Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil
Abstract
1. Introduction
2. Results
2.1. Nutritional Facts
2.2. Radical Scavenging Activity
2.3. Antimicrobial Activity
2.4. Volatile Profiles
3. Discussion
3.1. Nutritional Aspects
3.2. Radical Scavenging Activity
3.3. Antibacterial Activity
3.4. Volatile Chemical Composition
4. Materials and Methods
4.1. Chemicals
4.2. Collection of Honey and Plant Material Samples
4.3. Nutritional Aspects
4.4. Preparation of Extracts
4.5. Radical Scavenging Activity
4.6. Antibacterial Activity
4.7. Analysis of Volatile Organic Compounds (VOCs)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | Chemical compound 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
AC | Flowers of Averrhoa carambola |
AM | Amazonas state |
AO | Flowers of Anacardium occidentale |
BO | Flowers of Bougainville sp. |
BOD | Biochemical Oxygen Demand |
CLSI | Clinical and Laboratory Standards Institute |
DMSO | Dimethyl sulfoxide |
DPPH | Organic chemical compound 2,2-diphenyl-1-picrylhydrazyl |
DVB/CAR/PDMS | Divinylbenzene/carboxen/polydimethylsiloxane |
EI | Electron Ionization |
GC | Gas Chromatography |
GC-MS | Gas Chromatography Coupled to Mass spectrometry |
HOMA-β | Homeostasis Model Assessment of β-cell Function |
HS-SPME/GC–MS | Headspace Solid-phase Microextraction Coupled with Gas Chromatography–Mass Spectrometry |
IC50 | Inhibitory Concentration 50% |
INPA | National Institute for Amazonian Research |
LPS | Lipopolysaccharides |
MI | Flowers of Mangifera indica |
MIC | Minimum Inhibitory Concentration |
MIH | Honey of Melipona interrupta |
MSH | Honey of Melipona seminigra |
RI | Retention Indices |
SO | Flowers of Senna occidentalis |
SPE | Solid-Phase Extraction |
SPME | Solid-Phase Microextraction |
UEA | University of the State of Amazonas |
UFAM | Federal University of Amazonas |
VOC | Volatile Organic Compound |
VOCs | Volatile Organic Compounds |
References
- Camargo, R.C.R.; Oliveira, K.L.; Berto, M.I. Stingless Bee Honey: Technical Regulation Proposal. Braz. J. Food Technol. 2017, 20, e2016157. [Google Scholar] [CrossRef]
- Soares, J.V.S.; Soares, T.B.R.; Evangelista, J.G.D.; Tobias, L.F.P.; Souza, L.G.S.; Comapa, S.D. Microbiological quality of honey in the city of Manaus-AM in light of regulatory standards. In Food Science and Technology: Research and Contemporary Practices; Soares, J.V.S., Soares, T.B.R., Evangelista, J.G.D., Tobias, L.F.P., Souza, L.G.S., Comapa, S.D., Bonatto, E.C.S., Eds.; Editora Científica Digital: São Paulo, Brazil, 2021; pp. 493–494. [Google Scholar] [CrossRef]
- Zuccato, V.; Finotello, C.; Menegazzo, I.; Peccolo, G.; Schievano, E. Entomological Authentication of Stingless Bee Honey By 1 H NMR-based Metabolomics Approach. Food Control 2017, 82, 145–153. [Google Scholar] [CrossRef]
- Gupta, R.K.; Reybroeck, W.; Waele, M.; Bouters, A. Bee Products: Production and Processing. In Beekeeping for Poverty Alleviation and Livelihood Security; Springer: Dordrecht, The Netherlands, 2014; pp. 599–636. [Google Scholar] [CrossRef]
- Nougueira, D.S.; Neto, A.V.; Cassinelli, M.P.; Silva, J.A.; Nascimento, F.S.; Oliveira, A.L.L. The “stingless” bees of Brazilian Biomes. Cienc. Cult. 2023, 74, 1–7. [Google Scholar] [CrossRef]
- Silveira, F.A.; Melo, G.A.R.; Almeida, E.A.B. Brazilian bees: Systematics and Identification; Araucária Foundation: Belo Horizonte, Brazil, 2002. [Google Scholar]
- Fletcher, M.T.; Hungerford, N.L.; Webber, D.; Jesus, M.C.; Zhang, J.; Stone, I.S.J.; Blanchfield, J.T.; Zawani, N. Stingless Bee Honey, a Novel Source of Trehalulose: A Biologically Active Disaccharide with Health Benefits. Sci. Rep. 2020, 10, 12128. [Google Scholar] [CrossRef]
- Batiston, T.F.T.P.; Frigo, A.; Stefani, L.M.; Silva, A.S.; Araújo, D.N. Physicochemical Composition and Antimicrobial Potential of Stingless Honey: A Food of Differentiated Quality. Res. Soc. Dev. 2020, 9, e7099108223. [Google Scholar] [CrossRef]
- Biluca, F.C.; Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.C.; Gonzaga, L.V.; Micke, G.; Fett, R.; Dalmarco, E.M.; Costa, A.C.O. Investigation of Phenolic Compounds, Antioxidant and Anti-Inflammatory Activities in Stingless Bee Honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef]
- Badrulhisham, N.S.R.; Hamid, S.N.P.; Ismail, M.A.H.; Yong, Y.K.; Zakuan, N.M.; Harith, H.H.; Saidi, H.I.; Nurdin, A. Harvested Locations Influence the Total Phenolic Content, Antioxidant Levels, Cytotoxic, and Anti-Inflammatory Activities of Stingless Bee Honey. J. Asia. Pac. Entomol. 2020, 23, 950–956. [Google Scholar] [CrossRef]
- Ali, H.; Bakar, A.M.F.; Muhhammad, M.M.; Lim, S.Y. In Vitro Anti-Diabetic Activity of Stingless Bee Honey from Different Botanical Origins. Food Res. 2020, 4, 1421–1426. [Google Scholar] [CrossRef]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.B.; Khazaai, H.; Fadel, A.; Mahmoud, A.Y. Stingless Bee Honey Protects Against Lipopolysaccharide Induced-chronic Subclinical Systemic Inflammation and Oxidative Stress by Modulating Nrf2, NF-Κb and p38 MAPK. Nutr. Metab. 2019, 16, 15. [Google Scholar] [CrossRef]
- Bezerra, M.L.R.; Souza, E.L.; Sousa, J.M.B.; Lima, M.S.; Alves, A.F.; Almeida, M.G.; Alves, R.C.; Araújo, E.V.; Soares, N.L.; Silva, G.A.; et al. Effects of Honey from Mimosa quadrivalvis L. (Malícia) Produced by the Melipona subnitida D. (jandaíra) Stingless Bee on Lipid Metabolism, Antioxidant Status and Intestinal Health of Dyslipidaemic Rats. Food Funct. 2018, 8, 4480–4492. [Google Scholar] [CrossRef]
- Bezerra, M.L.R.; Nhanca, M.G.; Andrade, A.A.S.; Pinheiro, R.O.; Alves, A.F.; Sousa, M.C.P.; Lima, M.S.; Magnani, M.; Aquino, J.S. Malicia honey (Mimosa quadrivalvis L.) Produced by the Jandaíra bee (Melipona subnitida D.) Improves Depressive-like Behaviour, Somatic, Biochemical and Inflammatory Parameters of Obese Rats. Food Res. Int. 2023, 164, 112391. [Google Scholar] [CrossRef]
- Hernandez, D.C.; Tapia, M.S.; Vega, F.L.; Valle, M.B.; Ledzema, H.; Cervantes, R.; Chaverri, J.P.; Portilho, O.G.; Díaz, D.; Ricardo, M.A.; et al. Modulation of Gut Microbiota by Mantequilla and Melipona Honeys Decrease Low-grade Inflammation Caused by High Fructose Corn Syrup or Sucrose in Rats. Food Res. Int. 2022, 151, 110856. [Google Scholar] [CrossRef] [PubMed]
- Wieczoreck, J.; Pietrzak, M.; Pomianowski, J.; Wieczoreck, Z. Honey as a Source of Bioactive Compounds. Pol. J. Nat. Sci. 2014, 29, 275–285. [Google Scholar]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Tumlinson, J.H. The Importance of Volatile Organic Compounds in Ecosystem Functioning. J. Chem. Ecol. 2014, 40, 212–213. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Erik, R.; Gershenzon, J. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Raguo, R.A. Wake Up and Smell the Roses: The Ecology and Evolution of Floral Scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Dobson, H.E.M. (Ed.) Relationship between Floral Fragrance Composition and Type of Pollinator. In Biology of Floral Scent; CRC Press: Boca Raton, FL, USA, 2006; pp. 147–198. [Google Scholar] [CrossRef]
- Suarez, J.M.A.; Giampierri, F.; Brenciani, A.; Mazzoni, L.; Gasparrini, M.; Param, A.M.G.; Buelga, C.S.; Morroni, G.; Simoni, S.; Hernandez, T.F.; et al. Apis mellifera vs Melipona beecheii Cuban polifloral honeys: Acomparison based on their physicochemical parameters, chemicalcomposition and biological properties. Food Sci. Technol. 2018, 87, 272–279. [Google Scholar] [CrossRef]
- Castro-Vasquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aroma Composition and New Chemical Markers of Spanish Citrus Honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
- Schanzmann, H.; Augustinni, A.L.R.M.; Sanders, D.; Dalheimer, M.; Wigger, M.; Zech, P.M.; Sielemann, S. Differentiation of Monofloral Honey Using Volatile Organic Compounds by HS-GCxIMS. Molecules 2022, 27, 7554. [Google Scholar] [CrossRef]
- Castro-Vásquez, L.; Alañon, M.E.; Viñas, M.A.G.; Pérez-Coello, M.S. Changes in the Volatile Fractions and Sensory Properties of Heather Honey During Storage Under Different Temperatures. Eur. Food Res. Technol. 2012, 235, 185–193. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Abudabos, A.M. Towards a Better Understanding of The Therapeutic Applications and Corresponding Mechanisms of Action of Honey. Environ. Sci. Pollut. Res. 2017, 24, 27755–27766. [Google Scholar] [CrossRef]
- Silva, A.C.; Brito, M.G.A.; Rocha, G.M.M.; Silva, M.A.; Oliveira, G.A.L. Antimicrobial Property and Toxicity Profile of Bee Honey Bees of The Gender Melipona Illiger, 1806: An Integrative Review. Res. Soc. Dev. 2021, 10, e13510413903. [Google Scholar] [CrossRef]
- CXS 12-2001; Standard for Honey. Codex Alimentarius Committee on Sugars. FAO/WHO: Rome, Italy, 2001.
- Souza, B.A.; Marchinni, L.C.; Souza, O.M.; Carvalho, C.A.L.; Alves, R.M.O. Characterization of Honey Produced by Species of Melipona Illiger, 1806 (Apidae: Meliponini) From the Northeast Area of Brazil: 1. Physico-Chemical Characteristics. Quím. Nova 2009, 32, 303–308. [Google Scholar] [CrossRef]
- Biluca, F.C.; Betta, F.D.; Oliveira, G.P.; Pereira, L.M.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. 5-HMF and Carbohydrates Content in Stingless Bee Honey by CE Before and After Thermal Treatment. Food Chem. 2014, 159, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Santana, R.S.; Carvalho, C.A.; Oda-Souza, M.; Souza, B.A.; Dias, F.S. Characterization of Honey of Stingless Bees from the Brazilian Semi-arid Region. Food Chem. 2020, 327, 127041. [Google Scholar] [CrossRef]
- Domingos, S.C.B.; Clebis, V.H.; Nakazato, G.; Oliveira, A.G.; Kobayashi, R.K.T.; Peruquetti, R.C.; Pereira, C.D.; Rosa, M.T.S.; Medeiros, L.S. Antibacterial Activity of Honeys from Amazonian Stingless Bees of Melipona spp. And Its Effects on Bacterial Cell Morphology. J. Sci. Food Agric. 2021, 101, 2072–2077. [Google Scholar] [CrossRef]
- Silva, P.M.; Gaunche, C.; Gonzaga, L.V.; Oliveira, A.C.; Fett, C.R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Costa, A.C.V.; Garruti, D.S.; Madruga, M. The Power of Odour Volatiles from Unifloral Melipona Honey Evaluated by Gas Chromatography–Olfactometry Osme Techniques. J. Sci. Food Agric. 2019, 99, 4493–4497. [Google Scholar] [CrossRef]
- Silveira, Z.S.; Macedo, N.S.; Dantas, D.M.; Brito, S.V.; Santos, H.S.; Gomes, R.V.R.S.; Coutinho, H.D.M.; Cunha, F.A.B.; Silva, M.V. Chemical Profile and Biological Potential of Scaptotrigona Bee Products (Hymenoptera, Apidae, Meliponini): An Review. Chem. Biodivers. 2024, 21, e202301962. [Google Scholar] [CrossRef]
- Pattamayutanon, P.; Angeli, S.; Thakeow, P.; Abraham, J.; Disayathanoowat, T.; Chantawannakul, P. Volatile Organic Compounds of Thai Honeys Produced from Several Floral Sources by Different Honey Bee Species. PLoS ONE 2017, 12, e0172099. [Google Scholar] [CrossRef] [PubMed]
- Bisrat, D.; Jung, C. Roles of Flower Scent in Bee-Flower Mediations: A Review. J. Ecol. Environ. 2022, 46, 18–30. [Google Scholar] [CrossRef]
- Guo, X.; Liang, Y.; Yi, S.; Qui, S.; Liu, M.; Ning, F.; Luo, L. Honeycomb, a New Food Resource with Health Care Functions: The Difference of Volatile Compounds found in Apis cerana and A. mellifera Honeycombs. Foods 2022, 11, 3204. [Google Scholar] [CrossRef]
- Silva, A.S.; Alves, C.N.; Fernandes, K.G.; Muller, R.C. Classification of Honeys from Pará State (Amazon Region, Brazil) Produced by Three Different Species of Bees using Chemometric Methods. J. Braz. Chem. Soc. 2013, 24, 1135–1145. [Google Scholar] [CrossRef]
- Sousa, J.M.; Souza, E.L.; Marques, G.; Meireles, B.; Cordeiro, A.T.M.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic Profile and Antioxidant and Antibacterial Activities of Monofloral Honeys Produced by Meliponini in the Brazilian Semiarid Region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Costa, I.F.; Toro, M.J.U. Evaluation of The Antioxidant Capacity of Bioactive Compounds and Determination of Proline in Honeys from Pará. J. Food. Sci. Technol. 2021, 58, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.V.; Dourado, G.S.; Costa, S.C.; Lima, A.K.O.; Silva, D.S.; Bandeira, A.M.P.; Vasconcelos, A.A.; Taube, P.S. Quality assessment of honey sold in western Pará, Brazil. Rev. Virtual Quím. 2017, 9, 815–826. [Google Scholar] [CrossRef]
- Marcolin, L.C.; Lima, L.R.; Arias, J.L.O.; Berrio, A.C.B.B.; Kupski, L.; Barbosa, S.C.; Primel, G.E. Meliponinae and Apis mellifera Honey in Southern Brazil: Physicochemical Characterization and Determination of Pesticides. Food Chem. 2021, 363, 130175. [Google Scholar] [CrossRef]
- Lobos, I.; Silva, M.; Ulloa, P.; Pavez, P. Mineral and Botanical Composition of Honey Produced in Chile’s Central-Southern Region. Foods 2022, 11, 251. [Google Scholar] [CrossRef]
- Sousa, J.M.B.; Aquino, I.S.; Magnani, M.; Albuquerque, J.R.; Santos, G.G.; Sousa, E.L. Physicochemical Aspects and Sensory Profile of Stingless Bee Honeys from Seridó Region, State of Rio Grande do Norte, Brazil. Semin. Ciênc. Agrar. 2013, 34, 1765–1774. [Google Scholar] [CrossRef]
- Rebello, K.S.; Carvalho-Silze, G.A.; Araújo, L.M. Análise Auímica, Physicochemistry and Nutritional Value of Honey from Melipona seminigra and Melipona compressipes, Native Amazonian Bee Species. In Proceedings of the XVI Scientific Initiation Congress PIBIC/CNPQ/INPA, Manaus, Brazil, 24–27 July 2007. [Google Scholar]
- Souza, R.S.; Yuyama, L.K.O.; Aguiar, J.P.L.; Oliveira, F.P.M. Nutritional Value of Honey and Pollen from Stingless Bees in the Amazon Region. Acta Amaz. 2004, 34, 333–336. [Google Scholar] [CrossRef]
- Almeida-Muradian, L.B.; Matsuda, A.H.; Bastos, D.H.M. Physicochemical Parameters of Amazon Melipona Honey. Quim. Nova 2007, 30, 707–708. [Google Scholar] [CrossRef]
- Menezes, B.A.; Mattietto, R.A.; Lourenço, L.F.H. Evaluation of Quality of Honey from Africanized and Stingless Bees Natives of The Northeast of The State of Pará. Cienc. Anim. Bras. 2018, 19, 1–13. [Google Scholar] [CrossRef]
- Nascimento, A.S.; Marchini, L.C.; Carvalho, A.L.; Araújo, D.F.D.; Olinda, R.A.; Silveira, T.A. Physical-Chemical Parameters of Honey of Stingless Bee (Hymenoptera: Apidae). Am. Chem. Sci. J. 2015, 7, 139–149. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Shanab, S.M.M. Comparison of DPPH and ABTS Assays for Determining Antioxidant Potential of Water and Methanol Extracts of Spirulina platensis. Indian J. Geo-Mar. Sci. 2013, 42, 556–564. [Google Scholar]
- Arnao, M.B. Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Guimarães, N.E.S.; Oliveira, M.L.S.; Santos, D.N.F.S.; Araújo, R.G.; Cunha, A.C.V.; Silva, J.O.; Fernandes, F.H.A. Chemical Characterization, Thermal Analysis and Antibacterial Activity of Honeys from Caatinga Stingless Bees of Melipona spp. Nat. Prod. Res. 2024, 13, 1–5. [Google Scholar] [CrossRef]
- Salgueiro, F.B.; Lira, F.A.; Rumjanek, V.M.; Castro, R. Phenolic Composition and Antioxidant Properties of Brazilian Honeys. Quim. Nova 2014, 37, 821–826. [Google Scholar] [CrossRef]
- Jilo, K.R. Stingless Bee (Meliponula baccarini) Honey Antibacterial Activities Against Salmonella typhi, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. J. Bacteriol. Parasitol. 2024, 15, 506. [Google Scholar] [CrossRef]
- Cruz, C.B.N.; Pieri, F.A.; Carvalho-Silze, G.A.; Orlandi, P.P.; Nunes-Silva, C.G.; Leomil, L. Antimicrobial Activity of Honeys from Two Stingless Honey Bee Species and Apis mellifera (Hymenoptera: Apidae) Against Pathogenic Microorganisms. Acta Amaz. 2014, 44, 287–290. [Google Scholar] [CrossRef]
- Rosli, F.N.; Hazemi, M.H.F.; Akbar, M.A.; Basir, S.; Kassim, H.; Bunawan, H. Stingless Bee Honey: Evaluating Its Antibacterial Activity and Bacterial Diversity. Insects 2020, 11, 500. [Google Scholar] [CrossRef]
- Borsato, D.M.; Esmerino, L.A.; Farago, P.V.; Miguel, M.D.; Miguel, O.G. Antimicrobial Activity of Honeys Produced by Native Meliponines from Paraná (Brazil). CEPPA Bull. 2013, 31, 57–66. [Google Scholar] [CrossRef]
- Buckevoca, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef]
- Silva, A.C.; Paulo, M.S.C.; Silva, M.J.O.; Machado, R.S.; Rocha, M.G.M.; Oliveira, G.A.L. Antimicrobial Activity and Toxicity of Stingless Honey Hives Melipona rufiventris and Melipona fasciculata: A review. Res. Soc. Dev. 2020, 9, e897986325. [Google Scholar] [CrossRef]
- Jerovick, I.; Kus, P.M. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Silva, P.L.M.; Lima, L.S.; Caetano, I.K.; Torres, Y.R. Comparative Analysis of the Volatile Composition of Honeys from Brazilian Stingless Bees by Static Headspace GC–MS. Food Res. Int. 2017, 102, 536–543. [Google Scholar] [CrossRef]
- Moreira, F.I.Z.N.; Medeiros, L.L.; Carvalho, L.M.; Olegario, L.S.; Galvão, S.M.; Franca, S.A.M.; Bezerra, T.K.A.; Lima, M.S.; Madruga, M.S. Quality of Brazilian Stingless Bee Honeys: Cephalotrigona Capitata/Mombucao and Melipona scutellaris Latrelle/uruçu. Food Chem. 2023, 404, 134306. [Google Scholar] [CrossRef]
- Costa, A.C.V.; Sousa, J.M.B.; Bezerra, T.K.A.; Silva, F.L.H.; Pastore, G.M.; Silva, M.A.Z.P.; Madruga, M.S. Volatile Profile of Monofloral Honeys Produced in Brazilian Semiarid Region by Stingless Bees and Key Volatile Compounds. LWT 2018, 94, 198–207. [Google Scholar] [CrossRef]
- Seisonen, S.; Kivima, E.; Vene, K. Characterisation of The Aroma Profiles of Different Honeys and Corresponding Flowers Using Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry/Olfactometry. Food Chem. 2015, 169, 34–40. [Google Scholar] [CrossRef]
- Yao, L.; Cai, R.; Wang, H.; Yu, C.; Tong, C.; He, Z.; Feng, T.; Sun, M. The Volatile Composition, Aroma Profile and Antioxidant Capacity of Yijiangzi (Aatragalus sinicus L.) Monofloral Honey and Its Correlation with the Flower. LWT 2024, 205, 116565. [Google Scholar] [CrossRef]
- Scholz, M.B.S.; Junior, A.Q.; Delamuta, B.H.; Nakamura, J.M.; Buadraz, M.C.; Reis, M.O.; Kato, T.; Pedrão, M.R.; Dias, L.F.; Santos, T.R.; et al. Indication of The Geographical Origin of Honey Using Its Physicochemical Characteristics and Multivariate Analysis. J. Food Sci. Technol. 2020, 57, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Barra, M.P.G.; Ponce-Diaz, M.C.; Venegas-Gallegos, C. Volatile Compounds in Honey Produced in the Central Valley of Nuble Province, Chile. Chil. J. Agric. Res. 2010, 70, 75–84. [Google Scholar] [CrossRef]
- Iglesias, M.T.; Martin-Alvarez, P.J.; Polo, M.C.; Lorenzo, C.; Gonzales, M.; Pueyo, E. Changes in the Free Amino Acid Contents of Honeys During Storage at Ambient Temperature. J. Agric. Food Chem. 2006, 54, 9099–9104. [Google Scholar] [CrossRef]
- Costa-Vieira, A.C.; Souza, J.M.B.; Silva, M.A.A.P.; Garruti, D.S.; Madruga, M.S. Sensory And Volatile Profiles of Monofloral Honeys Produced by Native Stingless bees of the Brazilian Semiarid Region. Food Res. Int. 2018, 105, 110–120. [Google Scholar] [CrossRef]
- Moreira, R.F.A.; Maria, C.A.B.; Pietrolungo, M.; Trugo, L.C. Chemical Changes in the Volatile Fractions of Brazilian Honeys During Storage Under Tropical Conditions. Food Chem. 2010, 121, 697–704. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and Quantification of Antioxidant Components of Honeys from Various Floral Sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Analytical Standards of the Adolfo Lutz Institute: Physicochemical Methods for Food Analysis; IAL: São Paulo, Brazil, 2008. [Google Scholar]
- Merrill, M.D.; Boutwell, R.C. 4: Instructional Development: Methodology and Research. Rev. Res. Educ. 1973, 1, 95–131. [Google Scholar] [CrossRef]
- Rufino, M.; Alves, R. Scientific Methodology: Determination of Total Antioxidant Activity in Fruits by DPPH Free Radical Scavenging; Embrapa: Pelotas, Brazil, 2007; 6p, Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/426953/1/Cot127.pdf (accessed on 2 July 2025).
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X. Antioxidant Compounds from Propolis Collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute—CLSI. Methodology for Dilution Antimicrobial Susceptibility Testing for Aerobically Growing Bacteria. M7, 6th ed.; CLSI: Wayne, PA, USA, 2003.
- Clinical and Laboratory Standards Institute—CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. M27, 4th ed.; CLSI: Wayne, PA, USA, 2017.
- Van Den Dool, H.; Kratz, P.D. A Generalization of The Retention Index System Including Linear Temperature Programmed Gas–liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
Parameter | MIH (M. interrupta) | MSH (M. seminigra) |
---|---|---|
Moisture (g/100 g) | 20.11 ± 0.61 | 27.10 ± 0.13 |
Ash (g/100 g) | 0.15 ± 0.06 | 0.31 ± 0.05 |
Protein (g/100 g) | 0.19 ± 0.09 | 0.16 ± 0.01 |
Lipid (g/100 g) | 0.20 ± 0.12 | 0.19 ± 0.08 |
Carbohydrate (g/100 g) | 79.35 ± 0.62 | 72.24 ± 0.32 |
Reducing sugar (%) | 76.95 ± 0.51 | 68.75 ± 0.17 |
Non-reducing sugar (%) | 1.43 ± 0.69 | 3.14 ± 0.13 |
Total caloric value (kcal/100 g) | 305.71 ± 2.34 | 278.34 ± 0.52 |
Radical Scavenging Activity | ||||
---|---|---|---|---|
Samples | DPPH | ABTS | ||
MIH | 987.74 ± 0.02 a | 49.98 ± 0.75 b | 65.49 ± 0.02 a | 58.73 ± 2.33 b |
MSH | 953.31 ± 0.01 a | 46.14 ± 1.83 b | 67.73 ± 0.01 a | 60.17 ± 1.68 b |
Samples | EC | SA | PA | PM | BS | SE | EF | SM | KP | SE | CA | CT | CP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIH | - | - | - | - | 75 | - | 75 | - | - | - | - | - | - |
MSH | - | - | - | - | 75 | - | 75 | - | - | - | - | - | - |
Compounds | M/W | RT | RIexperimental | RItheoretical | Relative Area (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MIH | MSH | AO | MI | AC | BO | SO | |||||
(3Z)-Hexen-1-ol | 101 | 6.36 | 846 | 858 | 7.43 | 7.14 | |||||
α-Pinene | 136 | 8.76 | 924 | 932 | 19.04 | ||||||
α-Thujene | 136 | 8.77 | 934 | 924 | 1.43 | ||||||
Benzaldehyde | 106 | 9.89 | 956 | 960 | 14.68 | ||||||
Sabinene | 136 | 10.53 | 966 | 969 | 2.95 | ||||||
β-Pinene | 136 | 10.70 | 971 | 974 | 8.64 | ||||||
1-Octen-3-ol | 128 | 10.85 | 982 | 986 | 0.73 | ||||||
β-Myrcene | 136 | 11.15 | 984 | 988 | 10.43 | ||||||
3-Carene | 136 | 11.66 | 1005 | 1008 | 6.12 | 20.91 | |||||
2-Ethyl-1-hexanol | 130 | 12.32 | 1025 | 1029 | 2.19 | ||||||
D-Limonene | 136 | 12.38 | 1053 | 1033 | 6.92 | ||||||
(Z)-β-Ocimene | 136 | 12.59 | 1033 | 1050 | 3.14 | 0.50 | |||||
Eucalyptol | 154 | 12.65 | 1034 | 1031 | 1.26 | ||||||
Benzyl alcohol | 108 | 12.79 | 1038 | 1034 | 0.89 | 0.89 | |||||
Benzene acetalheyde | 120 | 12.83 | 1039 | 1042 | 1.00 | ||||||
(E)-β-Ocimene | 136 | 12.96 | 1045 | 1050 | 0.45 | 50.93 | 8.80 | 40.68 | |||
γ-Terpinene | 136 | 13.39 | 1112 | 1064 | 2.35 | ||||||
(Z)-Linalool oxide | 170 | 13.77 | 1067 | 1067 | 9.20 | 1.06 | |||||
Terpinolene | 136 | 14.45 | 1068 | 1088 | 1.11 | 1.01 | 11.49 | ||||
(E)-Linalool oxide | 213 | 14.51 | 1089 | 1080 | 0.41 | 14.30 | |||||
p-Cymene | 134 | 14.62 | 1184 | 1021 | 2.23 | ||||||
p-Cymenene | 132 | 14.64 | 1093 | 1089 | 0.21 | ||||||
Linalool | 154 | 14.68 | 1094 | 1098 | 2.65 | 1.61 | 0.12 | 3.86 | 1.26 | 1.59 | |
Hotrienol | 152 | 14.86 | 1099 | 1101 | 42.42 | 3.33 | |||||
Rose oxide | 154 | 15.05 | 1105 | 1112 | 2.15 | ||||||
Nonanal | 142 | 15.11 | 1107 | 1102 | 0.10 | 5.43 | |||||
4.8-Dimethylnona 1.3.7-triene | 150 | 15.26 | 1114 | 1110 | 5.71 | ||||||
Phenethyl alcohol | 122 | 15.39 | 1116 | 1114 | 12.27 | 1.26 | 1.63 | 13.47 | |||
(E)-p-Mentha-1(7).8-dien-2-ol | 152 | 15.64 | 1124 | 1185 | 1.66 | ||||||
neo-allo-Ocimene | 136 | 15.84 | 1130 | 1131 | 1.31 | 7.57 | |||||
Cosmene | 134 | 15.90 | 1132 | 1130 | 1.83 | 4.78 | 5.17 | ||||
Hexyl isobutyrate | 172 | 16.26 | 1144 | 1150 | 3.45 | ||||||
Benzyl nitrile | 117 | 16.30 | 1145 | 1143 | 3.49 | ||||||
Nerol oxide | 152 | 16.42 | 1149 | 1151 | 7.23 | ||||||
4-Ethylphenol | 122 | 16.87 | 1163 | 1163 | 8.46 | ||||||
p-Mentha-1.5-dien-8-ol | 152 | 16.89 | 1164 | 1159 | 4.95 | ||||||
1-Nonanol | 144 | 16.92 | 1165 | 1169 | 8.08 | 0.12 | 1.77 | ||||
Lavandulol | 154 | 16.97 | 1167 | 1161 | 2.44 | ||||||
Octanoic acid | 144 | 17.16 | 1173 | 1191 | 1.83 | ||||||
(E)-Linalool-3.7.oxide | 170 | 17.34 | 1178 | 1178 | 0.61 | ||||||
α-Terpineol | 154 | 17.57 | 1186 | 1189 | 7.36 | 0.15 | |||||
Ethyl caprylate | 172 | 17.72 | 1191 | 1197 | 1.67 | ||||||
Methyl salicylate | 152 | 17.93 | 1197 | 1187 | 2.38 | 1.05 | |||||
Decanal | 156 | 18.07 | 1198 | 1200 | 0.62 | 0.02 | 0.33 | ||||
2-Amino benzaldehyde | 121 | 18.33 | 1211 | 1222 | 6.68 | ||||||
3-Hexenyl 2-methylbutyrate | 184 | 19.08 | 1264 | 1233 | 26.35 | 0.13 | |||||
Isovaleric acid-(Z)-3-hexenyl ester | 184 | 19.09 | 1237 | 1238 | 0.12 | ||||||
Benzeneacetic acid methyl ester | 491 | 19.14 | 1239 | 1234 | 5.39 | ||||||
β-Phenethyl acetate | 164 | 19.70 | 1251 | 1245 | 0.46 | 0.12 | |||||
Nonanoic acid | 158 | 19.88 | 1262 | 1272 | 0.57 | 2.41 | |||||
Hydroquinone | 110 | 20.03 | 1269 | 1241 | 1.12 | ||||||
(E)-Cinnamaldehyde | 132 | 20.34 | 1280 | 1266 | 0.64 | ||||||
Nonanoic acid ethyl ester | 186 | 20.54 | 1287 | 1294 | 1.49 | ||||||
Cinnamyl alcohol | 134 | 21.26 | 1313 | 1312 | 0.64 | ||||||
Decanoic acid methyl ester | 186 | 21.36 | 1317 | 1328 | 2.58 | ||||||
α-Cubebene | 204 | 22.29 | 1351 | 1351 | 1.06 | 0.50 | |||||
Decanoic acid | 172 | 22.53 | 1360 | 1364 | 2.41 | ||||||
Ylangene | 204 | 22.92 | 1375 | 1373 | 1.88 | 0.36 | |||||
α-Copaene | 204 | 23.13 | 1383 | 1372 | 6.68 | 1.40 | |||||
Capric acid | 172 | 23.18 | 1385 | 1381 | 0.17 | ||||||
β-Bourbonene | 204 | 23.29 | 1388 | 1384 | 0.24 | ||||||
(Z)-Jasmone | 164 | 23.34 | 1390 | 1392 | 2.56 | ||||||
Sativene | 204 | 23,58 | 1399 | 1390 | 0.19 | ||||||
β-Longipinene | 204 | 23.66 | 1404 | 1400 | 0.15 | ||||||
Dodecanal | 184 | 23.71 | 1412 | 1412 | 0.88 | ||||||
β-Caryophyllene | 204 | 24.28 | 1427 | 1418 | 26.22 | 12.31 | |||||
α,β-Dihydro-β-ionone | 194 | 24.56 | 1436 | 1438 | 1.90 | ||||||
Nerylacetone | 194 | 24.63 | 1441 | 1445 | 0.59 | ||||||
α-Bergamotene | 204 | 24.80 | 1438 | 1432 | 3.13 | ||||||
α-Guaiene | 204 | 25.56 | 1445 | 1440 | 0.60 | ||||||
Aromandendrene | 204 | 28.89 | 1447 | 1436 | 2.07 | ||||||
1-Dodecanol | 186 | 25.17 | 1462 | 1469 | 2.82 | ||||||
γ-Gurjunene | 204 | 25.25 | 1465 | 1479 | 4.69 | 0.37 | |||||
α-Caryophyllene | 204 | 25.26 | 1466 | 1455 | 5.13 | ||||||
γ-Muurolene | 204 | 25.72 | 1484 | 1477 | 4.08 | 3.18 | |||||
α-Amorphene | 204 | 25.80 | 1487 | 1484 | 0.33 | 0.38 | |||||
α-Farnesene | 204 | 26.31 | 1507 | 1507 | 16.63 | 0.12 | |||||
β-Bisabolene | 204 | 26.47 | 1513 | 1506 | 1.95 | ||||||
γ-Cadinene | 204 | 26.68 | 1523 | 1513 | 4.72 | ||||||
δ-Cadinene | 204 | 26.82 | 1529 | 1523 | 5.00 | ||||||
(Z)-Calamene | 202 | 26.90 | 1532 | 1523 | 2.46 | ||||||
α-Calacorene | 200 | 27.30 | 1549 | 1546 | 0.41 | ||||||
Cadine-1.4-diene | 204 | 27.38 | 1542 | 1539 | 1.84 | ||||||
Dodecanoic acid | 200 | 27.34 | 1565 | 1566 | 1.66 | ||||||
Selina-3.7(11)-diene | 204 | 27.39 | 1552 | 1545 | 3.30 | ||||||
Caryophylene oxide | 220 | 27.70 | 1560 | 1578 | 0.26 | ||||||
(3E,7E)-4.8.12-Trimethyltrideca-1.3.7.11-tetraene | 218 | 27.94 | 1576 | 1580 | 6.84 | ||||||
3-Hexen-1-ol-benzoate | 204 | 28.00 | 1579 | 1565 | 1.95 | 0.52 | |||||
Tetradecanol | 214 | 29.86 | 1660 | 1671 | 4.72 | ||||||
Hexadecanol | 242 | 34.12 | 1866 | 1875 | 0.41 | ||||||
93.57 | 85.45 | 86.97 | 94.53 | 94.95 | 72.65 | 97.49 |
Sample | Sample ID | Deposit Code | Latitude | Longitude |
---|---|---|---|---|
Anacardium occidentale | AO | HUAM 12685 | 3°16′2.7″ | 60°11′28.3″ |
Mangifera indica | MI | HUAM 12686 | 3°16′2.4″ | 60°11′29.0″ |
Averrhoa carambola | AC | HUAM 12687 | 3°16′2.9″ | 60°11′28.8″ |
Bougainvillea sp. | BO | HUAM 12688 | 3°16′3.0″ | 60°11′27.7″ |
Senna occidentalis | SO | HUAM 12689 | 3°16′2.7″ | 60°11′27.7″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, E.J.S.P.; da Silva, C.V.A.; Rocha, F.A.S.; Rodrigues, A.d.M.; Costa, S.C.; França, R.S.; Gurgel, R.S.; Batista, B.N.; Albuquerque, P.M.; Gomes, W.R.; et al. Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil. Plants 2025, 14, 2106. https://doi.org/10.3390/plants14142106
de Lima EJSP, da Silva CVA, Rocha FAS, Rodrigues AdM, Costa SC, França RS, Gurgel RS, Batista BN, Albuquerque PM, Gomes WR, et al. Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil. Plants. 2025; 14(14):2106. https://doi.org/10.3390/plants14142106
Chicago/Turabian Stylede Lima, Emilly J. S. P., Carlos V. A. da Silva, Fernanda A. S. Rocha, Aline de M. Rodrigues, Samuel C. Costa, Rebeca S. França, Raiana S. Gurgel, Bárbara N. Batista, Patrícia M. Albuquerque, Waldireny R. Gomes, and et al. 2025. "Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil" Plants 14, no. 14: 2106. https://doi.org/10.3390/plants14142106
APA Stylede Lima, E. J. S. P., da Silva, C. V. A., Rocha, F. A. S., Rodrigues, A. d. M., Costa, S. C., França, R. S., Gurgel, R. S., Batista, B. N., Albuquerque, P. M., Gomes, W. R., Koolen, H. H. F., & Bataglion, G. A. (2025). Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil. Plants, 14(14), 2106. https://doi.org/10.3390/plants14142106