Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = chemical flood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 826 KiB  
Review
Mechanisms and Impact of Acacia mearnsii Invasion
by Hisashi Kato-Noguchi and Midori Kato
Diversity 2025, 17(8), 553; https://doi.org/10.3390/d17080553 - 4 Aug 2025
Abstract
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due [...] Read more.
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due to its negative ecological impact, A. mearnsii has been listed among the world’s 100 worst invasive alien species. This species exhibits rapid stem growth in its sapling stage and reaches reproductive maturity early. It produces a large quantity of long-lived seeds, establishing a substantial seed bank. A. mearnsii can grow in different environmental conditions and tolerates various adverse conditions, such as low temperatures and drought. Its invasive populations are unlikely to be seriously damaged by herbivores and pathogens. Additionally, A. mearnsii exhibits allelopathic activity, though its ecological significance remains unclear. These characteristics of A. mearnsii may contribute to its expansion in introduced ranges. The presence of A. mearnsii affects abiotic processes in ecosystems by reducing water availability, increasing the risk of soil erosion and flooding, altering soil chemical composition, and obstructing solar light irradiation. The invasion negatively affects biotic processes as well, reducing the diversity and abundance of native plants and arthropods, including protective species. Eradicating invasive populations of A. mearnsii requires an integrated, long-term management approach based on an understanding of its invasive mechanisms. Early detection of invasive populations and the promotion of public awareness about their impact are also important. More attention must be given to its invasive traits because it easily escapes from cultivation. Full article
(This article belongs to the Special Issue Plant Adaptation and Survival Under Global Environmental Change)
Show Figures

Graphical abstract

19 pages, 6150 KiB  
Article
Evaluation of Eutrophication in Small Reservoirs in Northern Agricultural Areas of China
by Qianyu Jing, Yang Shao, Xiyuan Bian, Minfang Sun, Zengfei Chen, Jiamin Han, Song Zhang, Shusheng Han and Haiming Qin
Diversity 2025, 17(8), 520; https://doi.org/10.3390/d17080520 - 26 Jul 2025
Viewed by 178
Abstract
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton [...] Read more.
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton were quantitatively collected from four small reservoirs in the Jiuxianshan agricultural area of Qufu, Shandong Province, in March and October 2023, respectively. The physical and chemical parameters in sampling points were determined simultaneously. Meanwhile, water samples were collected for nutrient salt analysis, and the eutrophication of water bodies in four reservoirs was evaluated using the comprehensive nutrient status index method. The research found that the species richness of zooplankton after farming (100 species) was significantly higher than that before farming (81 species) (p < 0.05). On the contrary, the dominant species of zooplankton after farming (7 species) were significantly fewer than those before farming (11 species). The estimation results of the standing stock of zooplankton indicated that the abundance and biomass of zooplankton after farming (92.72 ind./L, 0.13 mg/L) were significantly higher than those before farming (32.51 ind./L, 0.40 mg/L) (p < 0.05). Community similarity analysis based on zooplankton abundance (ANOSIM) indicated that there were significant differences in zooplankton communities before and after farming (R = 0.329, p = 0.001). The results of multi-dimensional non-metric sorting (NMDS) showed that the communities of zooplankton could be clearly divided into two: pre-farming communities and after farming communities. The Monte Carlo test results are as follows (p < 0.05). Transparency (Trans), pH, permanganate index (CODMn), electrical conductivity (Cond) and chlorophyll a (Chl-a) had significant effects on the community structure of zooplankton before farming. Total nitrogen (TN), total phosphorus (TP) and electrical conductivity (Cond) had significant effects on the community structure of zooplankton after farming. The co-linearity network analysis based on zooplankton abundance showed that the zooplankton community before farming was more stable than that after farming. The water evaluation results based on the comprehensive nutritional status index method indicated that the water conditions of the reservoirs before farming were mostly in a mild eutrophic state, while the water conditions of the reservoirs after farming were all in a moderate eutrophic state. The results show that the nutritional status of small reservoirs in agricultural areas is significantly affected by agricultural activities. The zooplankton communities in small reservoirs underwent significant changes driven by alterations in the reservoir water environment and nutritional status. Based on the main results of this study, we suggested that the use of fertilizers and pesticides should be appropriately reduced in future agricultural activities. In order to better protect the water quality and aquatic ecology of the water reservoirs in the agricultural area. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

20 pages, 3407 KiB  
Article
Impact of Adverse Mobility Ratio on Oil Mobilization by Polymer Flooding
by Abdulmajeed Murad, Arne Skauge, Behruz Shaker Shiran, Tormod Skauge, Alexandra Klimenko, Enric Santanach-Carreras and Stephane Jouenne
Polymers 2025, 17(15), 2033; https://doi.org/10.3390/polym17152033 - 25 Jul 2025
Viewed by 208
Abstract
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental [...] Read more.
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental study which shows that even very low concentrations of polymers yield relatively high recovery rates at adverse mobility ratios (230 cP oil). A series of core flood experiments were conducted on Bentheimer sandstone rock, with polymer concentrations ranging from 40 ppm (1.35 cP) to 600 ppm (10.0 cP). Beyond a mobility ratio threshold, increasing polymer concentration did not significantly enhance recovery. This plateau in performance was attributed to the persistence of viscous fingering and oil crossflow into pre-established water channels. The study suggests that low concentrations of polymer may mobilize oil at high mobility ratios by making use of the pre-established water channels as transport paths for the oil and that the rheology of the polymer enhances this effect. These findings enable reductions in the polymer concentration in fields with adverse mobility ratios, leading to substantial reductions in chemical usage, energy consumption, and environmental impact of the extraction process. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 2512 KiB  
Review
Drenched Pages: A Primer on Wet Books
by Islam El Jaddaoui, Kayo Denda, Hassan Ghazal and Joan W. Bennett
Biology 2025, 14(8), 911; https://doi.org/10.3390/biology14080911 - 22 Jul 2025
Viewed by 224
Abstract
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result [...] Read more.
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result in accelerated fungal growth. Moreover, when fungal spores are present at high concentrations in the air, they can be linked to severe respiratory conditions and possibly to other adverse health effects in humans. Climate change and the accompanying storms and floods are making the dual potential of fungi to biodegrade library holdings and harm human health more common. This essay is intended for microbiologists without much background in mycology who are called in to help librarians who are dealing with mold outbreaks in libraries. Our goal is to demystify aspects of fungal taxonomy, morphology, and nomenclature while also recommending guidelines for minimizing mold contamination in library collections. Full article
23 pages, 6480 KiB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Viewed by 429
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 29742 KiB  
Article
Enhanced Oilfield-Produced-Water Treatment Using Fe3+-Augmented Composite Bioreactor: Performance and Microbial Community Dynamics
by Qiushi Zhao, Chunmao Chen, Zhongxi Chen, Hongman Shan and Jiahao Liang
Bioengineering 2025, 12(7), 784; https://doi.org/10.3390/bioengineering12070784 - 19 Jul 2025
Viewed by 490
Abstract
The presence of recalcitrant organic compounds in oilfield-produced-water poses significant challenges for conventional biological treatment technologies. In this study, an Fe3+-augmented composite bioreactor was developed to enhance the multi-pollutant removal performance and to elucidate the associated microbial community dynamics. The Fe [...] Read more.
The presence of recalcitrant organic compounds in oilfield-produced-water poses significant challenges for conventional biological treatment technologies. In this study, an Fe3+-augmented composite bioreactor was developed to enhance the multi-pollutant removal performance and to elucidate the associated microbial community dynamics. The Fe3+-augmented system achieved efficient removal of oil (99.18 ± 0.91%), suspended solids (65.81 ± 17.55%), chemical oxygen demand (48.63 ± 15.15%), and polymers (57.72 ± 14.87%). The anaerobic compartment served as the core biotreatment unit, playing a pivotal role in microbial pollutant degradation. High-throughput sequencing indicated that Fe3+ supplementation strengthened syntrophic interactions between iron-reducing bacteria (Trichococcus and Bacillus) and methanogenic archaea (Methanobacterium and Methanomethylovorans), thereby facilitating the biodegradation of long-chain hydrocarbons (e.g., eicosane and nonadecane). Further metabolic function analysis identified long-chain-fatty-acid CoA ligase (EC 6.2.1.3) as a key enzyme mediating the interplay between hydrocarbon degradation and nitrogen cycling. This study elucidated the ecological mechanisms governing Fe3+-mediated multi-pollutant removal in a composite bioreactor and highlighted the potential of this approach for efficient, sustainable, and adaptable management of produced water in the petroleum industry. Full article
Show Figures

Figure 1

26 pages, 10465 KiB  
Article
Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials
by Jacek Kostrzewa, Łukasz Kaczmarek, Jan Bogacki, Agnieszka Dąbska, Małgorzata Wojtkowska and Paweł Popielski
Materials 2025, 18(14), 3384; https://doi.org/10.3390/ma18143384 - 18 Jul 2025
Viewed by 358
Abstract
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high [...] Read more.
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high usability in specific hydrotechnical applications. Key laboratory tests for material characterization included physical, permeability, mechanical, and chemical property analyses. The tested waste corresponds to uniformly graded medium sands (uniformity coefficient: 2.20) and weakly calcareous (calcium carbonate content: 2.25–3.29%) mineral soils with organic content ranging from 0.24% to 1.49%. The minimum heavy metal immobilization level reached 91.45%. At maximum dry density of the soil skeleton (1.78/1.79 g/cm3) and optimal moisture content (11.34/11.95%), the hydraulic conductivity reached 4.38/7.71 m/d. The mechanical parameters of washed mineral waste included internal friction angle (34.4/37.8°) and apparent cohesion (9.37/14.98 kPa). The values of the determined parameters are comparable to those of natural sands used as construction aggregates. As a result, washed mineral waste has a high potential for use as an alternative material to natural sand in the analyzed hydrotechnical applications, particularly for flood embankment construction, by applicable technical standards and construction guidelines. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 2953 KiB  
Article
Water Retention Measures as a Remediation Technique for CSO-Affected Watercourses
by Michaela Červeňanská, Jakub Mydla, Andrej Šoltész, Martin Orfánus, Peter Šulek, Jaroslav Hrudka, Réka Wittmanová and Richard Honti
Sustainability 2025, 17(14), 6280; https://doi.org/10.3390/su17146280 - 9 Jul 2025
Viewed by 279
Abstract
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can [...] Read more.
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can contribute to the ‘flushing’ of the riverbed. During heavy rainfalls, the Trnávka River is polluted by solid, non-soluble materials, which produce unpleasant odors and are the subject of numerous complaints by citizens, particularly during low water levels. Three inflatable rubber weirs were designed, and their design was verified using a 1D numerical model of the Trnávka River. The simulations of the proposed measures performed in the HEC-RAS 5.0 software excluded the adverse effect of the backwater on the functioning of the CSO chambers in the city of Trnava during normal flow rates and confirmed that, even after installation of the weirs, the transition of the flood wave will pass in the riverbed, not causing the flooding of the adjacent area. The chemical–physical study of the Trnávka River confirmed our assumption that higher flow rates, which can be secured by the regulation of the proposed weirs, can contribute to the purity of the watercourse in the city of Trnava. Full article
Show Figures

Figure 1

20 pages, 12984 KiB  
Article
Spatial and Temporal Characterization of the Development and Pollution Emissions of Key Heavy Metal-Related Industries in Typical Regions of China: A Case Study of Hunan Province
by Liying Yang, Xia Li, Jianan Luo, Xuechun Ma, Xiaoyan Zhang, Jiamin Zhao, Zhicheng Shen and Jingwen Xu
Sustainability 2025, 17(14), 6275; https://doi.org/10.3390/su17146275 - 9 Jul 2025
Viewed by 352
Abstract
At present, there is a lack of in-depth knowledge of the effects of heavy metal-related industries (HMIs) in China on the environment. Hunan Province, as a representative gathering place of HMIs, is among the regions in China that are the most severely polluted [...] Read more.
At present, there is a lack of in-depth knowledge of the effects of heavy metal-related industries (HMIs) in China on the environment. Hunan Province, as a representative gathering place of HMIs, is among the regions in China that are the most severely polluted with heavy metals. This paper selected Hunan Province as the study area to analyze the development trend, characteristics of pollution emissions, and environmental impacts of seven HMIs based on emission permit information data from Hunan Province. The results of this study show that (1) from 2000 to 2022, the number of heavy metal-related enterprises in Hunan Province increased overall. Among the seven industries, the chemical product manufacturing industry (CPMI) had the largest number of enterprises, whereas the nonferrous metal smelting and rolling industry (NSRI) had the highest gross industrial product (27.6%). (2) HMIs in Hunan Province had significant emissions of cadmium (Cd), arsenic (As), and hydargyrum (Hg) from exhaust gas and wastewater. Heavy metal-related exhaust gas and wastewater outlets from the NSRI constituted 43.9% and 35.3%, respectively, of all outlets of the corresponding type. The proportions of exhaust gas outlets involving Cd, Hg, and As from the NSRI to total exhaust gas outlets were 44.27%, 60.54%, and 34.23%, respectively. The proportions of wastewater outlets involving Cd, Hg, and As from the NSRI to total wastewater outlets were 61.13%, 57.89%, and 75.30%, respectively. (3) The average distances of heavy metal-related enterprises from arable land, rivers, and flooded areas in Hunan Province were 256 m, 1763 m, and 3352 m, respectively. Counties with high environmental risk (H-L type) were situated mainly in eastern Hunan. Among them, Chenzhou had the most heavy metal-related wastewater outlets (22.7%), and Hengyang had the most heavy metal-related exhaust gas outlets (23.1%). The results provide a scientific basis for the prevention and control of heavy metal pollution and an enhancement in environmental sustainability in typical Chinese areas where HMIs are concentrated. Full article
Show Figures

Figure 1

32 pages, 3326 KiB  
Article
Thermo-Hydro-Mechanical–Chemical Modeling for Pressure Solution of Underground sCO2 Storage
by Selçuk Erol
Modelling 2025, 6(3), 59; https://doi.org/10.3390/modelling6030059 - 1 Jul 2025
Cited by 1 | Viewed by 419
Abstract
Underground production and injection operations result in mechanical compaction and mineral chemical reactions that alter porosity and permeability. These changes impact the flow and, eventually, the long-term sustainability of reservoirs utilized for CO2 sequestration and geothermal energy. Even though mechanical and chemical [...] Read more.
Underground production and injection operations result in mechanical compaction and mineral chemical reactions that alter porosity and permeability. These changes impact the flow and, eventually, the long-term sustainability of reservoirs utilized for CO2 sequestration and geothermal energy. Even though mechanical and chemical deformations in rocks take place at the pore scale, it is important to investigate their impact at the continuum scale. Rock deformation can be examined using intergranular pressure solution (IPS) models, primarily for uniaxial compaction. Because the reaction rate parameters are estimated using empirical methods and the assumption of constant mineral saturation indices, these models frequently overestimate the rates of compaction and strain by several orders of magnitude. This study presents a new THMC algorithm by combining thermo-mechanical computation with a fractal approach and hydrochemical computations using PHREEQC to evaluate the pressure solution. Thermal stress and strain under axisymmetric conditions are calculated analytically by combining a derived hollow circle mechanical structure with a thermal resistance model. Based on the pore scale, porosity and its impact on the overall excessive stress and strain rate in a domain are estimated by applying the fractal scaling law. Relevant datasets from CO2 core flooding experiments are used to validate the proposed approach. The comparison is consistent with experimental findings, and the novel analytical method allows for faster inspection compared to numerical simulations. Full article
Show Figures

Figure 1

28 pages, 31155 KiB  
Article
Numerical Simulation of Treatment Capacity and Operating Limits of Alkali/Surfactant/Polymer (ASP) Flooding Produced Water Treatment Process in Oilfields
by Jiawei Zhu, Mingxin Wang, Keyu Jing, Jiajun Hong, Fanxi Bu and Zhihua Wang
Energies 2025, 18(13), 3420; https://doi.org/10.3390/en18133420 - 29 Jun 2025
Viewed by 340
Abstract
As an enhanced oil recovery (EOR) technique, alkali/surfactant/polymer (ASP) flooding effectively mitigates production decline in mature oilfields through chemical flooding mechanisms. The breakthrough of ASP chemical agents poses challenges to the green and efficient separation of oilfield produced water. In this paper, sedimentation [...] Read more.
As an enhanced oil recovery (EOR) technique, alkali/surfactant/polymer (ASP) flooding effectively mitigates production decline in mature oilfields through chemical flooding mechanisms. The breakthrough of ASP chemical agents poses challenges to the green and efficient separation of oilfield produced water. In this paper, sedimentation separation of produced water was simulated using the Eulerian method and the RNG k–ε model. In addition, the filtration process was simulated using a discrete phase model (DPM) and a porous media model. The distribution characteristics of oil/suspended solids obtained through simulation, along with the water quality parameters at each treatment node, were systematically extracted, and the influence of operating conditions on treatment capacity was analyzed. Simulations reveal that elevated treatment loads and produced water polymer concentrations synergistically impair ASP flooding produced water treatment efficiency. Fluctuations of operating conditions generate oil/suspended solids content in output water ranges spanning 13–78 mg/L and 19–92 mg/L, respectively. The interpolation method is adopted to determine the critical water quality parameters of each treatment node, ensuring that the treated produced water meets the treatment standards. The operating limits of the ASP flooding produced water treatment process are established. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment, 2nd Edition)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
Chemotypic and Seasonal Variations in Essential Oils from Mespilodaphne cymbarum (Kunth) Trofimov and Their Antibacterial and Antibiofilm Activities
by Amanda Galdi Boaretto, Darlene Gris, Jéssica Scherer, Katyuce Souza Farias, Jean Carlo Quadros, Alexandre José Macedo, Carlos Alexandre Carollo and Denise Brentan Silva
Plants 2025, 14(13), 1939; https://doi.org/10.3390/plants14131939 - 24 Jun 2025
Viewed by 474
Abstract
This study investigated the essential oils (EOs) from leaf, bark, and fruit of Mespilodaphne cymbarum (Kunth) Trofimov (Lauraceae), focusing on their chemical composition and antimicrobial and antibiofilm activities. EOs were extracted from plants collected in the Amazon during dry and flood seasons and [...] Read more.
This study investigated the essential oils (EOs) from leaf, bark, and fruit of Mespilodaphne cymbarum (Kunth) Trofimov (Lauraceae), focusing on their chemical composition and antimicrobial and antibiofilm activities. EOs were extracted from plants collected in the Amazon during dry and flood seasons and analyzed by gas chromatography–mass spectrometry. Although chemical differences were evident among plant organs and chemotypes, the influence of seasonality was not pronounced. Fruit EO was dominated by α- and β-santalene and limonene. Bark EO was rich in phenylpropanoids, including methyl eugenol, myristicin, and elemicin. Leaf EO showed the greatest metabolic diversity, with chemotype-specific variations. Leaf and bark EOs demonstrated superior antibacterial and antibiofilm activities compared to fruit EO, especially against Gram-positive bacteria such as Staphylococcus epidermidis, Staphylococcus aureus, and Micrococcus luteus. Chemotype-1 leaf and bark EOs inhibited S. epidermidis biofilm formation, while chemotype-2 reduced bacterial growth. The leaf EOs from both chemotypes reduced bacterial growth against S. aureus, and bark EO decreased biofilm formation. All leaf and bark EOs showed antibiofilm activity against M. luteus. These findings highlight the potential of M. cymbarum EOs as natural sources of bioactive compounds and emphasize the importance of chemotype and plant organ selection for optimized applications. Full article
Show Figures

Figure 1

17 pages, 11379 KiB  
Article
Alternating Wetting and Moderate Drying Irrigation Promotes Phosphorus Uptake and Transport in Rice
by Jiangyao Fu, Ying Liu, Yajun Zhang, Kuanyu Zhu, Junfei Gu, Zhiqin Wang, Weiyang Zhang and Jianchang Yang
Agronomy 2025, 15(6), 1488; https://doi.org/10.3390/agronomy15061488 - 19 Jun 2025
Viewed by 447
Abstract
Despite the essential role of phosphorus (P) in rice growth, P-use efficiency (PUE) remains low due to limited bioavailable P in soils and an over-reliance on chemical fertilizers, leading to resource waste and environmental risks, such as eutrophication. This study investigates whether and [...] Read more.
Despite the essential role of phosphorus (P) in rice growth, P-use efficiency (PUE) remains low due to limited bioavailable P in soils and an over-reliance on chemical fertilizers, leading to resource waste and environmental risks, such as eutrophication. This study investigates whether and how alternating wetting and moderate drying (AWMD) irrigation promotes P absorption and transport in rice. This study was conducted over two years using a pot experiment. Conventional flooding (CF) irrigation was applied throughout the growing season, while AWMD irrigation was imposed from two weeks after transplanting to one week before harvest. AWMD improved shoot biomass by 8.7–9.4% and the photosynthetic rate by 12–15%, significantly enhanced PUE, and optimized root traits and enzyme activities related to P uptake. It also promoted leaf acid phosphatase and ribonuclease activities, facilitating P remobilization to grains. In conclusion, AWMD enhanced the ability of roots to absorb P and optimized the redistribution of P between vegetative organs and grains, synergistically increasing grain yield and PUE in rice. Full article
Show Figures

Figure 1

17 pages, 2178 KiB  
Article
Tissue Element Levels and Heavy Metal Burdens in Bottlenose Dolphins That Stranded in the Mississippi Sound Surrounding the 2019 Unusual Mortality Event
by Nelmarie Landrau-Giovannetti, Ryanne Murray, Stephen Reichley, Debra Moore, Theresa Madrigal, Ashli Brown, Ashley Meredith, Christina Childers, Darrell Sparks, Moby Solangi, Anna Linhoss, Beth Peterman, Mark Lawrence and Barbara L. F. Kaplan
Toxics 2025, 13(6), 511; https://doi.org/10.3390/toxics13060511 - 18 Jun 2025
Viewed by 905
Abstract
In 2019, an unusual mortality event (UME) affected bottlenose dolphins (Tursiops truncatus) in the Mississippi Sound (MSS) following an extended dual opening of the Bonnet Carré Spillway (BCS), which prevents flooding in New Orleans. This resulted in low salinity, skin lesions, and [...] Read more.
In 2019, an unusual mortality event (UME) affected bottlenose dolphins (Tursiops truncatus) in the Mississippi Sound (MSS) following an extended dual opening of the Bonnet Carré Spillway (BCS), which prevents flooding in New Orleans. This resulted in low salinity, skin lesions, and electrolyte imbalances in dolphins. Additionally, the influx likely altered the MSS’s environmental chemical composition, including levels of heavy metals and metalloids; thus, we quantified heavy metals, metalloids, and essential elements in the tissues of dolphins that stranded in the MSS before and after the 2019 UME. We hypothesized that levels of heavy metals and metalloids (such as mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd)) would not show significant changes post-UME. Indeed, we found no major changes associated with the UME in most metals; sodium (Na) and magnesium (Mg) levels were lower in several tissues after 2019, which correlated with the average yearly salinity measured from the MSS. Toxic metals and metalloids were detectable with some changes over time; however, the selenium (Se):Hg molar ratio increased in some tissues post-2019. Additionally, we confirmed that Hg can bioaccumulate, with positive correlations between Hg levels and dolphin size as assessed by straight length. Overall, our findings indicate that freshwater incursions into the MSS can alter dolphin exposure to essential and toxic elements. Full article
Show Figures

Figure 1

18 pages, 4257 KiB  
Article
Comprehensive Experimental Study of Steam Flooding for Offshore Heavy Oil Recovery After Water Flooding
by Wei Zhang, Yigang Liu, Jian Zou, Qiuxia Wang, Zhiyuan Wang, Yongbin Zhao and Xiaofei Sun
Energies 2025, 18(12), 3140; https://doi.org/10.3390/en18123140 - 15 Jun 2025
Viewed by 358
Abstract
The objective of this study is to investigate the feasibility of steam flooding (SF) as an alternative method for offshore heavy oil reservoirs after water flooding (WF). A series of experiments was performed by using specially designed one-dimensional (1-D) and three-dimensional (3-D) experimental [...] Read more.
The objective of this study is to investigate the feasibility of steam flooding (SF) as an alternative method for offshore heavy oil reservoirs after water flooding (WF). A series of experiments was performed by using specially designed one-dimensional (1-D) and three-dimensional (3-D) experimental systems to prove the feasibility of SF and to study the effects of the timing of SF, the steam injection rate, and the addition of chemical agents (the nitrogen foams and displacing agents) on the performance of SF after WF. The results showed that, for offshore heavy oil reservoirs after WF processes, the SF process is a viable enhanced oil recovery method, which should start as early as possible if the economic conditions permit. It is extremely important to choose an appropriate steam injection rate for SF after the WF process. Compared with the pure SF process, the final oil recovery of the SF process with the addition of the nitrogen foam or the displacing agent increased by 12.83% and 7.58% in the 1-D experiments, respectively. The nitrogen foam and displacing agent have synergistic effects on the performance of the SF after WF processes. The final oil recovery of the SF process with the addition of the two chemical agents at the steam injection rate of 10 mL/min was 37.64%, which was 5.47% higher than that of the pure SF process in the 3-D experiments. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop