biosensors, and formed from metal oxides using different synthesis methods, are discussed. In particular, significant attention is paid to detailed analysis and future prospects of the synthesis methods of metal oxide nanostructures and their integration in chemical sensors and biosensor design. Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials)
Show Figures

Graphical abstract

30 pages, 40993 KiB  
Review
An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors
by Ning Xia, Yong Chang, Qian Zhou, Shoujie Ding and Fengli Gao
Biosensors 2022, 12(11), 928; https://doi.org/10.3390/bios12110928 - 26 Oct 2022
Cited by 37 | Viewed by 4858
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific [...] Read more.
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis. Full article
Show Figures

Figure 1

Back to TopTop