Piezoelectric Chemosensors and Biosensors in Medical Diagnostics
Abstract
:1. Introduction
2. Principles of the Piezoelectric Assays
3. Current Common Trends in Point-of-Care Tests
4. Trends in Chemosensors and Biosensors for Various Applications
5. Common Trends and Principles of Piezoelectric Chemosensors and Biosensors
6. Specific Medical Applications of Piezoelectric Biosensors and Chemosensors
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moerman, A.; De Waele, J.J.; Boelens, J. An overview of point-of-care testing for infections in critically ill patients. Expert Rev. Mol. Diagn. 2024, 24, 193–200. [Google Scholar] [CrossRef]
- Raj, R.; Khan, M.F.; Shariq, M.; Ahsan, N.; Singh, R.; Basoya, P.K. Point-of-care optical devices in clinical imaging and screening: A review on the state of the art. J. Biophotonics 2023, 16, e202200386. [Google Scholar] [CrossRef] [PubMed]
- Plata-Menchaca, E.P.; Ruiz-Rodriguez, J.C.; Ferrer, R. Early diagnosis of sepsis: The role of biomarkers and rapid microbiological tests. Semin. Respir. Crit. Care Med. 2024, 45, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Kalashgrani, M.Y.; Gholami, A.; Omidifar, N.; Binazadeh, M.; Chiang, W.H. Recent Advances in quantum dot-based lateral flow immunoassays for the rapid, point-of-care diagnosis of COVID-19. Biosensors 2023, 13, 786. [Google Scholar] [CrossRef]
- Najib, M.A.; Selvam, K.; Khalid, M.F.; Ozsoz, M.; Aziah, I. Quantum dot-based lateral flow immunoassay as point-of-care testing for infectious diseases: A narrative review of its principle and performance. Diagnostics 2022, 12, 2158. [Google Scholar] [CrossRef] [PubMed]
- Surucu, O.; Öztürk, E.; Kuralay, F. Nucleic acid integrated technologies for electrochemical point-of-care diagnostics: A comprehensive review. Electroanalysis 2022, 34, 148–160. [Google Scholar] [CrossRef]
- Targonskaya, A.; Maslowski, K. Gonadotropin and ovarian hormone monitoring: Lateral flow assays for clinical decision making. Women 2023, 3, 471–485. [Google Scholar] [CrossRef]
- Mattiello, C.J.; Stickle, D.F. Characterization by image analysis of the dose vs response curve for a qualitative serum hCG lateral flow immunoassay. Clin. Chim. Acta 2023, 538, 175–180. [Google Scholar] [CrossRef]
- Tel, O.Y.; Gurbilek, S.E.; Keskin, O.; Yucetepe, A.G.; Karadenizli, A. Development of lateral flow test for serological diagnosis of tularemia. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 579–584. [Google Scholar] [CrossRef]
- Peto, T.; Uk, C.-L.F.O. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. EClinicalMedicine 2021, 36, 7. [Google Scholar] [CrossRef]
- Machiesky, L.; Cote, O.; Kirkegaard, L.H.; Mefferd, S.C.; Larkin, C. A rapid lateral flow immunoassay for identity testing of biotherapeutics. J. Immunol. Methods 2019, 474, 112666. [Google Scholar] [CrossRef]
- Morinaga, Y.; Yamada, H.; Yoshida, Y.; Kawasuji, H.; Yamamoto, Y. Analytical sensitivity of six lateral flow antigen test kits for variant strains of SARS-CoV-2. J. Infect. Chemother. 2023, 29, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ko, T.; Chae, Y.; Jang, Y.; Lee, I.; Lee, A.; Shin, S.; Nam, M.H.; Kim, B.S.; Jun, H.S.; et al. Proof-of-concept: Smartphone- and cloud-based artificial intelligence quantitative analysis system (SCAISY) for SARS-CoV-2-specific IgG antibody lateral flow assays. Biosensors 2023, 13, 623. [Google Scholar] [CrossRef] [PubMed]
- Park, J. Smartphone based lateral flow immunoassay quantifications. J. Immunol. Methods 2024, 533, 113745. [Google Scholar] [CrossRef]
- Kalligosfyri, P.M.; Tragoulias, S.S.; Tsikas, P.; Lamprou, E.; Christopoulos, T.K.; Kalogianni, D.P. Design and validation of a three-dimensional printer-based system enabling rapid, low-cost construction of the biosensing areas of lateral flow devices for immunoassays and nucleic acid assays. Anal. Chem. 2023, 96, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Glucose electrochemical biosensors: The past and current trends. Int. J. Electrochem. Sci. 2021, 16, 210719. [Google Scholar] [CrossRef]
- Chen, H.S.; Kuo, B.I.; Hwu, C.M.; Shih, K.C.; Kwok, C.F.; Ho, L.T. Technical and clinical evaluation of an electrochemistry glucose meter: Experience in a diabetes center. Diabetes Res. Clin. Pract. 1998, 42, 9–15. [Google Scholar] [CrossRef]
- Bonyadi, F.; Kavruk, M.; Ucak, S.; Cetin, B.; Bayramoglu, G.; Dursun, A.D.; Arica, Y.; Ozalp, V.C. Real-time biosensing bacteria and virus with quartz crystal microbalance: Recent advances, opportunities, and challenges. Crit. Rev. Anal. Chem. 2023, 12, 2888–2899. [Google Scholar] [CrossRef]
- Behyar, M.B.; Mirzaie, A.; Hasanzadeh, M.; Shadjou, N. Advancements in biosensing of hormones: Recent progress and future trends. Trac-Trends Anal. Chem. 2024, 173, 117600. [Google Scholar] [CrossRef]
- Ramasamy, M.S.; Bhaskar, R.; Han, S.S. Piezoelectric biosensors and nanomaterials-based therapeutics for coronavirus and other viruses: A mini-review. Curr. Top. Med. Chem. 2023, 23, 115–127. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A. Electroacoustic biosensor systems for evaluating antibiotic action on microbial cells. Sensors 2023, 23, 6292. [Google Scholar] [CrossRef] [PubMed]
- Tyskiewicz, R.; Fedorowicz, M.; Nakonieczna, A.; Zielinska, P.; Kwiatek, M.; Mizak, L. Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Anal. Biochem. 2023, 675, 115215. [Google Scholar] [CrossRef]
- Zak, A.K.; Yazdi, S.T.; Abrishami, M.E.; Hashim, A.M. A review on piezoelectric ceramics and nanostructures: Fundamentals and fabrications. J. Aust. Ceram. Soc. 2024, 60, 723–753. [Google Scholar] [CrossRef]
- De Marqui, C.; Tan, D.; Erturk, A. On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow. J. Fluids Struct. 2018, 82, 492–504. [Google Scholar] [CrossRef]
- Fallahpasand, S.; Dardel, M. Piezoelectric energy harvesting from highly flexible cantilever beam. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019, 233, 71–92. [Google Scholar] [CrossRef]
- Bansevicius, R.; Navickaite, S.; Jurenas, V.; Mazeika, D.; Zvironiene, A. Excitation of 2D resonant oscillations in piezoelectric plate with additional masses. J. Vibroeng. 2017, 19, 1930–1936. [Google Scholar] [CrossRef]
- Lau, O.W.; Shao, B. Determination of glucose using a piezoelectric quartz crystal and the silver mirror reaction. Anal. Chim. Acta 2000, 407, 17–21. [Google Scholar] [CrossRef]
- Vélez-Cordero, J.R.; Flores, S.J.; Soto, B.Y. Finite element simulations of quartz crystal microbalances (QCM): From Sauerbrey to fractional viscoelasticity under water. Phys. Scr. 2024, 99, 115963. [Google Scholar] [CrossRef]
- Guo, H.H.; Guo, A.H.; Gao, Y.; Liu, T.T. Influence of external swelling stress on the frequency characteristics of a volatile organic compound (VOC) sensor based on a polymer-coated film bulk acoustic resonator (FBAR). Instrum. Sci. Technol. 2020, 48, 431–442. [Google Scholar] [CrossRef]
- Saffari, Z.; Ghavidel, A.; Cohan, R.A.; Hamidi-Fard, M.; Khobi, M.; Aghasadeghi, M.; Norouzian, D. Label-free real-time detection of HBsAg using a QCM immunosensor. Clin. Lab. 2022, 68, 707. [Google Scholar] [CrossRef]
- Sharma, P.; Chauhan, R.; Pande, V.; Basu, T.; Kumar, A. Rapid sensing of Tilletia indica—Teliospore in wheat extractby apiezoelectric label free immunosensor. Bioelectrochemistry 2022, 147, 108175. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Long, M.; Su, H.Y.; Tan, L.; Shi, X.W.; Du, Y.M.; Luo, Y.; Deng, H.B. Carboxymethyl chitosan assembled piezoelectric biosensor for rapid and label-free quantification of immunoglobulin Y. Carbohydr. Polym. 2022, 290, 119482. [Google Scholar] [CrossRef]
- Gui, Z.Z.; Shao, Z.J.; Zhang, F.; Shen, T.; Zou, T.; Zhang, J.H. Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations. Sens. Actuator A-Phys. 2024, 379, 115918. [Google Scholar] [CrossRef]
- Burdin, D.A.; Ekonomov, N.A.; Gordeev, S.N.; Fetisov, Y.K. Anisotropy of magnetoelectric effects in an amorphous ferromagnet-piezoelectric heterostructure. J. Magn. Magn. Mater. 2021, 521, 167530. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, M.S.; You, C.Y.; Hong, J.I. Controllable magnetic anisotropy of ferromagnet/antiferromagnet bilayers coupled with piezoelectric strain. Acta Mater. 2019, 171, 170–175. [Google Scholar] [CrossRef]
- Zhao, H.B.; Ding, L.H.; Ren, N.; Yu, X.; Wang, A.Z.; Zhao, M.W. Multiferroic properties and giant piezoelectric effect of a 2D Janus WO3F monolayer. Phys. Chem. Chem. Phys. 2024, 26, 26594–26602. [Google Scholar] [CrossRef]
- Imran, M.; Windmann, T.; Vrabec, J. Speed of sound measurements for liquid squalane up to a pressure of 20 MPa. Int. J. Thermophys. 2024, 45, 161. [Google Scholar] [CrossRef]
- Qiao, H.M.; Jones, J.L.; Balke, N. Effect of sub-coercive degradation on the local piezoelectric properties in lead zirconate titanate ceramics. J. Am. Ceram. Soc. 2024, 11, e20277. [Google Scholar] [CrossRef]
- Qu, Y.H.; Chen, X.; Liu, Y.; Wang, S.X.; Gu, X.Y.; Wei, M.; Huang, X.M.; Liu, Z.S.; Ding, J.Q.; Wen, Z.W.; et al. Novel AlN/ScAlN composite film SAW for achieving highly sensitive temperature sensors. Sens. Actuator A-Phys. 2025, 381, 8. [Google Scholar] [CrossRef]
- Lemine, A.S.; Bhadra, J.; Sadasivuni, K.K.; Popelka, A.; Yempally, S.; Ahmad, Z.; Al-Thani, N.J.; Hasan, A. 3D printing flexible Ga-doped ZnO films for wearable energy harvesting: Thermoelectric and piezoelectric nanogenerators. J. Mater. Sci.-Mater. Electron. 2024, 35, 1639. [Google Scholar] [CrossRef]
- Du, Y.; Zou, Y.S.; Zhu, B.X.; Jiang, H.; Chai, Y.; Tsoi, C.C.; Zhang, X.M.; Wang, C.X. Asymmetric proton-exchange-enhanced lithium niobate and silicon low-temperature direct bonding with an ultrathin heterogeneous interface. ACS Appl. Mater. Interfaces 2024, 10, 64287–64296. [Google Scholar] [CrossRef]
- Makhare, S.B.; Jadhav, T.K.; Kapadi, N.J.; Darvade, T.C.; Dhotre, A.V.; Kolekar, Y.D.; Dindore, U.B.; Kambale, R.C. Ferroelectric fatigue and stabilized piezoelectric properties of BaTiO3–BaZrO3 electroceramics with optimized electric poling conditions. J. Korean Ceram. Soc. 2024, 14, 139–152. [Google Scholar] [CrossRef]
- Wekalao, J.; Patel, S.K.; Kumar, O.P.; Al-zahrani, F.A. Machine learning optimized design of THz piezoelectric perovskite-based biosensor for the detection of formalin in aqueous environments. Sci. Rep. 2025, 15, 4498. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Królikowski, B.; Klimiec, E.; Chylinska, M.; Bajer, D. Advances in the study of piezoelectric polymers. Russ. Chem. Rev. 2019, 88, 749–774. [Google Scholar] [CrossRef]
- Fukada, E. Recent developments of polar piezoelectric polymers. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1110–1119. [Google Scholar] [CrossRef]
- Amiri, M.T.H.; Kermanshahi, P.K.; Bagherzadeh, R.; Yousefzadeh, M.; Fakhri, P. A multilayer piezoelectric nanogenerator based on PVDF and BaTiO3 nanocomposite with enhanced performance induced by simultaneously electrospinning and electrospraying. J. Ind. Text. 2024, 54, 15280837241302259. [Google Scholar] [CrossRef]
- Poudel, A.; Fernandez, M.A.; Tofail, S.A.M.; Biggs, M.J.P. Boron nitride nanotube addition enhances the crystallinity and cytocompatibility of PVDF-TrFE. Front. Chem. 2019, 7, 364. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Jeong, H.; Panigrahi, B.K.; Pakawanit, P.; Dubal, D.; Hong, S.K.; Kim, H.J. Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting. Nano Energy 2022, 102, 9. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Jesse, S.; Liu, W.L.; Balandin, A.A. Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 2006, 88, 153902. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, N.H.; Liu, H.L.; Ling, J.W.; Tan, Z.Q. Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers. Appl. Math. Mech.-Engl. Ed. 2023, 44, 1547–1562. [Google Scholar] [CrossRef]
- Lin, S.J.; Yu, Y.Y.; He, C.Y.; Zhang, Z.H.; Yang, J.W.; Yang, Z.M.; Zhang, L.; Kan, J.W. A novel pendulum-like deformation-limited piezoelectric vibration energy harvester triggered indirectly via a smoothly plucked drive plate. Mech. Syst. Signal Proc. 2025, 224, 112154. [Google Scholar] [CrossRef]
- Abdur-Rashid, K.; Saha, S.K.; Mugisha, J.; Teale, S.; Wang, S.S.; Saber, M.; Lough, A.J.; Sargent, E.H.; Fekl, U. Organic polar crystals, second harmonic generation, and piezoelectric effects from heteroadamantanes in the space group R3m. Chem.-Eur. J. 2024, 30, e202302998. [Google Scholar] [CrossRef] [PubMed]
- Iwanski, J.; Korona, K.P.; Tokarczyk, M.; Kowalski, G.; Dabrowska, A.K.; Tatarczak, P.; Rogala, I.; Bilska, M.; Wójcik, M.; Kret, S.; et al. Revealing polytypism in 2D boron nitride with UV photoluminescence. npj 2d Mater. Appl. 2024, 8, 72. [Google Scholar] [CrossRef]
- Diaz, J.O.T.; Velásquez, A.F. QCM Biosensorsfor pathogen detection in water and food: Review of published literature. Ing. Solidar. 2024, 20, 30. [Google Scholar] [CrossRef]
- Barrias, S.; Fernandes, J.R.; Martins-Lopes, P. Newly developed QCM-DNA biosensor for SNP detection in small DNA fragments: A wine authenticity case study. Food Control 2025, 169, 111036. [Google Scholar] [CrossRef]
- Higuchi, R.; Kanno, Y. New analysis from the strength of materials of Sauerbrey’s equation concerning the quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 2006, 45, 4232–4233. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, M.; Chen, S.Y. Long memory from Sauerbrey equation: A case in coated quartz crystal microbalance in terms of ammonia. Math. Probl. Eng. 2011, 2011, 758245. [Google Scholar] [CrossRef]
- Ding, X.; Li, J.; Chen, X.D.; Zhang, J.S.; Zhu, M.X. Derivation for mass-frequency relationship of a quartz crystal microbalance based on an equivalent circuit network analysis method. IEEE Trans. Instrum. Meas. 2022, 71, 9510208. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Q.; Pan, W.; Yao, Y. Advances in the mass sensitivity distribution of quartz crystal microbalances: A review. Sensors 2022, 22, 5112. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Bai, Q.S.; Huang, X.H. Using quartz crystal microbalance for field measurement of liquid viscosities. J. Sens. 2016, 2016, 7580483. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Zhao, B.R. Measurement of liquid viscosity using series resonant resistance response of quartz crystal microbalance. Jpn. J. Appl. Phys. 2022, 61, 046503. [Google Scholar] [CrossRef]
- Wasilewski, T.; Kamysz, W.; Gebicki, J. AI-assisted detection of biomarkers by sensors and biosensors for early diagnosis and monitoring. Biosensors 2024, 14, 356. [Google Scholar] [CrossRef]
- Matsuo, T.; Wurster, S.; Hoenigl, M.; Kontoyiannis, D.P. Current and emerging technologies to develop point-of-care diagnostics in medical mycology. Expert Rev. Mol. Diagn. 2024, 24, 841–858. [Google Scholar] [CrossRef]
- Sani, A.; Khan, M.I.; Shah, S.; Tian, Y.L.; Zha, G.H.; Fan, L.Y.; Zhang, Q.; Cao, C.X. Diagnosis and screening of abnormal hemoglobins. Clin. Chim. Acta 2024, 552, 117685. [Google Scholar] [CrossRef]
- Lee, S.; Bi, L.Y.; Chen, H.; Lin, D.; Mei, R.C.; Wu, Y.X.; Chen, L.X.; Joo, S.W.; Choo, J. Recent advances in point-of-care testing of COVID-19. Chem. Soc. Rev. 2023, 52, 8500–8530. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Khan, M.; Khan, R. Artificial Intelligence in point-of-care testing. Ann. Lab. Med. 2023, 43, 401–407. [Google Scholar] [CrossRef]
- Theriault-Lauzier, P.; Cobin, D.; Tastet, O.; Langlais, E.L.; Taji, B.; Kang, G.S.; Chong, A.Y.; So, D.; Tang, A.; Gichoya, J.W.; et al. A responsible framework for applying artificial intelligence on medical images and signals at the point of care: The PACS-AI platform. Can. J. Cardiol. 2024, 40, 1828–1840. [Google Scholar] [CrossRef]
- Haghayegh, F.; Norouziazad, A.; Haghani, E.; Feygin, A.A.; Rahimi, R.H.; Ghavamabadi, H.A.; Sadighbayan, D.; Madhoun, F.; Papagelis, M.; Felfeli, T.; et al. Revolutionary point-of-care wearable diagnostics for early disease detection and biomarker discovery through intelligent technologies. Adv. Sci. 2024, 11, 2400595. [Google Scholar] [CrossRef]
- El Amrani, S.; Tossens, B.; Van Belle, L.; Gonda, J.; Midoun, S.; Beauloye, C.; Gruson, D. Point of care testing for high-sensitive troponin measurement: Experience from a tertiary care hospital clinical laboratory. Adv. Lab. Med.-Av. Med. Lab. 2024, 4, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, G.; Marcos, P.S.; Talavera, J.; Aznar-Cervantes, S.D.; del Palacio, J.F. Evaluation of a rapid test for point-of-care detection of cardiac troponin I in serum of healthy and diseased dogs and cats. J. Vet. Emerg. Crit. Care 2024, 6, 539–544. [Google Scholar] [CrossRef]
- Pickering, J.W.; Joyce, L.R.; Florkowski, C.M.; Buchan, V.; Hamill, L.; Than, M.P. Emergency department use of a high-sensitivity point-of-care troponin assay reduces length of stay: An implementation study preliminary report. Eur. Heart J.-Acute Cardiovasc. Care 2024, 5, 838–842. [Google Scholar] [CrossRef]
- Hatherley, J.; Dakshi, A.; Collinson, P.; Miller, G.; Davies, S.; Bailey, L.; Fearon, H.; Phillips, S.; Lambert, A.; Sekulska, K.; et al. Imprecision and real-time clinical performance of a whole blood high sensitivity point of care troponin i: Ready for prime time? Heart J. 2024, 45, ehae666-1598. [Google Scholar] [CrossRef]
- Pañero-Moreno, M.; Guix-Comellas, E.M.; Villamor-Ordozgoiti, A. Clinical trial protocol for continuous glucose monitoring in critical care at Hospital Clinic of Barcelona (CGM-UCI23). Nurs. Crit. Care, 2024; early view. [Google Scholar] [CrossRef]
- Mader, J.K.; Baumstark, A.; Tüting, J.; Sokol, G.; Schuebel, R.; Tong, Y.H.; Roetschke, J.; Slingerland, R.J. Monitoring of the analytical performance of four different blood glucose monitoring systems: A post-market performance follow-up study. Diabetes Ther. 2024, 15, 2525–2535. [Google Scholar] [CrossRef] [PubMed]
- Castaño, R.A.; Granados, M.A.; Trujillo, N.; Bernal, J.P.; Trujillo, J.F.; Trasmondi, P.; Maestre, A.F.; Cardona, J.S.; Gonzalez, R.; Larrarte, M.A.; et al. Does performing a Point-Of-Care HbA1c test increase the chances of undertaking an OGTT among individuals at risk of diabetes? A randomized controlled trial. Prim. Care Diabetes 2024, 18, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Çelik, M.; Polat, M.R.; Avkan-Oguz, V. Diagnostic utility of rapid antigen testing as point-of-care test for influenza and other respiratory viruses in patients with acute respiratory illness. Diagn. Microbiol. Infect. Dis. 2025, 111, 6. [Google Scholar] [CrossRef]
- Savolainen, L.E.; Peltola, J.; Hilla, R.; Åman, T.; Broas, M.; Junttila, I.S. Clinical performance of two commercially available rapid antigen tests for influenza, RSV, and SARS-CoV-2 diagnostics. Microbiol. Spectr. 2024, 7, e01630-24. [Google Scholar] [CrossRef] [PubMed]
- Boegner, D.J.; Rzasa, J.R.; Benke, E.H.; White, I.M. Saliva-STAT: Sample-to-answer saliva test for COVID-19. Sens. Actuator B-Chem. 2024, 421, 136510. [Google Scholar] [CrossRef]
- Domnich, A.; Massaro, E.; Icardi, G.; Orsi, A. Multiplex molecular assays for the laboratory-based and point-of-care diagnosis of infections caused by seasonal influenza, COVID-19, and RSV. Expert Rev. Mol. Diagn. 2024, 12, 997–1008. [Google Scholar] [CrossRef]
- Reilly, C.; Mylonakis, E.; Dewar, R.; Young, B.; Nordwall, J.; Bhagani, S.; Chia, P.Y.; Davis, R.; Files, C.; Ginde, A.A.; et al. Evaluation of the feasibility and efficacy of point-of-care antibody tests for biomarker-guided management of coronavirus disease 2019. J. Infect. Dis. 2024, 7, jiae452. [Google Scholar] [CrossRef] [PubMed]
- Ansu-Mensah, M.; Ginindza, T.G.; Amponsah, S.K.; Shimbre, M.S.; Bawontuo, V.; Kuupiel, D. Geographical access to point-of-care diagnostic tests for diabetes, anaemia, Hepatitis B, and human immunodeficiency virus in the Bono region, Ghana. BMC Health Serv. Res. 2024, 24, 1303. [Google Scholar] [CrossRef] [PubMed]
- Futschik, M.E.; Tunkel, S.A.; Turek, E.; Chapman, D.; Thorlu-Bangura, Z.; Kulasegaran-Shylini, R.; Blandford, E.; Dodgson, A.; Klapper, P.E.; Sudhanva, M.; et al. Double testing with lateral flow antigen test devices for COVID-19: Does a second test in quick succession add value? J. Virol. Methods 2024, 329, 115000. [Google Scholar] [CrossRef]
- Geuer, L.; Otteny, A.; Wagner, D.; Menne, S.; Mukametov, S.; Ulber, R. Educational models in analytical chemistry lab: The story behind lateral flow immunoassays in the context of COVID-19. J. Chem. Educ. 2024, 10, 5251–5260. [Google Scholar] [CrossRef]
- Zhang, X.N.; Cheyne, C.P.; Jones, C.; Humann, M.; Leeming, G.; Smith, C.; Hughes, D.M.; Burnside, G.; Dodd, S.; Penrice-Randal, R.; et al. Can self-testing be enhanced to hasten safe return of healthcare workers in pandemics? Random order, open label trial using two manufacturers’ SARS-CoV-2 lateral flow devices concurrently and nested viral culture study. BMC Infect. Dis. 2024, 24, 1276. [Google Scholar] [CrossRef]
- Li, G.; Li, Q.M.; Wang, X.; Liu, X.; Zhang, Y.H.; Li, R.; Guo, J.Q.; Zhang, G.P. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int. J. Biol. Macromol. 2023, 242, 125186. [Google Scholar] [CrossRef]
- Nan, X.X.; Yang, L.; Cui, Y. Lateral flow immunoassay for proteins. Clin. Chim. Acta 2023, 544, 117337. [Google Scholar] [CrossRef]
- Boehringer, H.R.; O’Farrell, B.J. Lateral flow assays in infectious disease diagnosis. Clin. Chem. 2022, 68, 52–58. [Google Scholar] [CrossRef]
- Amini, R.; Zhang, Z.J.; Li, J.X.; Gu, J.; Brennan, J.D.; Li, Y.F. Aptamers for SARS-CoV-2: Isolation, characterization, and diagnostic and therapeutic developments. Anal. Sens. 2022, 2, 18. [Google Scholar] [CrossRef]
- He, H.H.; Zheng, J.; Su, J.; Xia, L.; Tang, Y.; Wu, Y.E. Ionic polymers as double-capture agents in an aptamer lateral flow assay strip for point-of-care detection of ethyl carbamate using peroxidase-like activity of bimetallic NiCo2O4 nanoparticles. Talanta 2025, 283, 127139. [Google Scholar] [CrossRef]
- Yue, X.; Yang, H.L.; Li, J.Z.; Zhu, Z.J.; Ouyang, H.; Guo, T.; Fu, Z.F. Fluorescent lateral flow assay strip for Mycobacterium tuberculosis and Mycobacterium smegmatis based on mycobacteriophage tail protein and aptamer. Talanta 2025, 282, 7. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.G. Preliminary development of DNA aptamer quantum dot-based competitive lateral flow assays for saxitoxin and tetrodotoxin. J. Fluoresc. 2024, 7. [Google Scholar] [CrossRef]
- Fan, L.Z.; Luo, Y.; Yan, W.N.; Han, H.X.; Zhang, P.F. Fluorescent lateral flow immunoassay based on quantum dots nanobeads. J. Vis. Exp. 2024, 11, e67000. [Google Scholar] [CrossRef]
- Tang, X.Y.; Xia, W.W.; Han, H.X.; Wang, Y.C.; Wang, B.L.; Gao, S.H.; Zhang, P.F. Dual-fluorescent quantum dot nanobead-based lateral flow immunoassay for simultaneous detection of C-reactive protein and procalcitonin. ACS Appl. Bio Mater. 2024, 7, 7659–7665. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.Z.; Chang, S.J.; Chen, C.J.; Liu, J.T. Review-glucose monitoring sensors: History, principle, and challenges. J. Electrochem. Soc. 2022, 169, 057514. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988. [Google Scholar] [CrossRef]
- Nemati, S.S.; Dehghan, G.; Rashtbari, S.; Tan, T.N.; Khataee, A. Enzyme-based and enzyme-free metal-based glucose biosensors: Classification and recent advances. Microchem. J. 2023, 193, 109038. [Google Scholar] [CrossRef]
- Dua, A.; Debnath, A.; Kumar, K.; Mazumder, R.; Mazumder, A.; Singh, R.K.; Mangal, S.; Sanchitra, J.; Khan, F.; Tripathi, S.; et al. Advancements of glucose monitoring biosensor: Current state, generations of technological progress, and innovation dynamics. Curr. Pharm. Biotechnol. 2024, 18. [Google Scholar] [CrossRef]
- Vesali-Naseh, M.; Rastian, Z.; Moshakker, H. Review-carbon nanotube-based electrochemical glucose biosensors. J. Electrochem. Soc. 2024, 171, 077508. [Google Scholar] [CrossRef]
- Suriyanarayanan, S.; Mandal, S.; Ramanujam, K.; Nicholls, I.A. Electrochemically synthesized molecularly imprinted polythiophene nanostructures as recognition elements for an aspirin-chemosensor. Sens. Actuator B-Chem. 2017, 253, 428–436. [Google Scholar] [CrossRef]
- Saadatidizaji, Z.; Sohrabi, N.; Mohammadi, R. Development of a simple polymer-based sensor for detection of the Pirimicarb pesticide. Sci. Rep. 2024, 14, 10293. [Google Scholar] [CrossRef]
- Ali, G.K.; Omer, K.M. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022, 236, 122878. [Google Scholar] [CrossRef]
- Akhtar, N.; Muzaffar, N.; Imran, M.; Afzal, A.M.; Iqbal, M.W.; Safdar, S.; Bahajjaj, A.A.A.; Mumtaz, S.; Iqbal, M.Z.; Azeem, M. Design and optimization of WSe2@NiCo-MOF for dual-mode applications: Energy storage and chemosensing. Phys. Scr. 2024, 99, 125992. [Google Scholar] [CrossRef]
- Asha, J.B.; Suresh, P. Covalently modified graphene oxide as highly fluorescent and sustainable carbonaceous chemosensor for selective detection of zirconium ion in complete aqueous medium. ACS Sustain. Chem. Eng. 2020, 8, 14301–14311. [Google Scholar] [CrossRef]
- Yao, J.; He, Y.; Li, L.; Li, P.F.; Yang, M. Magnified fluorescent aptasensors based on a gold nanoparticle-DNA hybrid and DNase I for the cycling detection of mercury(II) ions in aqueous solution. Ind. Eng. Chem. Res. 2019, 58, 21201–21207. [Google Scholar] [CrossRef]
- Xie, Q.; Tan, Y.Y.; Guo, Q.P.; Wang, K.M.; Yuan, B.Y.; Wan, J.; Zhao, X.Y. A fluorescent aptasensor for sensitive detection of human hepatocellular carcinoma SMMC-7721 cells based on graphene oxide. Anal. Methods 2014, 6, 6809–6814. [Google Scholar] [CrossRef]
- Chang, K.L.; Sun, P.; Dong, X.; Zhu, C.N.; Liu, X.J.; Zheng, D.Y.; Liu, C. Aptamers as recognition elements for electrochemical detection of exosomes. Chem. Res. Chin. Univ. 2022, 38, 879–885. [Google Scholar] [CrossRef]
- Guillois-Bécel, Y.; Tron, I.; Le Strat, Y.; Gagnière, B.; Verrier, A.; Gourier-Fréry, C.; Briand, A. Assessment of the reliability of a carbon monoxide detector for preventing poisoning. Environ. Risque Sante 2011, 10, 477–484. [Google Scholar] [CrossRef]
- Christensen, G.M.; Creswell, P.D.; Theobald, J.; Meiman, J.G. Carbon monoxide detector effectiveness in reducing poisoning, Wisconsin 2014–2016. Clin. Toxicol. 2020, 58, 1335–1341. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [PubMed]
- Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Wang, M.; Zhang, X.G.; Zhu, Y.G.; Cao, J.; She, Y.X.; Cao, Z.; Li, G.Y.; Wang, J.; Abd El-Aty, A.M. Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4942–4965. [Google Scholar] [CrossRef]
- Yang, F.; Zuo, X.L.; Fan, C.H.; Zhang, X.E. Biomacromolecular nanostructures-based interfacial engineering: From precise assembly to precision biosensing. Natl. Sci. Rev. 2018, 5, 740–755. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Biosensor technology: Technology push versus market pull. Biotechnol. Adv. 2008, 26, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zhou, H.; Yang, Y.K.; Wu, C.F. Research advances in blood glucose monitoring system. Chin. J. Lasers 2018, 45, 17. [Google Scholar] [CrossRef]
- Peterson, K.L.; Shukla, R.P.; Daniele, M.A. Percutaneous wearable biosensors: A brief history and systems perspective. Adv. Sens. Res. 2024, 16, 2400068. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.A.; Das Gupta, S.; Silip, J.J.; Talukder, S.; Haque, M.H.; Forwood, J.K.; Sarker, S. Current trends and future potential in the detection of avian coronaviruses: An emphasis on sensors-based technologies. Virology 2025, 604, 110399. [Google Scholar] [CrossRef]
- Agar, M.; Laabei, M.; Leese, H.S.; Estrela, P. Multi-template molecularly imprinted polymeric electrochemical biosensors. Chemosensors 2025, 13, 11. [Google Scholar] [CrossRef]
- Dabrowski, M.; Reculusa, S.; Thuau, D.; Ayela, C.; Kuhn, A. Macroporous polymer cantilever resonators for chemical sensing applications. Adv. Mater. Technol. 2023, 11, 2300771. [Google Scholar] [CrossRef]
- Cave, J.W.; Wickiser, J.K.; Mitropoulos, A.N. Progress in the development of olfactory-based bioelectronic chemosensors. Biosens. Bioelectron. 2019, 123, 211–222. [Google Scholar] [CrossRef]
- He, J.H.; He, C.H.; Qian, M.Y.; Alsolami, A.A. Piezoelectric biosensor based on ultrasensitive MEMS system. Sens. Actuator A-Phys. 2024, 376, 115664. [Google Scholar] [CrossRef]
- Juste-Dolz, A.; Teixeira, W.; Pallás-Tamarit, Y.; Carballido-Fernández, M.; Carrascosa, J.; Morán-Porcar, A.; Redón-Badenas, M.A.; Pla-Roses, M.G.; Tirado-Balaguer, M.D.; Remolar-Quintana, M.J.; et al. Real-world evaluation of a QCM-based biosensor for exhaled air. Anal. Bioanal. Chem. 2024, 416, 7369–7383. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, H.S. Rapid and label-free analysis of antigen-antibody dynamic binding of tumor markers using piezoelectric quartz crystal biosensor. Biosensors 2023, 13, 917. [Google Scholar] [CrossRef]
- Leng, J.L.; Zhang, Y.W.; Zhang, Y.F.; Tan, Z.B.; Zhao, Y.C.; Yao, H.; Chong, H.; Wang, C.Y. Construction of AuNPs/UiO-66-NH2 decorated microcantilever immunosensor for efficient detection of procalcitonin. ChemistrySelect 2023, 8, e202304023. [Google Scholar] [CrossRef]
- Bizina, E.V.; Polosina, A.A.; Farafonova, O.V.; Eremin, S.A.; Ermolaeva, T.N. Detection of aristolochic acid using a piezoelectric immunosensor based on magnetic carbon nanocomposites. Inorg. Mater. 2024, 8, 63–70. [Google Scholar] [CrossRef]
- Yen, V.H.; Zyablov, A.N. Application of MIP sensors to the determination of preservatives in nonalcoholic drinks. Inorg. Mater. 2023, 59, 1437–1442. [Google Scholar] [CrossRef]
- Zyablov, A.N.; Yen, V.H. Determination of sodium benzoate in liquids using a piezoelectric sensor modified by a molecularly imprinted polymer. J. Anal. Chem. 2022, 77, 1607–1611. [Google Scholar] [CrossRef]
- Akgonullu, S.; Ozgur, E.; Denizli, A. Quartz crystal microbalance-based aptasensors for medical diagnosis. Micromachines 2022, 13, 1441. [Google Scholar] [CrossRef]
- Tian, Y.L.; Zhu, P.; Chen, Y.T.; Bai, X.Y.; Du, L.P.; Chen, W.; Wu, C.S.; Wang, P. Piezoelectric aptasensor with gold nanoparticle amplification for the label-free detection of okadaic acid. Sens. Actuator B-Chem. 2021, 346, 7. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Feng, Y.; Duan, S.Y.; Su, L.L.; Zhang, J.L.; He, F.J. Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sens. 2019, 4, 849–855. [Google Scholar] [CrossRef]
- Duah, J.A.; Lee, K.S.; Kim, B.G. A self-powered wireless temperature sensor platform for foot ulceration monitoring. Sensors 2024, 24, 6567. [Google Scholar] [CrossRef]
- Elorika, P.; Anwar, S.; Roy, A.; Anwar, S. Flexible PVDF-Ba0.97Ca0.03TiO3 polymer-ceramic composite films for energy storage, biosensor, mechanosensor, and UV-visible light protection. Mater. Res. Bull. 2025, 181, 113116. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A.; Staroverov, S.A.; Vyrshchikov, R.D.; Fursova, K.K.; Brovko, F.A.; Dykman, L.A. Phage display-based acoustic biosensor for early cancer diagnosis. Microchem. J. 2024, 207, 111661. [Google Scholar] [CrossRef]
- Han, S.B.; Lee, S.S. Isolation and characterization of cxosomes from cancer cells using antibody-functionalized paddle screw-type devices and detection of exosomal miRNA using piezoelectric biosensor. Sensors 2024, 24, 5399. [Google Scholar] [CrossRef] [PubMed]
- Forinová, M.; Seidlová, A.; Pilipenco, A.; Lynn, N.S., Jr.; Oborilová, R.; Farka, Z.; Skládal, P.; Saláková, A.; Spasovová, M.; Houska, M.; et al. A comparative assessment of a piezoelectric biosensor based on a new antifouling nanolayer and cultivation methods: Enhancing S. aureus detection in fresh dairy products. Curr. Res. Biotechnol. 2023, 6, 100166. [Google Scholar] [CrossRef]
- Mandal, D.; Indaleeb, M.M.; Younan, A.; Banerjee, S. Piezoelectric point-of-care biosensor for the detection of SARS-CoV-2 (COVID-19) antibodies. Sens. Bio-Sens. Res. 2022, 37, 100510. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Huang, J.; Zhou, J.; He, F. Development of SPQC sensor based on the specific recognition of TAL-effectors for locus-specific detection of 6-methyladenine in DNA. Talanta 2024, 277, 126279. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, S.S. Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. Nanotechnology 2019, 30, 445502. [Google Scholar] [CrossRef]
- Armero, L.; Plou, J.; Valera, P.S.; Serna, S.; García, I.; Liz-Marzán, L.M. Multiplex determination of glycan profiles on urinary prostate-specifics antigen by quartz-crystal microbalance combined with surface-enhanced Raman scattering. ACS Sens. 2024, 9, 4811–4821. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Quartz crystal microbalance biosensor for the detection of procalcitonin. Talanta 2023, 257, 124325. [Google Scholar] [CrossRef] [PubMed]
- Lach, P.; Sharma, P.S.; Golebiewska, K.; Cieplak, M.; D’Souza, F.; Kutner, W. Molecularly imprinted polymer chemosensor for selective determination of an N-nitroso-l-proline food toxin. Chemistry 2017, 23, 1942–1949. [Google Scholar] [CrossRef]
- Mandal, S.; Suriyanarayanan, S.; Nicholls, I.A.; Ramanujam, K. Selective sensing of the biotinyl moiety using molecularly imprinted polyaniline nanowires. J. Electrochem. Soc. 2018, 165, B669–B678. [Google Scholar] [CrossRef]
- Domsicova, M.; Kurekova, S.; Babelova, A.; Jakic, K.; Oravcova, I.; Nemethova, V.; Razga, F.; Breier, A.; Gal, M.; Poturnayova, A. Advancements in chronic myeloid leukemia detection: Development and evaluation of a novel QCM aptasensor for use in clinical practice. Biochem. Biophys. Rep. 2024, 39, 101816. [Google Scholar] [CrossRef]
- Wu, H.Z.; Si, S.H.; Li, Z.; Su, J.Y.; Jia, S.G.; He, H.; Peng, C.C.; Cheng, T.Q.; Wu, Q. Determination of lactoferrin using high-frequency piezoelectric quartz aptamer biosensor based on molecular bond rupture. Molecules 2024, 29, 5699. [Google Scholar] [CrossRef]
- Takeda, M.; Yoshino, H.; Yamazaki, H.; Hirata, T.; Kuroiwa, T.; Nakajima, C.; Suzuki, Y.; Munakata, F. Development of a piezo biosensor for pathogen-specific biopolymer detection using a self-assembly barium titanate/polyvinylidene fluoride composite material. Sens. Actuator A-Phys. 2023, 360, 114545. [Google Scholar] [CrossRef]
Type of Piezoelectric Sensor Platform | Recognition Element | Analyte | Analytical Specifications | References |
---|---|---|---|---|
lateral-field piezoelectric resonator | antibody | heat shock proteins from myeloma cells | limit of detection of 7.5 pg/mL, assay time to 5 min | [136] |
LiTaO3 | hairpin loop capture probe | miR-106b from cancer cells | linear range 0.1 pmol/L to 1.0 μmol/L, limit of detection of 0.0034 pmol/L | [137] |
QCM | antibody | Staphylococcus aureus | limit of detection of 10 CFU/mL, assay time to 30 min | [138] |
128° YX lithium niobate piezoelectric wafer | SARS-CoV-2 Spike protein | antibodies against SARS-CoV-2 | not specified, limit of detection in approximately from nanograms | [139] |
quartz crystal sensor | transcription-activator-like effectors | N6-methyladenine | limit of detection of 0.63 pmol/L, assay time to 3 h | [140] |
QCM | antibody | prostate-specific antigen | limit of detection of 48 pg/mL | [141] |
QCM with dissipation | nucleic acid aptamer | prostate-specific antigen | limit of detection of 1.9 ng/mL | [142] |
QCM | antibody | procalcitonin | limit of detection of 37.8 ng/L, assay time less than one hour | [143] |
QCM | molecularly imprinted polymer | N-nitroso-l-proline | limit of detection of 10 μmol/L | [144] |
gold-coated quartz transducer | molecularly imprinted polymer | biotin methyl ester and other biotinyl moieties | limit of detection of 50 nmol/L | [145] |
QCM | aptamer | K562 cells associated with chronic myeloid leukemia | limit of detection of 263 K562 cells, approximate time 40 min per a sample assay | [146] |
QCM | aptamer | lactoferrin | linear detection range 10–500 ng/mL, limit of detection of 8.2 ng/mL | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohanka, M. Piezoelectric Chemosensors and Biosensors in Medical Diagnostics. Biosensors 2025, 15, 197. https://doi.org/10.3390/bios15030197
Pohanka M. Piezoelectric Chemosensors and Biosensors in Medical Diagnostics. Biosensors. 2025; 15(3):197. https://doi.org/10.3390/bios15030197
Chicago/Turabian StylePohanka, Miroslav. 2025. "Piezoelectric Chemosensors and Biosensors in Medical Diagnostics" Biosensors 15, no. 3: 197. https://doi.org/10.3390/bios15030197
APA StylePohanka, M. (2025). Piezoelectric Chemosensors and Biosensors in Medical Diagnostics. Biosensors, 15(3), 197. https://doi.org/10.3390/bios15030197