Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (125)

Search Parameters:
Keywords = chemical composition of honey

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 1287 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
Show Figures

Figure 1

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 638
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

21 pages, 613 KiB  
Article
Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil
by Emilly J. S. P. de Lima, Carlos V. A. da Silva, Fernanda A. S. Rocha, Aline de M. Rodrigues, Samuel C. Costa, Rebeca S. França, Raiana S. Gurgel, Bárbara N. Batista, Patrícia M. Albuquerque, Waldireny R. Gomes, Hector H. F. Koolen and Giovana A. Bataglion
Plants 2025, 14(14), 2106; https://doi.org/10.3390/plants14142106 - 9 Jul 2025
Viewed by 540
Abstract
Honey is a natural product produced by bees from the nectar of plants and has been widely used as a sweetener for centuries. In addition to its traditional use, it is also employed for other purposes due to its biological and nutraceutical properties. [...] Read more.
Honey is a natural product produced by bees from the nectar of plants and has been widely used as a sweetener for centuries. In addition to its traditional use, it is also employed for other purposes due to its biological and nutraceutical properties. Although honey production is mostly associated with bees of the genus Apis, species from other genera, such as Melipona, also produce it, albeit on a smaller scale. The honey produced by these two genera shows significant differences in its composition. Moreover, distinct geographical localizations, which, consequently, have different flora, guide the chemical compositions of these samples. Regarding the Amazon region, the amount of knowledge about the honey samples from Melipona species is still scarce. In this context, the present study aimed to characterize the volatile compositions of honey from Melipona interrupta and Melipona seminigra, as well as from the floral sources available, in addition to evaluating their nutritional aspects, antioxidant activity, and antibacterial activity. The analysis of chemical composition was performed using gas chromatography coupled to mass spectrometry (GC-MS). Antioxidant activity was determined by DPPH and ABTS assays, while antimicrobial activity was tested against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus epidermidis, Enterococcus faecalis, Salmonella enterica, Serratia marcescens, Bacillus subtilis, Candida albicans, Candida tropicalis, and Candida parapsilosis. The results allowed the identification of volatiles present in the honey and floral sources. The samples displayed moderate antioxidant activity and slightly antibacterial activity (MIC) of 75 μg/mL against two bacterial strains tested, demonstrating potential antimicrobial activity. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Figure 1

14 pages, 781 KiB  
Article
Chemical Composition and Antioxidant Activity of Prokupac Grape Pomace Extract: Implications for Redox Modulation in Honey Bee Cells
by Uroš Glavinić, Đura Nakarada, Jevrosima Stevanović, Uroš Gašić, Marko Ristanić, Miloš Mojović and Zoran Stanimirović
Antioxidants 2025, 14(6), 751; https://doi.org/10.3390/antiox14060751 - 18 Jun 2025
Viewed by 546
Abstract
There is a growing interest in using agri-food by-products and a demand for natural substances that might help maintain healthy honey bee colonies. We investigated a by-product of the wine industry, a grape pomace (GP) of the autochthonous Prokupac grape cultivar from Serbia. [...] Read more.
There is a growing interest in using agri-food by-products and a demand for natural substances that might help maintain healthy honey bee colonies. We investigated a by-product of the wine industry, a grape pomace (GP) of the autochthonous Prokupac grape cultivar from Serbia. A hydroethanolic extract (50% (w/v) ethanol) of GP (Prokupac GP extract) obtained by the pressurized liquid extraction (PLE) method was subjected to qualitative profiling of phenolic composition by liquid chromatography with OrbiTrap Exploris 120 mass spectrometer. Then, the extracts’ antioxidant and redox-modulatory activities were evaluated through Electron Paramagnetic Resonance (EPR) spectroscopy. Finally, the extract’s potential to modulate cellular redox status was evaluated using cultured AmE-711 honey bee cells. The results show that the Prokupac GP extract contains a wide array of flavonoids, anthocyanins, stilbenes, and their various conjugated derivatives and that anthocyanins, particularly malvidin-based compounds, dominate. EPR measurements showed strong scavenging activity against superoxide anion (O2•−) and hydroxyl radicals (OH), with inhibition efficiencies of 84.37% and 81.81%, respectively, while activity against the DPPH radical was lower (17.75%). In the cell-based assay, the Prokupac GP extract consistently provided strong antioxidant protection and modulated the cellular response to oxidative stress by over 14%. In conclusion, while the Prokupac GP extract demonstrated antioxidant properties and the ability to modulate cellular responses to oxidative stress, in vivo studies on honey bees are required to confirm its efficacy and safety for potential use in beekeeping practice. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

27 pages, 3028 KiB  
Article
Integrated Assessment of Antibacterial Activity, Polyphenol Composition, Molecular Docking, and ADME Properties of Romanian Oak and Fir Honeydew Honeys
by Calin Hulea, Diana Obistioiu, Anca Hulea, Mukhtar Adeiza Suleiman, Doris Floares (Oarga), Ersilia Alexa, Ilinca Merima Imbrea, Alina-Georgeta Neacșu, Marius Pentea, Cosmin Alin Popescu and Florin Imbrea
Antibiotics 2025, 14(6), 592; https://doi.org/10.3390/antibiotics14060592 - 8 Jun 2025
Viewed by 830
Abstract
Background: This study evaluated the polyphenolic composition, antibacterial activity, molecular docking interactions, and pharmacokinetic properties of Romanian oak and fir honeydew honeys. Methods: Spectrophotometric methods quantified total phenolic, flavonoid contents and antioxidant activity, and individual polyphenols were identified via HPLC-MS. Antibacterial efficacy against [...] Read more.
Background: This study evaluated the polyphenolic composition, antibacterial activity, molecular docking interactions, and pharmacokinetic properties of Romanian oak and fir honeydew honeys. Methods: Spectrophotometric methods quantified total phenolic, flavonoid contents and antioxidant activity, and individual polyphenols were identified via HPLC-MS. Antibacterial efficacy against Gram-positive and Gram-negative bacteria was evaluated by determining the bacterial inhibition percentage and minimum inhibitory concentrations. The bioactive compounds identified via LC-MS analysis were used to further delineate the possible antibacterial activities in silico. Molecular docking was carried out to predict the binding interactions and complex formation of the identified compounds against protein crystal structures of the bacteria used in this study. Additionally, the pharmacokinetic profile of compounds with high inhibitory potential was assessed via ADMET (absorption, Distribution, Metabolism, Excretion, toxicity) predictors to ascertain their value. Results: Fir honeydew honey showed higher total phenolic (844.5 mg GAE/kg) and flavonoid contents (489.01 mg QUE/kg) compared to oak honeydew honey, correlating with more potent antioxidant activity (IC50 = 5.16 mg/mL). In vitro antimicrobial tests indicated a stronger inhibitory effect of fir honeydew honey, especially against Gram-positive strains like S. aureus, S. pyogenes, and L. monocytogenes, alongside certain Gram-negative strains such as E. coli and H. influenzae. Oak honeydew honey displayed selective antimicrobial action, particularly against P. aeruginosa and S. typhimurium. The docking outcomes showed rutin, rosmarinic acid, beta resorcylic acid, quercetin, ferulic acid, and p-coumaric acid have high inhibitory activities characterised by binding affinities and binding interactions against shiga toxin, riboflavin synthase, ATP-binding sugar transporter-like protein, undecaprenyl diphosphate synthase, putative lipoprotein, sortase A, and immunity protein, making them key contributors to the honey’s antimicrobial activity. Moreover, beta-resorcylic acid, quercetin, ferulic acid, and p-coumaric acid revealed interesting ADMET scores that qualify honey to serve as a good antimicrobial agent. Conclusions: These findings support their potential use as natural antibacterial agents and emphasise the value of integrating chemical, biological, and computational approaches for multidisciplinary characterisations. Full article
Show Figures

Figure 1

16 pages, 4303 KiB  
Article
Deep Learning-Based Detection of Honey Storage Areas in Apis mellifera Colonies for Predicting Physical Parameters of Honey via Linear Regression
by Watit Khokthong, Panpakorn Kritangkoon, Chainarong Sinpoo, Phuwasit Takioawong, Patcharin Phokasem and Terd Disayathanoowat
Insects 2025, 16(6), 575; https://doi.org/10.3390/insects16060575 - 29 May 2025
Viewed by 1547
Abstract
Traditional methods for assessing honey storage in beehives predominantly rely on manual visual inspection, which often leads to inconsistencies and inefficiencies. This study presents an automated deep learning approach utilizing the YOLOv11 model to detect, classify, and quantify honey cells within Apis mellifera [...] Read more.
Traditional methods for assessing honey storage in beehives predominantly rely on manual visual inspection, which often leads to inconsistencies and inefficiencies. This study presents an automated deep learning approach utilizing the YOLOv11 model to detect, classify, and quantify honey cells within Apis mellifera frames across monthly sampling periods. The model’s performance varied depending on image resolution and dataset partitioning. Using the free version of YOLOv11 with high-resolution images (960 × 960 resolution) and a dataset split of 90:5:5 for training, validating, and testing, the model achieved a mean average precision at IoU threshold of 0.5 (mAP@0.5) of 83.4% for uncapped honey cells and 80.5% for capped honey cells. A strong correlation (r = 0.94) was observed between the 90:5:5 and 80:10:10 dataset splits, indicating that increasing the volume of training data enhances classification accuracy. In parallel, the study investigated the relationship between the physical properties of honey and image-based honey storage detection. Of the four tested properties, electrical conductivity (R2 = 0.19) and color (R2 = 0.21) showed weak predictive power for honey storage area estimation, with even weaker associations found for pH and moisture content. The honey storage areas via 90:5:5 and 80:10:10 datasets moderately correlated (r = 0.44–0.46) with increasing electrical conductivity and color. Especially, electrical conductivity exhibited statistically significant correlations with dataset performance across different dataset splits (p < 0.05), suggesting some potential influence of chemical composition on model accuracy. Our findings demonstrate the viability of image-based honey classification as a reliable technique for monitoring beehive productivity. Additionally, the research on image-based honey detection can be a non-invasive solution for improved honey production, beehive productivity, and optimized beekeeping practices. Full article
(This article belongs to the Special Issue Precision Apicultures)
Show Figures

Figure 1

14 pages, 577 KiB  
Article
Physicochemical and Antioxidant Properties of Selected Polish and Slovak Honeys
by Stanisław Kowalski, Zuzana Ciesarová, Kristína Kukurová, Blanka Tobolková, Martin Polovka, Łukasz Skoczylas, Małgorzata Tabaszewska, Karolina Mikulec, Anna Mikulec and Krzysztof Buksa
Appl. Sci. 2025, 15(11), 5810; https://doi.org/10.3390/app15115810 - 22 May 2025
Viewed by 408
Abstract
In this study, the physicochemical and antioxidant properties of 19 honey samples from Poland and Slovakia were assessed and models describing the relationship between antioxidant activity and the determined physicochemical features were developed. All tested honeys met the regulatory criteria of EU standards [...] Read more.
In this study, the physicochemical and antioxidant properties of 19 honey samples from Poland and Slovakia were assessed and models describing the relationship between antioxidant activity and the determined physicochemical features were developed. All tested honeys met the regulatory criteria of EU standards for the content of water, hydroxymethylfurfural, and diastase activity. Honey samples from Poland and Slovakia had similar glucose-to-fructose ratios, but differences were observed in diastase activity, electrical conductivity, and antioxidant potential. Polish forest honey samples showed the highest antioxidant activity, and Polish rapeseed honey showed higher antioxidant potential than the Slovak honey. Color analysis showed a strong correlation (R2 = 0.849) between the browning index and antioxidant capacity. Cluster analysis effectively distinguished honey types based on their chemical composition, although some sample overlap was attributed to environmental influences. Regression models identified key predictors of antioxidant potential, and polyphenol content evidenced by color parameters (a*, b*). This study provides valuable information on honey characteristics and demonstrates the feasibility of using statistical models to predict antioxidant properties. Full article
(This article belongs to the Special Issue Functional Foods for Human Health—Product Development and Analysis)
Show Figures

Figure 1

26 pages, 1597 KiB  
Article
Physicochemical and Rheological Characteristics of Monofloral Honeys—Kinetics of Creaming–Crystallization
by Kerasia Polatidou, Chrysanthi Nouska, Chrysoula Tananaki, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(10), 1835; https://doi.org/10.3390/foods14101835 - 21 May 2025
Cited by 1 | Viewed by 774
Abstract
The quality and stability of honeys are strongly influenced by their chemical composition and physicochemical properties, which vary with botanical origin. This study examined the physicochemical and compositional properties of cotton, heather, orange, thyme, Christ’s thorn, and chestnut monofloral honey samples, as well [...] Read more.
The quality and stability of honeys are strongly influenced by their chemical composition and physicochemical properties, which vary with botanical origin. This study examined the physicochemical and compositional properties of cotton, heather, orange, thyme, Christ’s thorn, and chestnut monofloral honey samples, as well as the kinetics of the creaming–crystallization process by monitoring rheological and color parameters. All samples had moisture content lower than the legislation limit (<20%) and aw ≤ 0.60. Chestnut and heather honeys exhibited the highest electrical conductivity and darkest color. Fructose was the predominant sugar in all samples, with thyme having the highest content. Viscosity decreased exponentially with increasing moisture, with thyme honey being the most viscous. Principal component analysis showed distinct clustering of samples based on their compositional–physicochemical characteristics. Calorimetry revealed the water’s plasticization effect on honey solids, lowering their glass transition temperature, with the data fitting well to the Gordon–Taylor model. Rheometry indicated a Newtonian-like behavior for liquid honeys, evolving towards a pseudoplastic response upon creaming–crystallization. Cotton honey crystallized rapidly, thyme honey showed moderate crystallization propensity, while samples of heather honey gave a diverse response depending on composition. Overall, high glucose content and/or low fructose/glucose ratio promoted honey crystallization, leading to the formation of highly viscous-creamed honey preparations. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

22 pages, 3673 KiB  
Article
Integrated Chemical and Biological Evaluation of Linden Honeydew Honey from Bosnia and Herzegovina: Composition and Cellular Effects
by Ana Barbarić, Lara Saftić Martinović, Zvonimir Marijanović, Lea Juretić, Andreja Jurič, Danijela Petrović, Violeta Šoljić and Ivana Gobin
Foods 2025, 14(10), 1668; https://doi.org/10.3390/foods14101668 - 8 May 2025
Viewed by 717
Abstract
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey [...] Read more.
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey (LHH) from Bosnia and Herzegovina—a variety that, until now, has not been characterised in detail. Physicochemical parameters confirmed its classification as HH, with high electrical conductivity (1.21 mS/cm) and low moisture (15.1%). GC-MS analysis revealed a unique volatile profile dominated by α-terpinolene (17.4%), distinguishing LHH from other HH types. The sample exhibited high total phenolic content (816.38 mg GAE/kg) and moderate antioxidant capacity (1.11 mmol TE/kg). Antimicrobial testing demonstrated strong activity against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with lower efficacy against Gram-negative bacteria. No cytotoxic effects were observed in HaCaT keratinocytes at concentrations up to 60 mg/mL, and wound healing assays showed improved scratch closure reaching approximately 30% after 24 h and 41% after 48 h compared to the control. These results indicate that LHH possesses promising bioactive properties and potential for dermatological application. Further studies with broader sample sets are needed to explore variability and confirm the therapeutic relevance of LHH in comparison to other honeydew types. Full article
Show Figures

Figure 1

20 pages, 1001 KiB  
Review
From Chemical Composition to Antiproliferative Effects Through In Vitro Studies: Honey, an Ancient and Modern Hot Topic Remedy
by Alexandru Nan, Victor Dumitrascu, Corina Flangea, Gabi Dumitrescu, Daniela Puscasiu, Tania Vlad, Roxana Popescu and Cristian Vlad
Nutrients 2025, 17(9), 1595; https://doi.org/10.3390/nu17091595 - 6 May 2025
Cited by 2 | Viewed by 967
Abstract
Honey is a natural product which has been used throughout time as a food, spice, and medicine. Its therapeutic use has its origins in direct empirical observations of various beneficial actions in terms of its anti-infectious, anti-inflammatory, and wound-healing effects, to which an [...] Read more.
Honey is a natural product which has been used throughout time as a food, spice, and medicine. Its therapeutic use has its origins in direct empirical observations of various beneficial actions in terms of its anti-infectious, anti-inflammatory, and wound-healing effects, to which an antiproliferative effect is added. In the context of malignant transformation, reductions in chronic inflammation, antioxidant action, cell cycle arrest, and apoptosis activation contribute to this antiproliferative effect, achievements attributed mainly to the polyphenols in its composition. A multitude of in vitro studies performed on malignant cell cultures try to elucidate the real mechanism(s) that can scientifically explain this action. In addition, its use as an adjuvant in association with cytostatic therapy demonstrates a promising effect in enhancing its cytotoxic effect, but also in reducing some adverse effects. Highlighting these actions allows for further perspectives to be opened regarding the use of honey for therapeutic and also prophylactic purposes, as a food supplement. Future studies will support the identification of real antiproliferative effects in patients with malignant tumors in terms of actions on the human body as a whole, moving from cell cultures to complex implications. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Graphical abstract

25 pages, 7132 KiB  
Article
Effect of Elaeagnus angustifolia Honey in the Protection Against Ethanol-Induced Chronic Gastric Injury via Counteracting Oxidative Stress, Interfering with Inflammation and Regulating Gut Microbiota in Mice
by Min Zhu, Jiayan Yang, Haoan Zhao, Yu Qiu, Lin Yuan, Jingyang Hong and Wei Cao
Foods 2025, 14(9), 1600; https://doi.org/10.3390/foods14091600 - 1 May 2025
Cited by 1 | Viewed by 818
Abstract
Chronic alcohol consumption is a major contributor to gastric injury, yet current therapeutic strategies predominantly rely on chemical agents with limited efficacy and potential side effects. Natural products, with their multi-target biocompatibility and safety advantages, offer promising alternatives for gastric protection. We examined [...] Read more.
Chronic alcohol consumption is a major contributor to gastric injury, yet current therapeutic strategies predominantly rely on chemical agents with limited efficacy and potential side effects. Natural products, with their multi-target biocompatibility and safety advantages, offer promising alternatives for gastric protection. We examined the phenolic compounds of Elaeagnus angustifolia honey (EAH) and investigated its prophylactic potential against ethanol-induced chronic gastric injury in mice. HPLC-DAD-Q-TOF-MS analysis showed that 21 phenolic compounds were tentatively and qualitatively identified in EAH, as well as 14 phenolic compounds. Moreover, gastric ulcer indices, histopathological morphology, oxidative stress markers (MDA, GSH, SOD), inflammatory mediators (NO, PGE2), and cytokine gene expression (TNF-α, IL-6, IL-1β, iNOS) were evaluated via enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. Western blot was employed to assess COX-2 protein expression, while 16S rRNA sequencing analyzed gut microbiota composition. The results demonstrated that EAH could play a role in gastric injury caused by long-term alcoholism by protecting gastric tissue structure, interfering with oxidative stress and inflammatory response, and remodeling the intestinal microbial community. Full article
(This article belongs to the Special Issue Bee Products Consumption and Human Health)
Show Figures

Figure 1

21 pages, 5794 KiB  
Article
Coffee Biotransformation in Volcanic Process: A Chemical and Sensory Analysis
by Renata A. R. Rocha, Lívia C. F. Silva, Marcelo A. D. da Cruz, Luiza M. A. B. Cardoso, Arlley de B. M. Sousa, Laila Alonso, Marcela V. C. Machado, Gisele X. R. Costa, Laurence R. Amaral, Pedro L. L. Bertarini, Matheus S. Gomes and Líbia D. Santos
Foods 2025, 14(8), 1368; https://doi.org/10.3390/foods14081368 - 16 Apr 2025
Cited by 1 | Viewed by 685
Abstract
Volcanic fermentation is an innovative technique in post-harvest coffee processing that involves forming conical mounds, called “volcanoes”, to create specific biotransformation conditions. This study investigates the impact of different volcano fermentation methods on the chemical composition and sensory attributes of coffee. Four methods [...] Read more.
Volcanic fermentation is an innovative technique in post-harvest coffee processing that involves forming conical mounds, called “volcanoes”, to create specific biotransformation conditions. This study investigates the impact of different volcano fermentation methods on the chemical composition and sensory attributes of coffee. Four methods were evaluated: asphalt patio (E1), on pallets (E2), in steel containers under the sun (E3), and in steel containers in the shade (E4). The chemical composition was analyzed in terms of sugars (sucrose, glucose, fructose), organic acids (citric, malic, succinic, lactic, acetic) and alcohols (glycerol, ethanol). In addition, color differences (ΔE) and sensory analysis of the fermented coffees were evaluated. The results of this study reveal that volcanic fermentation produces high-quality specialty coffees, but with divergent profiles of acids and alcohols, thus influencing the sensory characteristics of the resulting beverage. However, the different methods of volcanic fermentation did not significantly affect pH and soluble solids, indicating that the microbiota developed an efficient and consistent fermentation regardless of the solar exposure conditions. The most frequently mentioned sensory descriptors were chocolate, citrus fruits, honey/molasses, caramel, floral, and brown sugar. These findings highlight the significant influence of the volcanic fermentation method on the chemical and sensory quality of coffee fermented. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

25 pages, 1369 KiB  
Review
Honey: Inorganic Composition as Possible Marker for Botanical and Geological Assignment
by Paolo Inaudi, Matteo Garzino, Ornella Abollino, Mery Malandrino and Agnese Giacomino
Molecules 2025, 30(7), 1466; https://doi.org/10.3390/molecules30071466 - 26 Mar 2025
Cited by 1 | Viewed by 1048
Abstract
Honey can be classified based on its geographical or botanical origin according to Directive 2001/110/EC. Geographical origin is determined when the pollen collection occurs entirely in a specific location, allowing producers to label the honey with the name of the region. Verification typically [...] Read more.
Honey can be classified based on its geographical or botanical origin according to Directive 2001/110/EC. Geographical origin is determined when the pollen collection occurs entirely in a specific location, allowing producers to label the honey with the name of the region. Verification typically involves melissopalynological analysis to match the pollen spectrum with regional vegetation. Botanical origin applies when honey predominantly comes from a single floral species, characterized by specific organoleptic, physico-chemical, and microscopic properties. However, defining “predominantly” and identifying distinct physico-chemical parameters remain ambiguous. This review evaluates the use of chemical analysis as a complement or alternative to melissopalynological methods for determining honey’s origin. The focus is on inorganic composition, particularly metals and semimetals, as potential fingerprints to identify botanical or geographical provenance. Relevant studies were reviewed, with data reprocessed and analyzed using chemometric techniques, including Principal Component Analysis and Agglomerative Cluster Analysis. These methods reveal common traits distinguishing honeys by origin. Chemical analysis combined with chemometric processing enhances honey identification, prevents fraud, assesses environmental pollution in collection areas, and evaluates the impact of processing on the final product. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

17 pages, 1370 KiB  
Article
Brazilian Organic Honeydew Reduces In Vitro and In Vivo Periodontal Disease-Related Subgingival Biofilm
by Diego Romário-Silva, Marcelo Franchin, Bruno Bueno-Silva, Ana Sofia Martelli Chaib Saliba, Janaína Orlandi Sardi, Thayna Alves-Ferreira, Josy Goldoni Lazarini, Gustavo Aparecido Cunha, Severino Matias de Alencar and Pedro Luiz Rosalen
Foods 2025, 14(6), 997; https://doi.org/10.3390/foods14060997 - 14 Mar 2025
Viewed by 951
Abstract
We investigated the antimicrobial properties and effects on bone resorption of Brazilian organic honeydew (OHD) from the Bracatinga tree (Mimosa scabrella Benth.), a rare honey certified with Denomination of Origin, using a periodontal disease model. Antibiofilm activity was assessed using a subgingival [...] Read more.
We investigated the antimicrobial properties and effects on bone resorption of Brazilian organic honeydew (OHD) from the Bracatinga tree (Mimosa scabrella Benth.), a rare honey certified with Denomination of Origin, using a periodontal disease model. Antibiofilm activity was assessed using a subgingival biofilm adhered to the Calgary device. Biofilms were treated with OHD, chlorhexidine (0.12%), or a vehicle twice daily for 1 min starting on day 3, at concentrations of 2× and 10× the minimum inhibitory concentration (MIC). We employed a ligature-induced chronic periodontal disease model and challenged it with Porphyromonas gingivalis in C57BL/6 mice. The chemical profile of OHD was analyzed using LC-ESI-IT-MS/MS. Results were evaluated by measuring bone loss and microbial composition of the ligature biofilm through DNA–DNA hybridization. OHD demonstrated significant activity against P. gingivalis (MIC 4%, MBC 6%) and reduced biofilm viability by 80% in vitro. In vivo, OHD decreased microbial populations and decreased bone loss associated with periodontal disease. Chemical analysis identified seven compounds in OHD, including five flavonoids and two lignans. This Brazilian honeydew from the Atlantic Forest exhibits strong antimicrobial properties and potential as a functional food for oral health, offering a promising alternative for the control and prevention of periodontal disease. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 2481 KiB  
Article
Physicochemical Characteristics, Antioxidant Properties, and Identification of Bioactive Compounds in Australian Stingless Bee Honey Using High-Performance Thin-Layer Chromatography
by Mariana Mello dos Santos, Tomislav Sostaric, Lee Yong Lim and Cornelia Locher
Molecules 2025, 30(6), 1223; https://doi.org/10.3390/molecules30061223 - 9 Mar 2025
Cited by 1 | Viewed by 1131
Abstract
This study investigates the physiochemical properties, chemical composition, and antioxidant activity of Australian stingless bee honey blends from two bee species, Tetragonula carbonaria and Tetragonula hockingsi, harvested in Burpengary East, Queensland at different times of the year. The moisture content of the [...] Read more.
This study investigates the physiochemical properties, chemical composition, and antioxidant activity of Australian stingless bee honey blends from two bee species, Tetragonula carbonaria and Tetragonula hockingsi, harvested in Burpengary East, Queensland at different times of the year. The moisture content of the honey samples ranged from 26.5% to 30.0%, total soluble solids from 70.0 to 73.5° Brix, and pH from 3.57 to 4.19. The main sugars identified were trehalulose (13.9 to 30.3 g/100 g), fructose (12.9 to 32.3 g/100 g), and glucose (4.80 to 23.7 g/100 g). The total phenolic content (TPC), measured using the Folin–Ciocalteu assay, ranged from 26.1 to 58.6 mg of gallic acid equivalents/100 g. The antioxidant activity was investigated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with values ranging from 1.39 to 6.08 mmol of Trolox equivalents/kg. Antioxidant constituents were determined using a High-Performance Thin-Layer Chromatography (HPTLC)-DPPH assay. The HPTLC-DPPH analysis revealed that honey samples collected in May 2022 contained the highest number of antioxidant compounds. Some constituents were identified using an HPTLC-derived database and also quantified utilising HPTLC analysis. Lumichrome was present in all honey samples, while luteolin and kaempferide were detected only in some. Kaempferol or isorhamnetin was also found to be present, although a definitive distinction between these two chemically closely related compounds could not be made by HPTLC analysis. The results showed that honey produced by Tetragonula hockingsi and Tetragonula carbonaria shares similar properties and composition when harvested at the same time, with only minor differences in moisture, fructose, and glucose content. Full article
Show Figures

Graphical abstract

Back to TopTop