Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,088)

Search Parameters:
Keywords = chemical modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2376 KB  
Article
Mitochondrial-Targeted Triphenylphosphonium-Conjugated Ionophores with Enhanced Cytotoxicity in Cancer Cells
by Michał Sulik, Marta Jędrzejczyk, Magdalena Mielczarek-Puta, Jakub Hoser, Piotr Bednarczyk, Marta Struga and Adam Huczyński
Molecules 2025, 30(22), 4413; https://doi.org/10.3390/molecules30224413 - 14 Nov 2025
Abstract
Salinomycin and monensin represent a class of natural ionophore antibiotics with strong anticancer properties. In this paper we report on chemical modification of these compounds by conjugation with phosphonium cations for targeting conjugates to the mitochondria of cancer cells. Our findings indicate that [...] Read more.
Salinomycin and monensin represent a class of natural ionophore antibiotics with strong anticancer properties. In this paper we report on chemical modification of these compounds by conjugation with phosphonium cations for targeting conjugates to the mitochondria of cancer cells. Our findings indicate that this approach yields conjugates with enhanced anticancer activity and selectivity, outperforming not only the parent compounds but also the widely used chemotherapeutic agent, doxorubicin. Comprehensive biological and biophysical analyses proved that the conjugates target the mitochondria in cancer cells, with some of the derivatives additionally promoting generation of mitochondrial reactive oxygen species (mtROS). This targeted strategy holds significant promise for the development of effective mitochondrial-targeted novel anticancer agent. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
12 pages, 3289 KB  
Article
Parametric Study on APTES Silanization of Coal Fly Ash for Enhanced Rubber Composite Performance
by Dennis S. Moyo, George Kleinhans, Xueting Wei, Frédéric J. Doucet and Elizabet M. van der Merwe
Minerals 2025, 15(11), 1198; https://doi.org/10.3390/min15111198 - 14 Nov 2025
Abstract
The surface modification of coal fly ash (CFA) with silane coupling agents improves its compatibility with polymer matrices and supports its use as a sustainable filler in composite materials. This study examined the effects of the solvent system, reaction temperature, and pH on [...] Read more.
The surface modification of coal fly ash (CFA) with silane coupling agents improves its compatibility with polymer matrices and supports its use as a sustainable filler in composite materials. This study examined the effects of the solvent system, reaction temperature, and pH on the grafting of 3-aminopropyltriethoxysilane (APTES) onto CFA surfaces. Functionalization was assessed by Fourier-transform infrared spectroscopy (FTIR), focusing on the CH2 symmetric and asymmetric stretching bands of pure APTES at 2919 and 2957 cm−1, noting that a slight shift in these bands can be expected following the change in the local chemical environment upon grafting. Solvent mixtures containing water (ethanol/water, acetone/water, and sulfuric acid/water) produced stronger coupling than the toluene solvent, which indicated the importance of water for APTES hydrolysis and silanol formation. Coupling efficiency increased with temperature and reached a maximum at 80 °C, where the balance between hydrolysis and condensation favored the formation of stable Si–O–Si bonds. The highest degree of functionalization was observed at pH 9, which corresponds to the point of zero charge of alumina in CFA, where neutral surface hydroxyl groups were available to react with silanols. These results define the optimal conditions for APTES grafting onto CFA and demonstrate its potential as a silane-modified filler in polymer composites. Atomic force microscopy (AFM) provided direct visual evidence of significant surface texture modifications induced by APTES treatment in the ethanol/water solvent system. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

52 pages, 1396 KB  
Review
Paraffin Coated with Diatomite as a Phase Change Material (PCM) in Heat Storage Systems—A Review of Research, Properties, and Applications
by Agnieszka Przybek, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(22), 5166; https://doi.org/10.3390/ma18225166 - 13 Nov 2025
Abstract
Paraffin-based phase change materials (PCMs) have emerged as promising candidates for thermal energy storage (TES) applications due to their high latent heat, chemical stability, and low cost. However, their inherently low thermal conductivity and the risk of leakage during melting–solidification cycles significantly limit [...] Read more.
Paraffin-based phase change materials (PCMs) have emerged as promising candidates for thermal energy storage (TES) applications due to their high latent heat, chemical stability, and low cost. However, their inherently low thermal conductivity and the risk of leakage during melting–solidification cycles significantly limit their practical performance. To address these limitations, numerous studies have investigated composite PCMs in which paraffin is incorporated into porous supporting matrices. Among these, diatomite has garnered particular attention due to its high porosity, large specific surface area, and chemical compatibility with organic materials. Serving as both a carrier and stabilizing shell, diatomite effectively suppresses leakage and enhances thermal conductivity, thereby improving the overall efficiency and reliability of the PCM. This review synthesizes recent research on paraffin–diatomite composites, with a focus on impregnation methods, surface modification techniques, and the influence of synthesis parameters on thermal performance and cyclic stability. The mechanisms of heat and mass transport within the composite structure are examined, alongside comparative analyses of paraffin–diatomite systems and other inorganic or polymeric supports. Particular emphasis is placed on applications in energy-efficient buildings, passive heating and cooling, and hybrid thermal storage systems. The review concludes that paraffin–diatomite composites present a promising avenue for stable, efficient, and sustainable phase change materials (PCMs). However, challenges such as the optimization of pore structure, long-term durability, and large-scale manufacturing must be addressed to facilitate their broader implementation in next-generation energy storage technologies. Full article
Show Figures

Graphical abstract

24 pages, 985 KB  
Review
Nature-Inspired Pathogen and Cancer Protein Covalent Inhibitors: From Plants and Other Natural Sources to Drug Development
by Giovanni N. Roviello
Pathogens 2025, 14(11), 1153; https://doi.org/10.3390/pathogens14111153 - 12 Nov 2025
Abstract
Nature has long served as a prolific source of bioactive compounds, offering structurally diverse scaffolds for the development of therapeutics. In recent years, increasing attention has been given to nature-inspired covalent inhibitors, molecules that form covalent bonds with pathogen- or cancer-specific targets, due [...] Read more.
Nature has long served as a prolific source of bioactive compounds, offering structurally diverse scaffolds for the development of therapeutics. In recent years, increasing attention has been given to nature-inspired covalent inhibitors, molecules that form covalent bonds with pathogen- or cancer-specific targets, due to their potential selectivity and sustained biological activity. This review explores the landscape of covalent inhibitors derived from natural sources, with a focus on compounds from fungi, marine organisms, bacteria and plants. In particular, emphasis is placed on the molecular mechanisms through which these compounds exert their activity against different types of pathogens and other biomedically relevant targets, highlighting key structural motifs that facilitate covalent interactions. Furthermore, the review discusses recent advances in synthetic modification, target identification, and optimization strategies that bridge natural compound discovery with modern drug development. By drawing insights from nature’s chemical repertoire, this work ultimately displays the potential of natural covalent inhibitors as a promising foundation for next-generation anti-infective and anticancer therapeutics. Full article
Show Figures

Figure 1

24 pages, 1206 KB  
Review
Recent Advances in the Synthesis and Applications of 1,2,3/1,2,5-Thiadiazole- and Benzo[c][1,2,5/1,2,3]thiadiazole-Type Compounds
by Diego Quiroga, Daniel Rodríguez and Ericsson Coy-Barrera
Molecules 2025, 30(22), 4373; https://doi.org/10.3390/molecules30224373 - 12 Nov 2025
Abstract
Thiadiazole derivatives, such as 1,2,3-thiadiazole, 1,2,5-thiadiazole, benzo[c][1,2,5]thiadiazole, and benzo[d][1,2,3]thiadiazole, have garnered significant attention due to their exceptional chemical and physical properties. These molecules, which contain sulfur and nitrogen atoms in their heterocyclic structure, have a variety of applications in [...] Read more.
Thiadiazole derivatives, such as 1,2,3-thiadiazole, 1,2,5-thiadiazole, benzo[c][1,2,5]thiadiazole, and benzo[d][1,2,3]thiadiazole, have garnered significant attention due to their exceptional chemical and physical properties. These molecules, which contain sulfur and nitrogen atoms in their heterocyclic structure, have a variety of applications in agriculture, materials, and pharmaceuticals. In this review, we examine the most commonly used synthetic methods for these compounds, with a focus on the most recent techniques, including green synthesis, solid-phase chemistry, and catalytic processes, which enable greater efficiency, improved selectivity, and reduced environmental impact. Advances in the structural modification of these molecules to improve their photophysical properties and biocompatibility are also discussed. Finally, we highlight future research directions and emerging applications of thiadiazole derivatives across molecular medicine, nanotechnology, and agriculture, underscoring their potential to revolutionize multiple scientific and technological fields. Full article
Show Figures

Figure 1

21 pages, 7142 KB  
Article
Chemically Modified Starch Films with Menthol or Sulfobetaine as Antimicrobial Agents for Active Packaging Applications
by Pedro Francisco Muñoz-Gimena, Anselmo del Prado, Alejandro Aragón-Gutiérrez, Laura Peponi and Daniel López
Polysaccharides 2025, 6(4), 103; https://doi.org/10.3390/polysaccharides6040103 - 12 Nov 2025
Abstract
This study aims to develop a modified starch with menthol (M) or sulfobetaine (S) using 1,6-hexamethyl diisocyanate (HMDI) as a linker to create biodegradable antibacterial materials for active packaging applications. The modification of potato starch is performed in a two-step reaction. First, the [...] Read more.
This study aims to develop a modified starch with menthol (M) or sulfobetaine (S) using 1,6-hexamethyl diisocyanate (HMDI) as a linker to create biodegradable antibacterial materials for active packaging applications. The modification of potato starch is performed in a two-step reaction. First, the starch modifiers are synthesized through an equimolar reaction between HMDI and menthol or the sulfobetaine precursor. Next, the synthesized HMDI derivative is dissolved in a bio-based solvent (methyl-THF) with starch and K2CO3 (1:1 weight ratio) to chemically modify the starch. The chemical and thermal properties of the modified starch are analyzed. Starch films containing 25 wt.% glycerol and low amounts (0.5, 1, and 3% wt.) of M- or S-modified starch were successfully produced by extrusion. Although most film properties remain similar to the control, adding 3% of S-modified starch resulted in a 149% increase in Elastic Modulus and a 29% decrease in water vapor permeability. Additionally, just 0.5 wt.% of either M- or S-modified starch effectively inhibits S. aureus growth, indicating its potential as a bioactive compound for active packaging. Full article
Show Figures

Graphical abstract

27 pages, 1148 KB  
Review
Antimicrobial Peptides: Current Status, Mechanisms of Action, and Strategies to Overcome Therapeutic Limitations
by Seong Hwan Kim, Yu-Hong Min and Min Chul Park
Microorganisms 2025, 13(11), 2574; https://doi.org/10.3390/microorganisms13112574 - 12 Nov 2025
Abstract
Antimicrobial peptides (AMPs), evolutionarily conserved components of the immune system, have attracted considerable attention as promising therapeutic candidates. Derived from diverse organisms, AMPs represent a heterogeneous class of molecules, typically cationic, which facilitates their initial electrostatic interaction with anionic microbial membranes. Unlike conventional [...] Read more.
Antimicrobial peptides (AMPs), evolutionarily conserved components of the immune system, have attracted considerable attention as promising therapeutic candidates. Derived from diverse organisms, AMPs represent a heterogeneous class of molecules, typically cationic, which facilitates their initial electrostatic interaction with anionic microbial membranes. Unlike conventional single-target antibiotics, AMPs utilize rapid, multi-target mechanisms, primarily physical membrane disruption, which results in a significantly lower incidence of resistance emergence. Their broad-spectrum antimicrobial activity, capacity to modulate host immunity, and unique mechanisms of action make them inherently less susceptible to resistance compared with traditional antibiotics. Despite these advantages, the clinical translation of natural AMPs remains limited by several challenges, including poor in vivo stability, and potential cytotoxicity. Bioengineering technology offers innovative solutions to these limitations of AMPs. Two techniques have demonstrated promise: (i) a chimeric recombinant of AMPs with stable scaffold, such as human serum albumin and antibody Fc domain and (ii) chemical modification approaches, such as lipidation. This review provides a comprehensive overview of AMPs, highlighting their origins, structures, and mechanisms of antimicrobial activity, followed by recent advances in bioengineering platforms designed to overcome their therapeutic limitations. By integrating natural AMPs with bioengineering and nanotechnologies, AMPs may be developed into next-generation antibiotics. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

15 pages, 6108 KB  
Article
Handheld Nonthermal Plasma Augmentation of Glass–Ceramic Spray Deposition on Zirconia Surface Characterization and MG-63/HGF-1 Cell Behavior: An In Vitro Study
by Sheng-Han Wu, Szu-Yu Lai, I-Ta Lee, Yuichi Mine, Huei-Yu Huang and Tzu-Yu Peng
J. Funct. Biomater. 2025, 16(11), 421; https://doi.org/10.3390/jfb16110421 - 11 Nov 2025
Viewed by 107
Abstract
Zirconia is widely used for customized implant abutments owing to its esthetics, strength, and biocompatibility; however, the optimal surface modification for soft-tissue sealing and bone metabolic remains uncertain. This study evaluated how glass–ceramic spray deposition (GCSD), with or without handheld nonthermal plasma (HNP), [...] Read more.
Zirconia is widely used for customized implant abutments owing to its esthetics, strength, and biocompatibility; however, the optimal surface modification for soft-tissue sealing and bone metabolic remains uncertain. This study evaluated how glass–ceramic spray deposition (GCSD), with or without handheld nonthermal plasma (HNP), alters zirconia surface physiochemistry and cellular responses. Field-emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, surface roughness (Ra), wettability, and surface free energy (SFE) were measured. Human osteoblast-like cells (MG-63) and human gingival fibroblasts (HGF-1) were used to assess attachment and spreading, metabolic activity, cytotoxicity, and inflammatory response (tumor necrosis factor-α, TNF-α) (α = 0.05). GCSD produced an interlaced rod- and needle-like glass–ceramic layer, significantly increasing Ra and hydrophilicity. HNP further reduced surface contaminants, increased SFE, and enhanced wettability. The combination of GCSD and HNP yielded the greatest attachment and spreading for both cell types, without increases in cytotoxicity or TNF-α. GCSD with HNP creates a hydrophilic, micro-textured, chemically activated zirconia surface that maintains biocompatibility while promoting early attachment and bone metabolic activity, supporting its application for zirconia implant abutments. Full article
(This article belongs to the Special Issue Advanced Dental Restorative Composite Materials)
Show Figures

Figure 1

30 pages, 5866 KB  
Review
Performance Optimization Strategies for Polymer Organic Field-Effect Transistors as Sensing Platforms
by Yan Wang, Zimin Ye, Tianci Wang, Linxiao Zu and Liwen Chen
Sensors 2025, 25(22), 6891; https://doi.org/10.3390/s25226891 - 11 Nov 2025
Viewed by 190
Abstract
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, [...] Read more.
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, including carrier mobility (μ), threshold voltage (Vth), on/off current ratio (Ion/Ioff), and operational stability. These strategies encompass both physical and chemical approaches, such as annealing, self-assembled monolayers (SAMs), modification of main and side polymer chains, dielectric-layer engineering, buffer-layer insertion, and blending or doping techniques. The development of high-performance devices requires precise integration of physical processing and chemical design, alongside the anticipation of processing compatibility during the molecular design phase. This article further highlights the limitations of focusing solely on high mobility and advocates a balanced optimization across multiple dimensions—mobility, mechanical flexibility, environmental stability, and consistent functional performance. Adopting a multi-scale optimization framework spanning molecular, film, and device levels can substantially enhance the adaptability of OFETs for emerging applications such as flexible sensing, bioelectronic interfaces, and neuromorphic computing. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 2921 KB  
Article
In Vitro Osteogenic Stimulation of Human Adipose-Derived MSCs on Biofunctional 3D-Printed Scaffolds
by Serena Munaò, Ugo D’Amora, Luana Vittoria Bauso, Alfredo Ronca, Paola Manini, Alessandro Pezzella, Maria Grazia Raucci, Luigi Ambrosio and Giovanna Calabrese
Biomedicines 2025, 13(11), 2755; https://doi.org/10.3390/biomedicines13112755 - 11 Nov 2025
Viewed by 319
Abstract
Background: Human adipose-derived mesenchymal stem cells (hADMSCs) are widely used in regenerative medicine due to their ability to proliferate and differentiate. Bone tissue engineering represents an innovative alternative to traditional grafts by combining biomimetic materials, stem cells, and bioactive factors to promote bone [...] Read more.
Background: Human adipose-derived mesenchymal stem cells (hADMSCs) are widely used in regenerative medicine due to their ability to proliferate and differentiate. Bone tissue engineering represents an innovative alternative to traditional grafts by combining biomimetic materials, stem cells, and bioactive factors to promote bone regeneration. Gellan gum (GG) is a promising scaffold material owing to its excellent biocompatibility and favorable physicochemical characteristics; however, chemical modifications such as methacrylation are necessary to enhance its mechanical strength and long-term stability. In this in vitro study, osteoprogenitor cells are cultured for 21 days on three 3D-printed GGMA-based scaffolds to evaluate their biological response: (i) neat GGMA, (ii) GGMA functionalized with hydroxyapatite (HAp), and (iii) GGMA functionalized with eumelanin derived from black soldier fly (BSF-Eumelanin). Methods: Cell adhesion, viability, proliferation and osteogenic differentiation are evaluated using MTT assays, histological staining (H&E and Alizarin Red S), alkaline phosphatase (ALP) activity, and gene expression analysis of key osteogenic markers. Results: Our results show that all GGMA-based scaffolds support cell adhesion, growth, and proliferation, while BSF-Eumelanin and HAp notably enhance osteogenic differentiation compared to neat GGMA. Conclusions: These findings highlight the potential of embedding bioactive factors into GGMA scaffolds to improve osteoconductive and osteoinductive performance, offering a promising strategy for bone repair. Full article
Show Figures

Figure 1

20 pages, 3571 KB  
Article
Novel Omniphobic Teflon/PAI Composite Membrane Prepared by Vacuum-Assisted Dip-Coating Strategy for Dissolved Gases Separation from Transformer Oil
by Wei Zhang, Qiwei Yang, Yuanyuan Jin, Yanzong Meng, Leyu Shen, Xuran Zhu, Haifeng Gao and Chuan Chen
Coatings 2025, 15(11), 1319; https://doi.org/10.3390/coatings15111319 - 11 Nov 2025
Viewed by 72
Abstract
Omniphobic membranes have gained extensive attention for mitigating membrane wetting in robust membrane separation owing to the super-repulsion toward water and oil. In this study, a Teflon/PAI composite membrane with omniphobic characteristics was prepared by a vacuum-assisted dip-coating strategy on the PAI hollow [...] Read more.
Omniphobic membranes have gained extensive attention for mitigating membrane wetting in robust membrane separation owing to the super-repulsion toward water and oil. In this study, a Teflon/PAI composite membrane with omniphobic characteristics was prepared by a vacuum-assisted dip-coating strategy on the PAI hollow fiber membrane. A series of characterizations on morphological structure, surface chemical composition, wettability, permeability, mechanical properties, and stability were systematically investigated for pristine PAI and Teflon/PAI composite membranes. Subsequently, the experiment was conducted to explore the oil–gas separation performance of membranes, with standard transformer oil containing dissolved gas as the feed. The results showed that the Teflon AF2400 functional layer was modified, and C-F covalent bonds were introduced on the composite membrane surface. The Teflon/PAI composite membrane exhibited excellent contact angles of 156.3 ± 1.8° and 123.0 ± 2.5° toward DI water and mineral insulating oil, respectively, indicating omniphobicity. After modification, the membrane tensile stress at break increased by 23.0% and the mechanical performance of the composite membrane was significantly improved. In addition, the Teflon/PAI composite membrane presented satisfactory thermal and ultrasonic stability. Compared to the previous membranes, the Teflon/PAI composite membrane presented a thinner Teflon AF2400 separation layer. Furthermore, the omniphobic membrane demonstrated anti-wetting performance by reaching the dynamic equilibrium within 2 h for the dissolved gases separated from the insulating oil. This suggests an omniphobic membrane as a promising alternative for oil–gas separation in monitoring the operating condition of oil-filled electrical equipment online. Full article
(This article belongs to the Special Issue Advances in Polymer Composite Coatings and Films)
Show Figures

Graphical abstract

13 pages, 1286 KB  
Article
Effect of Poly (Vinyl Alcohol) on the Properties of Cold-Setting Melamine–Urea–Formaldehyde Resin Adhesive
by Jiankun Liang, Bengang Zhang, Longxu Wu, Yuqi Yang, Caihong Long, Zhixian Song, Hui Yang and Zhigang Wu
Materials 2025, 18(22), 5125; https://doi.org/10.3390/ma18225125 - 11 Nov 2025
Viewed by 105
Abstract
This study investigates how poly (vinyl alcohol) (PVA) influences melamine–urea–formaldehyde (MUF) resin, particularly regarding tensile properties, bonding strength, water resistance, curing temperature, chemical structure, and microscopic morphology. By altering the PVA content, we observed changes in the tensile strength and elongation of MUF [...] Read more.
This study investigates how poly (vinyl alcohol) (PVA) influences melamine–urea–formaldehyde (MUF) resin, particularly regarding tensile properties, bonding strength, water resistance, curing temperature, chemical structure, and microscopic morphology. By altering the PVA content, we observed changes in the tensile strength and elongation of MUF resin. The tensile strength peaked at a 2% PVA addition. PVA significantly enhanced the dry, cold water, and boiling water bonding strengths of MUF resin, with the most notable effect at a 10% addition. A low PVA addition (2%) notably improved the water resistance of glued wood. Differential scanning calorimetry revealed that PVA increased the curing temperature of MUF resin, though excessive PVA led to a decrease. Nuclear magnetic resonance analysis showed changes in chemical bonds after PVA modification, indicating increased polymerization. X-ray diffraction and scanning electron microscopy analyses further confirmed the effects of PVA on the crystal structure and microscopic morphology of MUF resin, with modified resins exhibiting higher toughness fracture characteristics. These findings suggest that PVA can effectively enhance the overall performance of MUF resin, making it more suitable for applications of glued wood. Full article
Show Figures

Figure 1

23 pages, 2598 KB  
Review
Sustainable Cationic Polyelectrolytes from Agri-Forestry Biomass: Conventional Chemistry to AI-Optimized Reactive Extrusion
by Ali Ayoub and Lucian A. Lucia
Sustainability 2025, 17(22), 10060; https://doi.org/10.3390/su172210060 - 11 Nov 2025
Viewed by 178
Abstract
Cationic polyelectrolytes, characterized by positively charged functional groups, play an essential role in industries ranging from food solutions, water treatment, medical, cosmetic, textiles and agriculture due to their electrostatic interactions, biocompatibility, and functional versatility. This paper critically examines the transition from petroleum-based synthetic [...] Read more.
Cationic polyelectrolytes, characterized by positively charged functional groups, play an essential role in industries ranging from food solutions, water treatment, medical, cosmetic, textiles and agriculture due to their electrostatic interactions, biocompatibility, and functional versatility. This paper critically examines the transition from petroleum-based synthetic polymers such as poly(diallyldimethylammonium chloride) and cationic polyacrylamides to sustainable natural alternatives derived from agri-forestry resources like starch derivatives and cellulose. Through a cradle-to-gate life cycle assessment, we highlight the superior renewability, biodegradability, and lower carbon footprint of bio-based polycations, despite challenges in agricultural sourcing and processing. This study examines cationization processes by comparing the environmental limitations of traditional chemical methods, such as significant waste production and limited scalability, with those of second-generation reactive extrusion (REX), which enables solvent-free and rapid modification. REX also allows for adjustable degrees of substitution and ensures uniform charge distribution, thereby enhancing overall functional performance. Groundbreaking research and optimization achieved through the integration of artificial intelligence and machine learning for parameter regulation and targeted mechanical energy management underscore REX’s strengths in precision engineering. By methodically addressing current limitations and articulating future advancements, this work advances sustainable innovation that contributes to a circular economy in materials science. Full article
Show Figures

Figure 1

31 pages, 3762 KB  
Review
Extraction Techniques and Modification Methods for Regulating the Structural and Functional Properties of Oleosome-Associated Proteins: A Review
by Yufan Sun, Mingming Zhong, Muhammad Safiullah Virk, Qin Liu, Qiufang Liang, Haile Ma and Xiaofeng Ren
Foods 2025, 14(22), 3849; https://doi.org/10.3390/foods14223849 - 11 Nov 2025
Viewed by 170
Abstract
In recent years, oleosome-associated proteins (OPs) have gained increasing attention in the food and nutrition sectors due to their balanced amino acid composition and excellent functional properties. However, their low extraction yield, high hydrophobicity, and poor solubility hinder broader application in food systems. [...] Read more.
In recent years, oleosome-associated proteins (OPs) have gained increasing attention in the food and nutrition sectors due to their balanced amino acid composition and excellent functional properties. However, their low extraction yield, high hydrophobicity, and poor solubility hinder broader application in food systems. This review provides a concise overview of OPs’ structural features, current extraction strategies, and the impact of modification techniques on their structural and functional attributes. Special emphasis is placed on hybrid extraction methods that integrate physical treatments (e.g., ultrasound, heating, colloid milling) with traditional chemical approaches to enhance yield while preserving protein functionality. Furthermore, the review discusses how physical and chemical modifications effectively regulate OPs’ solubility, emulsifying capacity, aggregation behavior, and self-assembly characteristics. The regulatory mechanisms of different processing conditions on protein conformation and intermolecular interactions are summarized to guide functional optimization. Finally, the current technical challenges are outlined and future research directions are proposed, including the industrial scaling of hybrid extraction, precise control of structural modification, and application of OPs in emulsified and gel-based delivery systems. This work offers theoretical insight and practical guidance for the high-value utilization of OPs in food and related industries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

13 pages, 1611 KB  
Article
Adsorbents Made from Cotton Textile Waste—Application to the Removal of Tetracycline in Water
by Fadila Akkouche, Katia Madi, Farida Aissani-Benissad, Fekri Abdulraqeb Ahmed Ali, Amine Aymen Assadi, Amir Achraf Assadi, Ahmed Amine Azzaz and Idris Yahiaoui
Bioengineering 2025, 12(11), 1230; https://doi.org/10.3390/bioengineering12111230 - 10 Nov 2025
Viewed by 133
Abstract
The adsorptive removal of tetracycline (TC) in aqueous solution, a widely used antibiotic, was investigated using activated carbon derived from cotton textile waste. The valorization of textile waste provides a sustainable strategy that not only reduces the growing accumulation of discarded textiles but [...] Read more.
The adsorptive removal of tetracycline (TC) in aqueous solution, a widely used antibiotic, was investigated using activated carbon derived from cotton textile waste. The valorization of textile waste provides a sustainable strategy that not only reduces the growing accumulation of discarded textiles but also supports a circular economy by transforming waste into efficient adsorbent materials for the removal pharmaceutical contaminants. This dual environmental and economic benefit underscores the novelty and significance of using cotton-based activated carbons in wastewater treatment. In this study, cotton textile waste was utilized as a raw material for the preparation of adsorbents via pyrolysis under nitrogen at 600 °C followed by chemical modification with H2SO4 solutions (1, 2, and 3 M). The sulfuric-acid modified-carbons (SMCs) were characterized by BET surface area analysis, FTIR spectroscopy and SEM imaging. Batch adsorption experiments were carried out to evaluate the effects of key operational parameters including contact time, initial TC concentration and solution pH. The results showed that the material treated with 2 M H2SO4 displayed the highest adsorption performance, with a specific surface area of 700 m2/g and a pore volume of 0.352 m3/g. The pH has a great influence on TC adsorption; the adsorbed amount increases with the initial TC concentration from 5 to 100 mg/L and the maximum adsorption capacity (74.02 mg/g) is obtained at pH = 3.8. The adsorption behavior was best described by Freundlich isotherm and pseudo-second-order kinetic models. This study demonstrates that low-cost and abundantly available material, such as cotton textile waste, can be effectively repurposed effective adsorbents for the removal of pharmaceutical pollutants from aqueous media. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Figure 1

Back to TopTop