Carbon Materials for Organophosphate Pesticide Sensing
Abstract
:1. Introduction
2. Sensor Components
- Electrochemical sensors, which transform the result of an electrochemical interaction (spontaneous or stimulated electrically) between the analyte and electrode into a signal. There are three main subgroups of electrochemical sensors: voltammetric/amperometric, potentiometric, and impedimetric.
- Electrical sensors with no electrochemical processes taking place. Instead, the signal comes from the change in the electrical properties of the analyte caused by the interaction with the receptor. Some of them are metal oxide semiconductor sensors, organic semiconductor sensors, electrolytic conductivity sensors, and electric permittivity sensors.
- Optical sensors, which transform optical changes created as a result of an interaction of the analyte with the receptor into a useful signal. The type of optical phenomena measured can be used for their subdivision into absorbance, reflectance, luminescence, fluorescence, refractive index, optothermal effect, or light scattering.
- Mass-sensitive sensors, which transform the change of mass caused by the accumulation of the analyte on a special surface able to change some of its properties because of that accumulation. In this group, there are piezoelectric and surface acoustic wave sensors.
- Magnetic sensors, which measure a change in the paramagnetic properties of an analyte.
- Thermometric sensors, which measure the heat effects of a specific chemical reaction or adsorption taking place with the participation of an analyte [21].
3. Sensor Characteristics
3.1. What Makes a Sensor Selective?
3.2. What Makes a Sensor Sensitive?
3.3. What Makes a Sensor Stable?
3.4. Other Relevant Properties
4. Carbon Materials in Sensors—Underlying Properties Enabling Their Use
5. Electrochemical Sensors for Organophosphate Detection Based on Carbon Materials
6. Optical Sensors for Organophosphate Detection Based on Carbon Materials
7. Conclusions and Future Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clune, A.L.; Ryan, P.B.; Barr, D.B. Have regulatory efforts to reduce organophosphorus insecticide exposures been effective? Environ. Health Perspect. 2012, 120, 521–525. [Google Scholar] [CrossRef] [PubMed]
- European Union to Ban Chlorpyrifos after January 31. 2020. Available online: https://www.natlawreview.com/article/european-union-to-ban-chlorpyrifos-after-january-31-2020 (accessed on 15 December 2022.).
- Zikankuba, V.L.; Mwanyika, G.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Lazarevic-Pasti, T.; Leskovac, A.; Vasic, V. Myeloperoxidase inhibitors as potential drugs. Curr. Drug Metab. 2015, 16, 168–190. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of acetylcholinesterase activity: From Alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem. 2017, 24, 3283–3309. [Google Scholar] [CrossRef] [PubMed]
- Gilboa-Geffen, A.; Hartmann, G.; Soreq, H. Stressing hematopoiesis and immunity: An acetylcholinesterase window into nervous and immune system interactions. Front. Mol. Neurosci. 2012, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.F.; Menéndez, P. Linking pesticide exposure with pediatric leukemia: Potential underlying mechanisms. Int. J. Mol. Sci. 2016, 17, 461. [Google Scholar] [CrossRef] [Green Version]
- Alavanja, M.C.; Bonner, M.R. Occupational pesticide exposures and cancer risk: A review. J. Toxicol. Environ. Health Part B 2012, 15, 238–263. [Google Scholar] [CrossRef]
- National Collaborating Centre for Mental Health. Depression in Adults with a Chronic Physical Health Problem: Treatment and Management; National Collaborating Centre for Mental Health: London, UK, 2010. [Google Scholar]
- Sanne, B.; Mykletun, A.; Dahl, A.A.; Moen, B.E.; Tell, G.S. Occupational differences in levels of anxiety and depression: The Hordaland Health Study. J. Occup. Environ. Med. 2003, 45, 628–638. [Google Scholar] [CrossRef]
- Harrison, V.; Ross, S.M. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. Environ. Res. 2016, 151, 528–536. [Google Scholar] [CrossRef]
- Ding, Y.; Han, M.; Wu, Z.; Zhang, R.; Li, A.; Yu, K.; Wang, Y.; Huang, W.; Zheng, X.; Mai, B. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea. Environ. Int. 2020, 143, 105919. [Google Scholar] [CrossRef]
- Peng, L.-M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442. [Google Scholar] [CrossRef]
- Walcarius, A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. Sensors 2017, 17, 1863. [Google Scholar] [CrossRef] [Green Version]
- Bhat, V.S.; Supriya, S.; Hegde, G. Biomass derived carbon materials for electrochemical sensors. J. Electrochem. Soc. 2019, 167, 037526. [Google Scholar] [CrossRef] [Green Version]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Gupta, A.; Kumari, A.; Kaushal, N.; Saifi, A.; Mohanta, G.; Sachdev, A.; Kumar, K.; Deep, A.; Saha, A. Recent Advances in the Applications of Carbon Nanostructures on Optical Sensing of Emerging Aquatic Pollutants. ChemNanoMat 2022, 8, e202200011. [Google Scholar] [CrossRef]
- Pundir, C.S.; Malik, A.; Pretty. Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef]
- Christopher, F.C.; Kumar, P.S.; Christopher, F.J.; Joshiba, G.J.; Madhesh, P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J. Clean. Prod. 2020, 269, 122356. [Google Scholar] [CrossRef]
- Sradha S, A.; George, L.; P, K.; Varghese, A. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: A review. Crit. Rev. Toxicol. 2022, 52, 431–448. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Yetisen, A.K. Commercialization of microfluidic devices. Trends Biotechnol. 2014, 32, 347–350. [Google Scholar] [CrossRef]
- Winzor, D.J.; Sawyer, W.H. Quantitative Characterization of Ligand Binding; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Wyman, J.; Gill, S.J. Binding and Linkage: Functional Chemistry of Biological Macromolecules; University Science Books: Sausalito, CA, USA, 1990. [Google Scholar]
- Jiménez, D.; Díaz-Díaz, G.; Blanco-López, M.C.; Lobo-Castañón, M.J.; Miranda, A.; Tuñón-Blanco, P. Chapter 1—Molecularly Imprinted Electrochemical Sensors: Past, Present, and Future; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–34. [Google Scholar]
- Kozitsina, A.N.; Svalova, T.S.; Malysheva, N.N.; Okhokhonin, A.V.; Vidrevich, M.B.; Brainina, K.Z. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. Biosensors 2018, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzyadevych, S.; Arkhypova, V.; Soldatkin, A.; El’Skaya, A.; Martelet, C.; Jaffrezic-Renault, N. Amperometric enzyme biosensors: Past, present and future. Irbm 2008, 29, 171–180. [Google Scholar] [CrossRef]
- Voet, D.; Voet, J.G. Biochemistry; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, C.C. Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnol. Adv. 2011, 29, 75–83. [Google Scholar] [CrossRef]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [Green Version]
- Bondžić, A.M.; Lazarević-Pašti, T.D.; Leskovac, A.R.; Petrović, S.; Čolović, M.B.; Parac-Vogt, T.N.; Janjić, G.V. A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules—The role in the mechanism of AChE inhibition. Eur. J. Pharm. Sci. 2020, 151, 105376. [Google Scholar] [CrossRef]
- Rashid, J.I.A.; Yusof, N.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sens. Res. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Harris, L.J.; Larson, S.B.; Hasel, K.W.; McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 1997, 36, 1581–1597. [Google Scholar] [CrossRef]
- Teyssandier, J.; De Feyter, S.; Mali, K.S. Host–guest chemistry in two-dimensional supramolecular networks. Chem. Commun. 2016, 52, 11465–11487. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Chen, X. Host-guest chemistry in supramolecular theranostics. Theranostics 2019, 9, 3041. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 2015, 115, 7794–7839. [Google Scholar] [CrossRef]
- Patil, A.; Saha, D.; Ganguly, S. A quantum biomimetic electronic nose sensor. Sci. Rep. 2018, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Song, X.; Yu, H.; Hu, C.; Liu, M.; Cai, J.; Zhao, L.; Chen, Y.; Yang, P. Supramolecular recognition of A-tracts DNA by calix [4] carbazole. Sens. Actuators B Chem. 2018, 259, 177–182. [Google Scholar] [CrossRef]
- Athar, M.; Lone, M.Y.; Jha, P.C. Recognition of anions using urea and thiourea substituted calixarenes: A density functional theory study of non-covalent interactions. Chem. Phys. 2018, 501, 68–77. [Google Scholar] [CrossRef]
- Español, E.S.; Villamil, M.M. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Göde, C.; Yola, M.L.; Yılmaz, A.; Atar, N.; Wang, S. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe (III), Cd (II) and Pb (II) ions. J. Colloid Interface Sci. 2017, 508, 525–531. [Google Scholar] [CrossRef]
- Oueslati, I.; Ghrairi, A.; Ribeiro, E.S.; Batista de Carvalho, L.A.E.; Gil, J.M.; Paixao, J.A. Calixarene functionalization of TiO2 nanoarrays: An effective strategy for enhancing the sensor versatility. J. Mater. Chem. A 2018, 6, 10649–10654. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, H.; Gao, J.; Liu, X.; Gao, X.; Lu, X.; Fang, G.; Wang, J.; Li, J. Upconversion particle@ Fe3O4@ molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta 2018, 181, 95–103. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Carr, J.J. Introduction to Biomedical Equipment Technology; Pearson Education: London, UK, 2001. [Google Scholar]
- Belenkov, E.A.; Greshnyakov, V.A. Classification schemes for carbon phases and nanostructures. New Carbon Mater. 2013, 28, 273–282. [Google Scholar] [CrossRef]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, J.; Zhang, Y.; Chen, J.; Zhao, Y.; Niu, Y.; Yu, C. Cerium dioxide-doped carboxyl fullerene as novel nanoprobe and catalyst in electrochemical biosensor for amperometric detection of the CYP2C19*2 allele in human serum. Biosens. Bioelectron. 2018, 102, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhou, L.; Chen, J.; Yan, F.; Liu, J.; Dong, X.; Xi, F.; Chen, P. Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. ACS Nano 2018, 12, 12673–12681. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Ma, J.J.; Chen, J.R.; Feng, H. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens. Bioelectron. 2014, 60, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yan, X.; Qiao, S.; Lu, G.; Su, X. Yellow-Emissive Carbon Dot-Based Optical Sensing Platforms: Cell Imaging and Analytical Applications for Biocatalytic Reactions. ACS Appl. Mater. Interfaces 2018, 10, 7737–7744. [Google Scholar] [CrossRef]
- Zheng, M.; Ruan, S.; Liu, S.; Sun, T.; Qu, D.; Zhao, H.; Xie, Z.; Gao, H.; Jing, X.; Sun, Z. Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano 2015, 9, 11455–11461. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G.; Pašti, I.; Mentus, S. One-dimensional nitrogen-containing carbon nanostructures. Prog. Mater. Sci. 2015, 69, 61–182. [Google Scholar] [CrossRef]
- Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, 2581–2602. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [Green Version]
- Pašti, I.A.; Jovanović, A.; Dobrota, A.S.; Mentus, S.V.; Johansson, B.; Skorodumova, N.V. Atomic adsorption on pristine graphene along the Periodic Table of Elements—From PBE to non-local functionals. Appl. Surf. Sci. 2018, 436, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Pašti, I.A.; Jovanović, A.; Dobrota, A.S.; Mentus, S.V.; Johansson, B.; Skorodumova, N.V. Atomic adsorption on graphene with a single vacancy: Systematic DFT study through the periodic table of elements. Phys. Chem. Chem. Phys. 2018, 20, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Zhou, Y.; Li, Y.; Li, C.; Peng, H.; Zhang, J.; Liu, Z.; Dai, L.; Shi, G. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248. [Google Scholar] [CrossRef] [Green Version]
- Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Vul’, A.Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 149. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Liu, J.; Bao, C. Measuring the specific surface area of monolayer graphene oxide in water. Mater. Lett. 2020, 261, 127098. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chem. Eng. J. 2014, 251, 422–434. [Google Scholar] [CrossRef]
- Graphene Oxide. Available online: https://www.graphenea.com/collections/graphene-oxide/products/graphene-oxide-4-mg-ml-water-dispersion-1000-ml (accessed on 15 December 2022.).
- Pašti, I.A.; Janošević Ležaić, A.; Gavrilov, N.M.; Ćirić-Marjanović, G.; Mentus, S.V. Nanocarbons derived from polymers for electrochemical energy conversion and storage—A review. Synth. Met. 2018, 246, 267–281. [Google Scholar] [CrossRef]
- Breitenbach, S.; Gavrilov, N.; Pašti, I.; Unterweger, C.; Duchoslav, J.; Stifter, D.; Hassel, A.W.; Fürst, C. Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications: Capacitive Properties vs. Oxygen Reduction Reaction Catalysis. C 2021, 7, 55. [Google Scholar] [CrossRef]
- Breitenbach, S.; Unterweger, C.; Lumetzberger, A.; Duchoslav, J.; Stifter, D.; Hassel, A.W.; Fürst, C. Viscose-based porous carbon fibers: Improving yield and porosity through optimization of the carbonization process by design of experiment. J. Porous Mater. 2021, 28, 727–739. [Google Scholar] [CrossRef]
- Barbera, K.; Frusteri, L.; Italiano, G.; Spadaro, L.; Frusteri, F.; Perathoner, S.; Centi, G. Low-temperature graphitization of amorphous carbon nanospheres. Chin. J. Catal. 2014, 35, 869–876. [Google Scholar] [CrossRef]
- Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste biomass adsorbents for copper removal from industrial wastewater—A review. J. Hazard. Mater. 2013, 263 Pt 2, 322–333. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Lau, L.C.; Lee, K.T.; Mohamed, A. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. J. Environ. Chem. Eng. 2013, 1, 658–666. [Google Scholar] [CrossRef]
- Tay, T.; Ucar, S.; Karagöz, S. Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater. 2009, 165, 481–485. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F.; Molina-Sabio, M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview. Carbon 1992, 30, 1111–1118. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F.; Molina-Sabio, M.; González, M.T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 1995, 33, 15–23. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Breitenbach, S.; Lumetzberger, A.; Hobisch, M.A.; Unterweger, C.; Spirk, S.; Stifter, D.; Fürst, C.; Hassel, A.W. Supercapacitor Electrodes from Viscose-Based Activated Carbon Fibers: Significant Yield and Performance Improvement Using Diammonium Hydrogen Phosphate as Impregnating Agent. C 2020, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Xia, Y.; Wan, X.; Yang, S.; Cai, Z.; Ye, Y.; Li, G. Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater. Sci. Eng. C 2020, 109, 110615. [Google Scholar] [CrossRef]
- Kanoun, O.; Lazarević-Pašti, T.; Pašti, I.; Nasraoui, S.; Talbi, M.; Brahem, A.; Adiraju, A.; Sheremet, E.; Rodriguez, R.D.; Ben Ali, M.; et al. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors 2021, 21, 4131. [Google Scholar] [CrossRef]
- Gupta, B.D.; Pathak, A.; Semwal, V. Carbon-Based Nanomaterials for Plasmonic Sensors: A Review. Sensors 2019, 19, 3536. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. [Google Scholar] [CrossRef]
- Shang, J.; Ma, L.; Li, J.; Ai, W.; Yu, T.; Gurzadyan, G.G. The Origin of Fluorescence from Graphene Oxide. Sci. Rep. 2012, 2, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, S.H.K.; Chan, K.K.; Tjin, S.C.; Yong, K.-T. Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review. Sensors 2020, 20, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernaez, M.; Zamarreño, C.R.; Melendi-Espina, S.; Bird, L.R.; Mayes, A.G.; Arregui, F.J. Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors 2017, 17, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wulf, V.; Bisker, G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. Nano Lett. 2022, 22, 9205–9214. [Google Scholar] [CrossRef] [PubMed]
- Nißler, R.; Ackermann, J.; Ma, C.; Kruss, S. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Anal. Chem. 2022, 94, 9941–9951. [Google Scholar] [CrossRef]
- Bao, L.; Cui, X.; Wang, X.; Wu, J.; Guo, M.; Yan, N.; Chen, C. Carbon Nanotubes Promote the Development of Intestinal Organoids through Regulating Extracellular Matrix Viscoelasticity and Intracellular Energy Metabolism. ACS Nano 2021, 15, 15858–15873. [Google Scholar] [CrossRef]
- Farrera, C.; Torres Andón, F.; Feliu, N. Carbon Nanotubes as Optical Sensors in Biomedicine. ACS Nano 2017, 11, 10637–10643. [Google Scholar] [CrossRef]
- Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320, 356–358. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; He, Y.; Li, S.; Cui, H. Amino acids as the source for producing carbon nanodots: Microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 2012, 48, 9634–9636. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Chang, H.-T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups. Chem. Commun. 2012, 48, 3984–3986. [Google Scholar] [CrossRef]
- Salinas-Castillo, A.; Ariza-Avidad, M.; Pritz, C.; Camprubí-Robles, M.; Fernández, B.; Ruedas-Rama, M.J.; Megia-Fernández, A.; Lapresta-Fernández, A.; Santoyo-Gonzalez, F.; Schrott-Fischer, A.; et al. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 2013, 49, 1103–1105. [Google Scholar] [CrossRef]
- Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488. [Google Scholar] [CrossRef]
- Sun, D.; Ban, R.; Zhang, P.-H.; Wu, G.-H.; Zhang, J.-R.; Zhu, J.-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424–434. [Google Scholar] [CrossRef]
- Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(iii) detection. J. Mater. Chem. A 2015, 3, 542–546. [Google Scholar] [CrossRef]
- Jiang, G.; Jiang, T.; Li, X.; Wei, Z.; Du, X.; Wang, X. Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination. Mater. Res. Express 2014, 1, 025708. [Google Scholar] [CrossRef]
- Chan, K.K.; Yap, S.H.K.; Yong, K.-T. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Lett. 2018, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Yu, P.; Wen, X.; Toh, Y.-R.; Tang, J. Temperature-Dependent Fluorescence in Carbon Dots. J. Phys. Chem. C 2012, 116, 25552–25557. [Google Scholar] [CrossRef]
- Meng, X.; Chang, Q.; Xue, C.; Yang, J.; Hu, S. Full-colour carbon dots: From energy-efficient synthesis to concentration-dependent photoluminescence properties. Chem. Commun. 2017, 53, 3074–3077. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Neitzel, I.; Etzold, B.J.M.; Peterson, A.; Palmese, G.; Gogotsi, Y. Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network. ACS Nano 2011, 5, 7494–7502. [Google Scholar] [CrossRef]
- Plakhotnik, T.; Aman, H.; Chang, H.-C. All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz−1/2. Nanotechnology 2015, 26, 245501. [Google Scholar] [CrossRef] [PubMed]
- Plakhotnik, T.; Doherty, M.W.; Cole, J.H.; Chapman, R.; Manson, N.B. All-Optical Thermometry and Thermal Properties of the Optically Detected Spin Resonances of the NV—Center in Nanodiamond. Nano Lett. 2014, 14, 4989–4996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Edmonds, T.E. Voltammetric and amperometric transducers. In Chemical Sensors; Edmonds, T.E., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 193–213. [Google Scholar]
- Mello, L.D.; Kubota, L.T. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 2002, 77, 237–256. [Google Scholar] [CrossRef]
- Picó, Y. Chemical Analysis of Food: Techniques and Applications; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Brosel-Oliu, S.; Uria, N.; Abramova, N.; Bratov, A. Impedimetric sensors for bacteria detection. In Biosensors-Micro and Nanoscale Applications; IntechOpen: London, UK, 2015; pp. 257–288. [Google Scholar]
- Bhand, S.; Bacher, G. Impedimetric sensors in environmental analysis: An overview. In Environmental, Chemical and Medical Sensors; Springer: Singapore, 2018; pp. 67–85. [Google Scholar]
- Pedrosa, V.A.; Miwa, D.; Machado, S.A.; Avaca, L.A. On the utilization of boron doped diamond electrode as a sensor for parathion and as an anode for electrochemical combustion of parathion. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2006, 18, 1590–1597. [Google Scholar] [CrossRef]
- Majidi, M.R.; Asadpour-Zeynali, K.; Nazarpur, M. Determination of fenitrothion in river water and commercial formulations by adsorptive stripping voltammetry with a carbon ceramic electrode. J. AOAC Int. 2009, 92, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Okumura, L.L.; Saczk, A.A.; De Oliveira, M.F.; Fulgêncio, A.C.C.; Torrezani, L.; Gomes, P.E.N.; Peixoto, R.M. Electrochemical feasibility study of methyl parathion determination on graphite-modified basal plane pyrolytic graphite electrode. J. Braz. Chem. Soc. 2011, 22, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Amare, M.; Abicho, S.; Admassie, S. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode. J. AOAC Int. 2014, 97, 580–585. [Google Scholar] [CrossRef]
- Bolat, G.; Abaci, S.; Vural, T.; Bozdogan, B.; Denkbas, E.B. Sensitive electrochemical detection of fenitrothion pesticide based on self-assembled peptide-nanotubes modified disposable pencil graphite electrode. J. Electroanal. Chem. 2018, 809, 88–95. [Google Scholar] [CrossRef]
- Itkes, M.P.; de Oliveira, G.G.; Silva, T.A.; Fatibello-Filho, O.; Janegitz, B.C. Voltammetric sensing of fenitrothion in natural water and orange juice samples using a single-walled carbon nanohorns and zein modified sensor. J. Electroanal. Chem. 2019, 840, 21–26. [Google Scholar] [CrossRef]
- Noyrod, P.; Chailapakul, O.; Wonsawat, W.; Chuanuwatanakul, S. The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor. J. Electroanal. Chem. 2014, 719, 54–59. [Google Scholar] [CrossRef]
- Ma, H.; Wang, L.; Liu, Z.; Guo, Y. Ionic liquid–graphene hybrid nanosheets-based electrochemical sensor for sensitive detection of methyl parathion. Int. J. Environ. Anal. Chem. 2016, 96, 161–172. [Google Scholar] [CrossRef]
- Wei, P.; Gan, T.; Wu, K. N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive analytical platform for carbendazim. Sens. Actuators B Chem. 2018, 274, 551–559. [Google Scholar] [CrossRef]
- Velusamy, V.; Palanisamy, S.; Chen, S.-W.; Balu, S.; Yang, T.C.; Banks, C.E. Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: A sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide. Talanta 2019, 192, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Masibi, K.K.; Fayemi, O.E.; Adekunle, A.S.; Al-Mohaimeed, A.M.; Fahim, A.M.; Mamba, B.B.; Ebenso, E.E. Electrochemical detection of endosulfan using an AONP-PANI-SWCNT modified glassy carbon electrode. Materials 2021, 14, 723. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Wang, P.; Zhang, C.; Wu, M.; Yang, L. A stable biosensor for organophosphorus pesticide detection based on chitosan modified graphene. Biotechnol. Appl. Biochem. 2022, 69, 567–575. [Google Scholar] [CrossRef]
- Keerthika Devi, R.; Ganesan, M.; Chen, T.W.; Chen, S.M.; Lin, K.Y.; Akilarasan, M.; Al-Onazi, W.A.; Ahmed Rasheed, R.; Elshikh, M.S. Tailored architecture of molybdenum carbide/iron oxide micro flowers with graphitic carbon nitride: An electrochemical platform for nano-level detection of organophosphate pesticide in food samples. Food Chem. 2022, 397, 133791. [Google Scholar] [CrossRef]
- Saranya, S.; Deepa, P.N. Perforated oxidized graphitic carbon nitride with Nickel spikes as efficient material for electrochemical sensing of chlorpyrifos in water samples. Surf. Interfaces 2022, 32, 102170. [Google Scholar] [CrossRef]
- Khoshsafar, H.; Karimian, N.; Nguyen, T.A.; Fakhri, H.; Khanmohammadi, A.; Hajian, A.; Bagheri, H. Enzymeless voltammetric sensor for simultaneous determination of parathion and paraoxon based on Nd-based metal-organic framework. Chemosphere 2022, 292, 133440. [Google Scholar] [CrossRef]
- Maji, B.; Achary, L.S.K.; Barik, B.; Jyotsna Sahoo, S.; Mohanty, A.; Dash, P. MnCo2O4 decorated (2D/2D) rGO/g-C3N4-based Non-Enzymatic sensor for highly selective and sensitive detection of Chlorpyrifos in water and food samples. J. Electroanal. Chem. 2022, 909, 116115. [Google Scholar] [CrossRef]
- Jangid, K.; Sahu, R.P.; Sakib, S.; Zhitomirsky, I.; Puri, I.K. Surface-Modified Metal Oxides for Ultrasensitive Electrochemical Detection of Organophosphates, Heavy Metals, and Nutrients. ACS Appl. Nano Mater. 2022, 5, 17183–17193. [Google Scholar] [CrossRef]
- Khuntia, A.; Kumawat, A.S.; Kundu, M. Detection of pesticide using Cu-rGO modified electrochemical sensor. Mater. Today Proc. 2022, 62, 6227–6231. [Google Scholar] [CrossRef]
- An, Y.; Dong, S.; He, Z.; Xie, Q.; Huang, T. Heteroatom-doped Co-MOF derivative enhancing immobilization and activity of two enzymes for small-molecules electrochemical determination. Microchem. J. 2022, 172, 106942. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, Y.; Li, J.; Kong, Q.; Zhai, H.; Xu, R.; Yang, F.; Sun, X.; Guo, Y. A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens. Bioelectron. 2021, 194, 113601. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.E.; Oreba, R.; Elshafey, R. Molecularly Imprinted Electrochemical Sensor for the Detection of Organophosphorus Pesticide Profenofos. Electroanalysis 2021, 33, 1945–1951. [Google Scholar] [CrossRef]
- Mersal, G.A.; El-Sheshtawy, H.S.; Amin, M.A.; Mostafa, N.Y.; Mezni, A.; Alharthi, S.; Boukherroub, R.; Ibrahim, M.M. Simultaneous Hydrolysis and Detection of Organophosphate by Benzimidazole Containing Ligand-Based Zinc (II) Complexes. Crystals 2021, 11, 714. [Google Scholar] [CrossRef]
- Jangid, K.; Sahu, R.P.; Pandey, R.; Chen, R.; Zhitomirsky, I.; Puri, I.K. Multiwalled Carbon Nanotubes Coated with Nitrogen–Sulfur Co-Doped Activated Carbon for Detecting Fenitrothion. ACS Appl. Nano Mater. 2021, 4, 4781–4789. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Shimizu, F.M.; Machado, S.A.; Oliveira, O.N., Jr. Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem. Eng. J. 2021, 408, 127279. [Google Scholar] [CrossRef]
- Rajaji, U.; Chinnapaiyan, S.; Chen, T.-W.; Chen, S.-M.; Mani, G.; Mani, V.; Ali, M.A.; Al-Hemaid, F.M.; El-Shikh, M.S. Rational construction of novel strontium hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim. Acta 2021, 371, 137756. [Google Scholar] [CrossRef]
- Motaharian, A.; Motaharian, F.; Abnous, K.; Hosseini, M.R.M.; Hassanzadeh-Khayyat, M. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Anal. Bioanal. Chem. 2016, 408, 6769–6779. [Google Scholar] [CrossRef]
- Khadem, M.; Faridbod, F.; Norouzi, P.; Rahimi Foroushani, A.; Ganjali, M.R.; Shahtaheri, S.J.; Yarahmadi, R. Modification of carbon paste electrode based on molecularly imprinted polymer for electrochemical determination of diazinon in biological and environmental samples. Electroanalysis 2017, 29, 708–715. [Google Scholar] [CrossRef]
- Khalifa, M.E.; Abdallah, A. Molecular imprinted polymer based sensor for recognition and determination of profenofos organophosphorous insecticide. Biosens. Bioelectron. X 2019, 2, 100027. [Google Scholar] [CrossRef]
- Chauhan, N.; Pundir, C.S. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim. Acta 2012, 67, 79–86. [Google Scholar] [CrossRef]
- Dong, P.; Jiang, B.; Zheng, J. A novel acetylcholinesterase biosensor based on gold nanoparticles obtained by electroless plating on three-dimensional graphene for detecting organophosphorus pesticides in water and vegetable samples. Anal. Methods 2019, 11, 2428–2434. [Google Scholar] [CrossRef]
- De Fátima Alves, M.; de Souza Corrêa, R.A.M.; da Cruz, F.S.; Franco, D.L.; Ferreira, L.F. Electrochemical enzymatic fenitrothion sensor based on a tyrosinase/poly (2-hydroxybenzamide)-modified graphite electrode. Anal. Biochem. 2018, 553, 15–23. [Google Scholar] [CrossRef]
- Mehta, J.; Vinayak, P.; Tuteja, S.K.; Chhabra, V.A.; Bhardwaj, N.; Paul, A.; Kim, K.-H.; Deep, A. Graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens. Bioelectron. 2016, 83, 339–346. [Google Scholar] [CrossRef]
- Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Tuteja, S.K.; Vinayak, P.; Paul, A.; Kim, K.-H.; Deep, A. Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal. Biochem. 2017, 523, 1–9. [Google Scholar] [CrossRef]
- Fu, J.; Dong, H.; Zhao, Q.; Cheng, S.; Guo, Y.; Sun, X. Fabrication of refreshable aptasensor based on hydrophobic screen-printed carbon electrode interface. Sci. Total Environ. 2020, 712, 136410. [Google Scholar] [CrossRef]
- Sgobbi, L.F.; Machado, S.A. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens. Bioelectron. 2018, 100, 290–297. [Google Scholar] [CrossRef]
- Kruć-Fijałkowska, R.; Dragon, K.; Drożdżyński, D.; Górski, J. Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. Sci. Rep. 2022, 12, 3317. [Google Scholar] [CrossRef]
- Palleschi, G.; Bernabei, M.; Cremisini, C.; Mascini, M. Determination of organophosphorus insecticides with a choline electrochemical biosensor. Sens. Actuators B Chem. 1992, 7, 513–517. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Tasić, T.; Milanković, V.; Potkonjak, N. Molecularly Imprinted Plasmonic-Based Sensors for Environmental Contaminants—Current State and Future Perspectives. Chemosensors 2023, 11, 35. [Google Scholar] [CrossRef]
- Sun, G.; Wang, P.; Ge, S.; Ge, L.; Yu, J.; Yan, M. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens. Bioelectron. 2014, 56, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Cesana, R.; Ferreira, J.H.A.; Gonçalves, J.M.; Gomes, D.; Nakamura, M.; Peres, R.M.; Toma, H.E.; Canevari, T.C. Fluorescent Cdots(N)-Silica composites: Direct synthesis and application as electrochemical sensor of fenitrothion pesticide. Mater. Sci. Eng. B 2021, 267, 115084. [Google Scholar] [CrossRef]
- Akyüz, D.; Keleş, T.; Biyiklioglu, Z.; Koca, A. Electrochemical pesticide sensors based on electropolymerized metallophthalocyanines. J. Electroanal. Chem. 2017, 804, 53–63. [Google Scholar] [CrossRef]
- Ivanov, Y.; Marinov, I.; Portaccio, M.; Lepore, M.; Mita, D.G.; Godjevargova, T. Flow-Injection System with Site-Specific Immobilization of Acetylcholinesterase Biosensor for Amperometric Detection of Organophosphate Pesticides. Biotechnol. Biotechnol. Equip. 2012, 26, 3044–3053. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Kumar, J.; Melo, J.S.; Sandaka, B.P. Progressive development in biosensors for detection of dichlorvos pesticide: A review. J. Environ. Chem. Eng. 2021, 9, 105067. [Google Scholar] [CrossRef]
- Majdinasab, M.; Daneshi, M.; Louis Marty, J. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021, 232, 122397. [Google Scholar] [CrossRef]
- İlktaç, R.; Henden, E. Molecularly Imprinted Polymer-Based Optical Sensors for Pesticide Determination. In Molecular Imprinting for Nanosensors and Other Sensing Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–115. [Google Scholar]
- Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; Lamarca, R.S.; Lima Gomes, P.C.F.; da S Petruci, J.F.; Batista, A.D. Novel approaches for colorimetric measurements in analytical chemistry—A review. Anal. Chim. Acta 2020, 1135, 187–203. [Google Scholar] [CrossRef]
- Štěpánková, Š.; Vorčáková, K. Cholinesterase-based biosensors. J. Enzyme Inhib. Med. Chem. 2016, 31, 180–193. [Google Scholar] [CrossRef]
- Bhattu, M.; Verma, M.; Kathuria, D. Recent advancements in the detection of organophosphate pesticides: A review. Anal. Methods 2021, 13, 4390–4428. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, P.K. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Phys. Chem. Chem. Phys. 2020, 22, 15105–15119. [Google Scholar] [CrossRef]
- Wu, X.; Wang, P.; Hou, S.; Wu, P.; Xue, J. Fluorescence sensor for facile and visual detection of organophosphorus pesticides using AIE fluorogens-SiO(2)-MnO(2) sandwich nanocomposites. Talanta 2019, 198, 8–14. [Google Scholar] [CrossRef]
- Zhan, Y.; Yang, J.; Guo, L.; Luo, F.; Qiu, B.; Hong, G.; Lin, Z. Targets regulated formation of boron nitride quantum dots—Gold nanoparticles nanocomposites for ultrasensitive detection of acetylcholinesterase activity and its inhibitors. Sens. Actuators B Chem. 2019, 279, 61–68. [Google Scholar] [CrossRef]
- Long, Q.; Li, H.; Zhang, Y.; Yao, S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens. Bioelectron. 2015, 68, 168–174. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.-D.; Marty, J.-L.; Vasilescu, A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Helmerhorst, E.; Chandler, D.J.; Nussio, M.; Mamotte, C.D. Real-time and Label-free Bio-sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective. Clin. Biochem. Rev. 2012, 33, 161–173. [Google Scholar]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 2021, 4, 70. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Lu, J.; Fan, B.; He, Y.; Huang, Y.; Wang, F. “Off–On” fluorescent sensing of organophosphate pesticides using a carbon dot–Au(iii) complex. RSC Adv. 2018, 8, 11551–11556. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Dong, G.; Tian, Z.; Lu, J.; Wang, Q.; Ai, S.; Wang, M. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem. 2016, 202, 81–87. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292–297. [Google Scholar] [CrossRef]
- Kim, I.; Kim, G.H.; Kim, C.S.; Cha, H.J.; Lim, G. Optical detection of paraoxon using single-walled carbon nanotube films with attached organophosphorus hydrolase-expressed Escherichia coli. Sensors 2015, 15, 12513–12525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, N.C.; Li, Y.L.; Jiang, X.; Zheng, X.F.; Wang, Y.Y.; Huan, S.Y. Fluorescence Resonance Energy Transfer-based Biosensor Composed of Nitrogen-doped Carbon Dots and Gold Nanoparticles for the Highly Sensitive Detection of Organophosphorus Pesticides. Anal. Sci. 2016, 32, 951–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashrafi Tafreshi, F.; Fatahi, Z.; Ghasemi, S.F.; Taherian, A.; Esfandiari, N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS ONE 2020, 15, e0230646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.; Yan, Y.; Guo, M.; Cao, Y.; Yu, Y.; Zhang, T.; Huang, Y.; Wu, D. Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides. Food Chem. 2018, 245, 1176–1182. [Google Scholar] [CrossRef]
- Guan, M.; He, H.; Li, R.; Si, X.; Peng, X.; Yan, X.; Yang, Z.; Nien, E.; Lei, Y.; Luo, L. Lanthanum ions assisted non-enzymatic ratiometric fluorescence probe for monitoring fenthion residues in agro-product samples. Anal. Chim. Acta 2022, 1236, 340579. [Google Scholar] [CrossRef]
- Feng, Y.; Qu, Y.; Sun, X.; Pan, W.; Wang, J. Fluorimetric and ratiometric colorimetric dual-mode detection of organophosphorus pesticides based on carbon dots/DTNB. New J. Chem. 2022, 46, 8022–8028. [Google Scholar] [CrossRef]
- Gaviria, M.I.; Barrientos, K.; Arango, J.P.; Cano, J.B.; Peñuela, G.A. Highly Sensitive Fluorescent Biosensor Based on Acetylcholinesterase and Carbon Dots–Graphene Oxide Quenching Test for Analytical and Commercial Organophosphate Pesticide Detection. Front. Environ. Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Wei, J.; Yang, Y.; Dong, J.; Wang, S.; Li, P. Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Microchim. Acta 2019, 186, 66. [Google Scholar] [CrossRef]
- Reshma; Gupta, B.; Sharma, R.; Ghosh, K.K. Facile and visual detection of acetylcholinesterase inhibitors by carbon quantum dots. New J. Chem. 2019, 43, 9924–9933. [Google Scholar] [CrossRef]
- Li, H.; Yan, X.; Lu, G.; Su, X. Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides. Sens. Actuators B Chem. 2018, 260, 563–570. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, S.; Verma, S.K. Development of fluorescent aptasensor for detection of acephate by utilizing graphene oxide platform. Talanta 2023, 252, 123843. [Google Scholar] [CrossRef]
- Butmee, P.; Samphao, A.; Tumcharern, G. Reduced graphene oxide on silver nanoparticle layers-decorated titanium dioxide nanotube arrays as SERS-based sensor for glyphosate direct detection in environmental water and soil. J. Hazard. Mater. 2022, 437, 129344. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Yin, G.; Xu, Z.; Le, Y.; Wu, X.; Wu, N.; Zhang, Q. Selective determination of dimethoate via fluorescence resonance energy transfer between carbon dots and a dye-doped molecularly imprinted polymer. Sens. Actuators B Chem. 2015, 206, 14–21. [Google Scholar] [CrossRef]
Detection Method * | Material | Analyte | Limit of Detection (µM) | Range (µM) | Reference |
---|---|---|---|---|---|
SWV | BDD | Parathion | 4.3 × 10−2 | - | [116] |
Adsorptive stripping SWV | Sol-gel carbon ceramic electrode | Fenitrothion | 1.6 × 10−3 | 0.005–0.1 0.1–50 | [117] |
SWV | Graphite-modified basal plane pyrolytic graphite electrode | Methyl parathion | 3.0 | 79.0–263.3 | [118] |
Adsorptive stripping SWV | Poly(4-amino-3- hydroxynaphthalene Sulfonic acid) modified GCE | Fenitrothion | 0.7 × 10−3 | 0.001–6.6 | [119] |
CV and SWV | Peptide nanotubes on modified pencil graphite electrode | Fenitrothion | 1.96 × 10−2 | 0.114–1.712 | [120] |
DP adsorptive cathodic stripping voltammetric | Single-walled carbon nanohorns and zein-modified GCE | Fenitrothion | 1.2 × 10−2 | 0.99–12 | [121] |
DPV | Multiwalled carbon nanotubes-poly(acrylamide) nanocomposite | Methyl parathion | 2.0 × 10−3 | 0.005–10 | [122] |
DPV | Graphene quantum dots with oxime as an electroactive probe | Fenthion | 6.8 × 10−6 | 1.0 × 10−5–5.0 × 10−2 | [123] |
DPV | Ionic liquid–graphene nanosheets | Methyl parathion | 1.9 × 10−5 | 0.09–0.04 | [124] |
DPV | Pillar [5] arene/reduced graphene nanocomposite | Methyl parathion | 3 × 10−4 | 0.001–150 | [125] |
DPV | Cellulose microfiber entrapped reduced graphene oxide | Fenitrothion | 8.0 × 10−3 | up to 1134 | [126] |
CV and EIS | Graphene nanofragments modified with chitosan and AChE | Dichlorvos | 5.4 × 10−5 | 0.1 × 10−3–100 | [127] |
CV, EIS, and DPV | Molybdenum carbide/iron oxide micro flowers with graphitic carbon nitride | Parathion | 7.8 × 10−3 | 0.5–600 | [128] |
CV | Oxidized graphitic carbon nitride with nickel spikes | Chlorpyrifos | 0.3 × 10−9 | 1 × 10−9 to 15 × 10−9 | [129] |
CV | Nd-based metal-organic framework modified GCE | Paraoxon and Parathion | 4.0 × 10−5 and 7.0 × 10−5 | (0.7–100) × 10−3 and (1–120) × 10−3 | [130] |
EIS | Reduced graphene oxide-graphitic carbon nitride modified manganese cobaltite nanocomposite | Chlorpyrifos | 1.4 × 10−7 | 3 × 10−5–20 | [131] |
CV | ZrO2-3,4-dihydroxybenzaldehyde–chitosan/nitrogen-sulfur co-doped activated MWCNT modified GCE | Fenitrothion | 1.7 × 10−3 | 0.01–40 | [132] |
CV and DPV | Cu-rGO nanocomposite modified GCE | Malathion | - | - | [133] |
CV and EIS | AChE on carbon paste electrode modified by pyrolyzed Ni-Co-Zeolitic Imidazolate Framework | Methyl parathion and Paraoxon | 7.5 × 10−6 and 1.7 × 10−7 | 1.9 × 10−6–1.9 × 10−1 and 3.6 × 10−7–3.6 × 10−4 | [134] |
Electrochemiluminescence | Aptamer and AuNPs modified MWCNTs | Profenofos, Isocarbophos, Phorate, and Omethoate | 8.0 × 10−7, 1.0 × 10−6, 1.1 × 10−5, and 1.4 × 10−4 | - | [135] |
CV, EIS, DPV | MIP modified GCE | Profenofos | 1.0 × 10−3 | 1 × 10−3–1 and 1 × 10−3–5 | [136] |
SWV | Biomimetic mononuclear zinc(II) complexes modified carbon paste electrode | Fenitrothion and Parathion | 8.0 × 10−2 and 5.1 × 10−1 | 1.0–5.5 and 1.0–0.1 | [137] |
SWV | Nitrogen-sulfur co-doped activated MWCNT modified GCE | Fenitrothion | 4.91 × 10−3 | 0.05–40 | [138] |
SWV | Screen-printed carbon electrode | Fenitrothion | 6.4 × 10−1 | - | [139] |
CV | Strontium hexaferrite decorated on porous graphitic carbon nitride | Fenitrothion | 1.4 × 10−3 | 0.005–378.15 | [140] |
CV and SWV | MIP suspension polymerization, modification of carbon paste electrode | Diazinon | 7.9 × 10−5 | 2.5 × 10−3–0.1 0.1–2.0 | [141] |
DPV | Methacrylic acid, ethylene glycol dimethacrylate and carbon nanotubes | Diazinon | 1.3 × 10−4 | 5 × 10−4–1 | [142] |
CV | MIP/graphene oxide modified glassy carbon electrode | Profenofos | 5 × 10−3 | 0.05–3500 | [143] |
Amperometry | AChE on iron oxide nanoparticles decorated carboxylated MWCNTs | Malathion, Chlorpyrifos, Monocrotophos, and Endosulfan | 1.0 × 10−4 | - | [144] |
DPV | AChE/AuNPs/rGO | Malathion and Methyl parathion | 8.4 × 10−8 and 8.2 × 10−8 | 3 × 10−7–3 × 10−3 | [145] |
Amperometry | Tyrosinase/poly(2-hydroxybenzamide)-modified graphite electrode | Fenitrothion | 4.7 × 10−3 | 0.018–3.6 | [146] |
EIS | Anti-parathion antibodies and graphene sheets modified SPE | Parathion | 1.8 × 10−7 | 3.4 × 10−7–3.4 × 10−4 | [147] |
EIS | Anti-parathion antibodies and graphene quantum dot-modified SPE | Parathion | 1.6 × 10−7 | 3.4 × 10−8–3.4 × 10−1 | [148] |
DPV | Aptamer/GO-Fe3O4 modified SPE | Profenofos | 1.0 | - | [149] |
Amperometry | Polyhydroxamicalkanoate-based biomimetic catalyst-modified SPE | Paraoxon-ethyl, Fenitrothion, and Chlorpyrifos | 0.36, 0.61, and 0.83 | - | [150] |
Detection Method * | Material | Analyte | Limit of Detection (µM) | Range (µM) | Reference |
---|---|---|---|---|---|
Fluorescence | Nickel and nitrogen-doped carbon dots and Fe3O4 nanoparticles into the zeolitic imidazolate framework-8 | Fenitrothion | 8.0 × 102 | - | [150] |
Fluorescence | Carbon dots-Au(III) complex/AChE system | Organophosphate pesticide | 4.48 | 0.45–44.80 | [171] |
Fluorescence | Carbon dots-Cu(II) system | Dichlorvos, Malathion and Ethion | 3.9 × 10−3, 3.4 × 10−3 and 4.2 × 10−3 | 600–6000 | [172] |
FRET | AuNPs doped carbon dots, BChE system | Paraoxon | 1.8 × 10−2 | 1.8 × 10−2–181.7 | [173] |
Spectrophotometry | E. coli-attached SWNT film | Paraoxon | 5 | 5–500 | [174] |
FRET | Nitrogen-doped carbon dots and AuNPs | Paraoxon | 3.6 × 10−3 | 3.6 × 10−3–36.34 | [175] |
Fluorescence | Plant-based carbon dots | Diazinon and Glyphosate | 0.82 and 11.83 | 0.82–16.43 and 11.83–29,574 | [176] |
FRET | Carbon dots/Fe2+ system | Chlorpyrifos | 8.56 | 28.52–2852.3 | [177] |
Fluorescence | La3+ assisted glutathione-capped gold nanoclusters and carbon dots | Fenthion | 2.4 × 10−2 | 3.6 × 10−2–3.9 | [178] |
Fluorescence and colorimetry, dual mode | Carbon dots/5,5-dithiobis-(2-nitrobenzoic acid)/AChE | Chlorpyrifos | 2.3 × 10−3 | 8.5 × 10−4–0.57 | [179] |
Fluorescence | AChE and carbon dots–graphene oxide | Chlorpyrifos | 4.0 × 10−4 | - | [180] |
Fluorescence | Nanoceria with phosphatase mimicking activity modified carbon dots | Methyl-paraoxon | - | 1.125–26.25 | [181] |
Fluorescence and colorimetry, dual mode | AChE and carbon quantum dots | Paraoxon and Chlorpyrifos | 7.6 × 10−4 and 1.3 × 10−3 | - | [182] |
Fluorescence and colorimetry, dual mode | AChE and carbon dots | Paraoxon | 1.4 × 10−3 | - | [183] |
Fluorescence | Aptamer-modified graphene oxide | Acephate | 2.2 × 10−2 | 2.7 × 10−2–0.44 | [184] |
SERS | Reduced graphene oxide -wrapped dual-layers AgNPs on titania nanotube | Glyphosate | 1.8 × 10−2 | - | [185] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarević-Pašti, T. Carbon Materials for Organophosphate Pesticide Sensing. Chemosensors 2023, 11, 93. https://doi.org/10.3390/chemosensors11020093
Lazarević-Pašti T. Carbon Materials for Organophosphate Pesticide Sensing. Chemosensors. 2023; 11(2):93. https://doi.org/10.3390/chemosensors11020093
Chicago/Turabian StyleLazarević-Pašti, Tamara. 2023. "Carbon Materials for Organophosphate Pesticide Sensing" Chemosensors 11, no. 2: 93. https://doi.org/10.3390/chemosensors11020093
APA StyleLazarević-Pašti, T. (2023). Carbon Materials for Organophosphate Pesticide Sensing. Chemosensors, 11(2), 93. https://doi.org/10.3390/chemosensors11020093