Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = chemical analytical cross-linking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3648 KiB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 - 1 Aug 2025
Viewed by 200
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

15 pages, 2018 KiB  
Article
Study on Preparation and Properties of Super Absorbent Gels of Homogenous Cotton Straw-Acrylic Acid-Acrylamide by Graft Copolymerization
by Jun Guo, Jing Shi, Lisheng Xu, Xingtao Zhang, Fangkai Han and Minwei Xu
Gels 2025, 11(8), 583; https://doi.org/10.3390/gels11080583 - 28 Jul 2025
Viewed by 218
Abstract
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose [...] Read more.
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose in the straw serves as the network framework, and MBA acts as the crosslinking agent. 60Co gamma rays as initiators. Different concentrations of alkaline solution were used to dissolve the cellulose in the straw. Single-factor and orthogonal experiments were conducted to optimize the experimental conditions. various analytical methods such as thermogravimetric analysis (TG), X-ray crystallography (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to characterize the structure and properties of the product. 60Co gamma rays as initiators, can reduce the pollution caused by chemical initiators and lower energy consumption. Through this research, agricultural waste can be effectively utilized, reducing environmental pollution, lowering industrial energy consumption, and synthesizing degradable and environmentally friendly high-absorbent resins. The product can be applied to agricultural water retention agent, fertilizer controlled release agent and other aspects. Full article
(This article belongs to the Special Issue Cellulose-Based Hydrogels for Advanced Applications)
Show Figures

Graphical abstract

21 pages, 7431 KiB  
Article
A Study on the Degradation of Iron Gall Inks and to Preserve Them Using Green Approaches
by Natércia Teixeira, Paula Nabais, Vanessa Otero, Rafael Javier Díaz Hidalgo, Matteo Ferretti, Maurizio Licchelli and Maria J. Melo
Heritage 2025, 8(7), 261; https://doi.org/10.3390/heritage8070261 - 3 Jul 2025
Viewed by 605
Abstract
Inks from the 12th to the 17th century were aged, and a multi-analytical approach was used for their identification based on HPLC–DAD–MS, microFTIR, and microRaman. Colorimetry analysis was also performed. After 6 years of application on filter paper, three inks were selected to [...] Read more.
Inks from the 12th to the 17th century were aged, and a multi-analytical approach was used for their identification based on HPLC–DAD–MS, microFTIR, and microRaman. Colorimetry analysis was also performed. After 6 years of application on filter paper, three inks were selected to be cleaned using a novel green approach based on a chemically crosslinked gel to remove unwanted materials from the ink surface. A Braga ink produced in 2018 was also tested. Two degradation products were identified; iron sulfate was the main degradation product in the Braga ink. For Montpellier, Guadalupe, and QI.8 inks, the main degradation product was a complex of iron with ellagic acid. These compounds were accurately confirmed using microFTIR. Several tests were performed to clean these degradation products with the gels. The Braga ink was cleaned with 10% ethanol in water, which was included in the gel, and the iron sulfate was removed within 15 s of application. On the other hand, the complex of iron with ellagic acid demanded longer application times; we used 2 min and repeated the application until the compound was removed. The novelty of this research has practical implications for the conservation of historical documents and artworks. Full article
(This article belongs to the Special Issue Deterioration and Conservation of Ancient Writing Supports)
Show Figures

Figure 1

16 pages, 756 KiB  
Article
New Insight into the Microstructure Changes and Molecular Mobility of Polyamides Exposed to H2S Scavengers
by Marina Perassoli de Lazari, Antonio Henrique Monteiro da Fonseca Thomé da Silva, Rodrigo Henrique dos Santos Garcia, Sylvia Correa dos Santos Teixeira, João Eduardo de Oliveira, Érica Gervasoni Chaves, Luiz Antônio de Oliveira Nunes, Hercílio de Angeli Honorato, Sonia Maria Cabral de Menezes, Aline Pinde Lima, Luiz Silvino Chinelatto Junior and Eduardo Ribeiro de Azevedo
Polymers 2025, 17(12), 1634; https://doi.org/10.3390/polym17121634 - 12 Jun 2025
Viewed by 360
Abstract
Polyamides (PAs) are widely used as barrier materials in offshore oil and gas (O&G) equipment due to their mechanical strength and chemical resistance. However, long-term exposure to hydrogen sulfide scavengers (H2S-SCVs) may significantly affect their physicochemical properties. Previous studies using thermal [...] Read more.
Polyamides (PAs) are widely used as barrier materials in offshore oil and gas (O&G) equipment due to their mechanical strength and chemical resistance. However, long-term exposure to hydrogen sulfide scavengers (H2S-SCVs) may significantly affect their physicochemical properties. Previous studies using thermal analysis and 1H time-domain NMR (1H TD-NMR) suggest that ethoxylated H2S-SCVs impose molecular constraints, increasing the glass transition temperature (Tg) and reducing chain mobility above Tg. The present study builds upon these findings using a multi-technique analytical approach, including FTIR, Raman, 1H DQ-TD-NMR, and 13C solid-state NMR (ssNMR), to provide a more comprehensive understanding of the molecular alterations in PA materials. The results clearly demonstrate that H2S-SCV exposure leads to the progressive exudation of plasticizers from the PA matrix. This plasticizer loss is a key factor contributing to the observed shift in Tg and the reduction in molecular mobility. 1H DQ-TD-NMR data confirmed an increase in the density of dynamically constrained chains over time and allowed for the characterization of heterogeneity in these constraints throughout the PA matrix. Moreover, 13C ssNMR spectra revealed the presence of immobilized H2S-SCV chemical groups within the polymer matrix, strongly supporting the early statement that the mobility constraints observed in 1H DQ-TD-NMR are associated with the formation of crosslinks induced by the H2S-SCV: H2S-SCV acts as a crosslinking agent. Taken together, our findings indicate that both plasticizer loss and H2S-SCV-induced crosslinking contribute significantly to the microstructural evolution of PAs when exposed to ethoxylated H2S-SCVs, offering important insights into their degradation mechanisms and long-term behavior in aggressive operational environments. Full article
(This article belongs to the Special Issue Advanced Spectroscopy for Polymers: Design and Characterization)
Show Figures

Figure 1

37 pages, 9912 KiB  
Review
Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection
by Xorlali Nunekpeku, Huanhuan Li, Ayesha Zahid, Chenhui Li and Wei Zhang
Biosensors 2025, 15(6), 363; https://doi.org/10.3390/bios15060363 - 5 Jun 2025
Viewed by 1295
Abstract
Background: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy [...] Read more.
Background: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy (SERS) offers non-destructive analysis with low detection limits and high specificity, yet conventional SERS substrates face challenges with reproducibility, nanoparticle aggregation, and sensitivity in food matrices. Hydrogels have emerged as supporting materials for SERS due to their water content, tunable porosity, flexibility, and ability to entrap plasmonic nanostructures. Scope and Approach: This review examines recent advances in hydrogel-integrated SERS platforms for food safety applications. The three-dimensional structure of hydrogels enables homogeneous distribution of metal nanoparticles, prevents aggregation, and offers analyte enrichment. We analyze material design, functionalization strategies, and how hydrogel properties—crosslinking density, porosity, surface charge, and nanoparticle distribution—influence SERS performance in food matrices. Key Findings and Conclusions: Hydrogel-integrated SERS platforms demonstrate superior performance in detecting various food contaminants—including pesticides, adulterants, and additives—in real food matrices, often achieving detection limits in the nanomolar to picomolar range, depending on the analyte and substrate design. Current limitations include storage stability concerns, batch-to-batch variability, and regulatory acceptance hurdles. Future research directions should focus on multiplex detection capabilities, integration with smart sensing technologies, and industrial scalability to facilitate practical deployment in global food safety monitoring across diverse supply chains. Full article
(This article belongs to the Special Issue Advanced SERS Biosensors for Detection and Analysis)
Show Figures

Figure 1

23 pages, 2058 KiB  
Review
Alginate Sphere-Based Soft Actuators
by Umme Salma Khanam, Hyeon Teak Jeong, Rahim Mutlu and Shazed Aziz
Gels 2025, 11(6), 432; https://doi.org/10.3390/gels11060432 - 5 Jun 2025
Viewed by 878
Abstract
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability [...] Read more.
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability to respond to thermal, magnetic, electrical, optical and chemical stimuli has enabled applications in targeted delivery, artificial muscles, microrobotics and environmental interfaces. This review examines recent advances in alginate sphere-based actuators, focusing on fabrication methods such as droplet microfluidics, coaxial flow and functional surface patterning, and strategies for introducing multi-stimuli responsiveness using smart polymers, nanoparticles and biologically active components. Actuation behaviours are understood and correlated with physical mechanisms including swelling kinetics, photothermal effects and the field-induced torque, supported by analytical and multiphysics models. Their demonstrated functionalities include shape transformation, locomotion and mechano-optical feedback. The review concludes with an outlook on the existing limitations, such as the material stability, cyclic durability and integration complexity, and proposes future directions toward the development of autonomous, multifunctional soft systems. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Figure 1

29 pages, 32601 KiB  
Article
Sustainable Novel Membranes Based on Carboxymethyl Cellulose Modified with ZIF-8 for Isopropanol/Water Pervaporation Separation
by Anna Kuzminova, Mariia Dmitrenko, Roman Dubovenko, Anna Mikulan, Anastasia Stepanova, Margarita Puzikova, Nadezhda Rakovskaya, Anton Mazur, Anna Shurukhina, Aida Rudakova, Alexei Emeline, Rongxin Su and Anastasia Penkova
Sustainability 2025, 17(9), 3801; https://doi.org/10.3390/su17093801 - 23 Apr 2025
Viewed by 636
Abstract
The present study investigates the potential of novel mixed matrix membranes that are formed from the biopolymer carboxymethyl cellulose (CMC) and the metal–organic framework ZIF-8 to improve the pervaporation dehydration of isopropanol. The effect of ZIF-8 content variation and porous substrate selection (comprising [...] Read more.
The present study investigates the potential of novel mixed matrix membranes that are formed from the biopolymer carboxymethyl cellulose (CMC) and the metal–organic framework ZIF-8 to improve the pervaporation dehydration of isopropanol. The effect of ZIF-8 content variation and porous substrate selection (comprising cellulose acetate (CA) and polyacrylonitrile) on dense and supported membrane properties is systematically investigated using multiple analytical techniques. It is found that ZIF-8 incorporation alters the membrane structure (confirmed by FTIR and NMR), increases surface roughness (observed via SEM and AFM), enhances swelling degree (obtained by swelling measurements), improves surface hydrophobicity (determined by contact angle analysis), and elevates thermal stability (verified by TGA). Quantum chemical calculations are used to validate the interactions between the polymer matrix, modifier, and feed components. The transport properties of developed membranes are evaluated through the dehydration of isopropanol via pervaporation. The cross-linked supported CMC membrane with 10 wt% ZIF-8 prepared on the CA substrate has the optimal performance: permeation flux of 0.136–1.968 kg/(m2h) and ˃92 wt% water in the permeate via the dehydration of isopropanol (water content 12–100 wt%) at 22 °C. Full article
Show Figures

Graphical abstract

18 pages, 12141 KiB  
Article
Multi-Analytical Study of Damage to Marine Ballast Tank Coatings After Cyclic Corrosion Testing
by Yanwen Liu, Douglas Beaumont, Xiaorong Zhou, Timothy Burnett, Suzanne Morsch, Stuart Lyon, Paul Iannarelli, Claudio Di Lullo, Niek Hijnen, Reza Emad, Lawrence Coghlan and Teruo Hashimoto
Corros. Mater. Degrad. 2025, 6(1), 1; https://doi.org/10.3390/cmd6010001 - 24 Dec 2024
Cited by 1 | Viewed by 1503
Abstract
Seawater ballast tanks in vessels are subject to severe service conditions caused by repeated filling/emptying, as well as temperature variation. Consequently, relatively thick, barrier-type coatings are used for corrosion protection of their internals. These are generally formulated with solvent-based epoxy binders and contain [...] Read more.
Seawater ballast tanks in vessels are subject to severe service conditions caused by repeated filling/emptying, as well as temperature variation. Consequently, relatively thick, barrier-type coatings are used for corrosion protection of their internals. These are generally formulated with solvent-based epoxy binders and contain a range of flake pigments designed to limit environmental entry. Here, we report on a detailed study of damage processes in order to understand the mechanisms of failure after hygro-thermal cyclic corrosion testing. Similar formulations were cured using variant phenalkamine cross-linkers. Visual observation after corrosion testing shows minimal changes and no sign of corrosion damage. However, high-resolution analytical microscopy and nanoscale tomography reveal the onset of microstructural and chemical damage processes inside the coating. Thus, kaolin and talc pigments in the coating remained stable under hygro-thermal cycling; however, dolomite and barium sulphate dissolved slightly, causing voids. Galvanic protection of the substrate by aluminium flake pigments was disproven as no electrical connection was evident. Vibrational spectroscopy revealed a decrease in residual epoxy functionality after exposure for the coating cured with the more stable phenalkamine. This was correlated with an increase in glass transition temperature (Tg) and no observable corrosion of aluminium flakes. In contrast, the less stable phenalkamine cross-linker caused the binder Tg to decrease and aluminium flakes and substrate corrosion to become evident. Full article
(This article belongs to the Special Issue Advances in Corrosion Protection by Coatings)
Show Figures

Figure 1

32 pages, 15095 KiB  
Article
Multi-Sensor Soil Probe and Machine Learning Modeling for Predicting Soil Properties
by Sabine Grunwald, Mohammad Omar Faruk Murad, Stephen Farrington, Woody Wallace and Daniel Rooney
Sensors 2024, 24(21), 6855; https://doi.org/10.3390/s24216855 - 25 Oct 2024
Cited by 6 | Viewed by 6724
Abstract
We present a data-driven, in situ proximal multi-sensor digital soil mapping approach to develop digital twins for multiple agricultural fields. A novel Digital Soil CoreTM (DSC) Probe was engineered that contains seven sensors, each of a distinct modality, including sleeve friction, tip [...] Read more.
We present a data-driven, in situ proximal multi-sensor digital soil mapping approach to develop digital twins for multiple agricultural fields. A novel Digital Soil CoreTM (DSC) Probe was engineered that contains seven sensors, each of a distinct modality, including sleeve friction, tip force, dielectric permittivity, electrical resistivity, soil imagery, acoustics, and visible and near-infrared spectroscopy. The DSC System integrates the DSC Probe, DSC software (v2023.10), and deployment equipment components to sense soil characteristics at a high vertical spatial resolution (mm scale) along in situ soil profiles up to a depth of 120 cm in about 60 s. The DSC Probe in situ proximal data are harmonized into a data cube providing vertical high-density knowledge associated with physical–chemical–biological soil conditions. In contrast, conventional ex situ soil samples derived from soil cores, soil pits, or surface samples analyzed using laboratory and other methods are bound by a substantially coarser spatial resolution and multiple compounding errors. Our objective was to investigate the effects of the mismatched scale between high-resolution in situ proximal sensor data and coarser-resolution ex situ soil laboratory measurements to develop soil prediction models. Our study was conducted in central California soil in almond orchards. We collected DSC sensor data and spatially co-located soil cores that were sliced into narrow layers for laboratory-based soil measurements. Partial Least Squares Regression (PLSR) cross-validation was used to compare the results of testing four data integration methods. Method A reduced the high-resolution sensor data to discrete values paired with layer-based soil laboratory measurements. Method B used stochastic distributions of sensor data paired with layer-based soil laboratory measurements. Method C allocated the same soil analytical data to each one of the high-resolution multi-sensor data within a soil layer. Method D linked the high-density multi-sensor soil data directly to crop responses (crop performance and behavior metrics), bypassing costly laboratory soil analysis. Overall, the soil models derived from Method C outperformed Methods A and B. Soil predictions derived using Method D were the most cost-effective for directly assessing soil–crop relationships, making this method well suited for industrial-scale precision agriculture applications. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 3927 KiB  
Article
Novel Determination of Functional Groups in Partially Acrylated Epoxidized Soybean Oil
by Olga Gómez-de-Miranda-Jiménez-de-Aberasturi, Javier Calvo, Ingemar Svensson, Noelia Blanco, Leire Lorenzo and Raquel Rodriguez
Molecules 2024, 29(19), 4582; https://doi.org/10.3390/molecules29194582 - 26 Sep 2024
Cited by 2 | Viewed by 1309
Abstract
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties [...] Read more.
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties such as molecular size distribution, crosslinking degree, and glass transition temperature (Tg). The accurate identification of epoxide and acrylated groups in triglyceride molecules helps to predict their behavior during the polymerization process. A methodology based on analytical spectrometric techniques, such as direct infusion, mass spectrometry with electrospray ionization, and ultra-high-performance liquid chromatography, is used in combination with FTIR and 1H NMR to characterize the epoxy and acrylic functionalities in the fatty chains with different numbers of carbon atoms of partially acrylated triglycerides obtained by a non-catalytic reaction. Full article
Show Figures

Figure 1

13 pages, 2521 KiB  
Article
Sensitive Coatings Based on Molecular-Imprinted Polymers for Triazine Pesticides’ Detection
by Usman Latif, Sadaf Yaqub and Franz L. Dickert
Sensors 2024, 24(18), 5934; https://doi.org/10.3390/s24185934 - 13 Sep 2024
Cited by 1 | Viewed by 1222
Abstract
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for [...] Read more.
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for the detection of chlorotriazine pesticides with gravimetric transducers. Initially, imprinted polymers were developed, using acrylate and methacrylate monomers containing hydrophilic and hydrophobic side chains, specifically for atrazine, which shares a basic heterocyclic triazine structure with its structural analogs. By adjusting the ratio of the acid to the cross-linker and introducing acrylate ester as a copolymer, optimal non-covalent interactions were achieved with the hydrophobic core of triazine molecules and their amino groups. A maximum sensor response of 546 Hz (frequency shift/layer height equal to 87.36) was observed for a sensitive coating composed of 46% methacrylic acid and 54% ethylene glycol dimethacrylate, with a demonstrated layer height of 250 nm (6.25 kHz). The molecularly imprinted copolymer demonstrated fully reversible sensor responses, not only for atrazine but also for its metabolites, like des-ethyl atrazine, and structural analogs, such as propazine and terbuthylazine. The efficiency of modified molecularly imprinted polymers for targeted analytes was tested by combining them with a universally applicable quartz crystal microbalance transducer. The stable selectivity pattern of the developed sensor provides an excellent basis for a pattern recognition procedure. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

10 pages, 1876 KiB  
Article
Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching
by Tsukuru Minamiki, Ryosuke Esaka and Ryoji Kurita
Sensors 2024, 24(13), 4245; https://doi.org/10.3390/s24134245 - 29 Jun 2024
Cited by 2 | Viewed by 1303
Abstract
Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best [...] Read more.
Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best candidates for preparing molecular sensor devices owing to their luminescent and molecular recognition properties, the development of CP-based sensor devices is still in its early stages. In this study, we herein propose a novel strategy for preparing a chemical stimuli-responsive solid-state emission system based on supramacromolecular assembly-induced emission enhancement (SmAIEE). The system was spontaneously developed by mixing only the component polymers (i.e., polythiophene and a transient cross-linking polymer). The proposed strategy can be applied to the facile preparation of molecular sensor devices. The analyte-induced fluorescent response of polythiophene originated from the dynamic displacement of the transient cross-linker in the polythiophene ensemble and the generation of the polythiophene–analyte complex. Our successful demonstration of the spontaneous preparation of the fluorescence sensor system by mixing two component polymers could lead to the development of on-site molecular analyzers including the determination of multiple analytes. Full article
(This article belongs to the Special Issue Technology Trends in Fluorescence Detection Based on Biosensor)
Show Figures

Figure 1

17 pages, 2718 KiB  
Article
Ionic Crosslinked Hydrogel Films for Immediate Decontamination of Chemical Warfare Agents
by Gabriela Toader, Raluca-Elena Ginghina, Adriana Elena Bratu, Alice Ionela Podaru, Daniela Pulpea, Traian Rotariu, Ana Mihaela Gavrilă and Aurel Diacon
Gels 2024, 10(7), 428; https://doi.org/10.3390/gels10070428 - 28 Jun 2024
Cited by 2 | Viewed by 2097
Abstract
This study describes the development of hydrogel formulations with ionic crosslinking capacity and photocatalytic characteristics. The objective of this research is to provide an effective, accessible, “green”, and facile route for the decontamination of chemical warfare agents (CWAs, namely the blistering agent—mustard gas/sulfur [...] Read more.
This study describes the development of hydrogel formulations with ionic crosslinking capacity and photocatalytic characteristics. The objective of this research is to provide an effective, accessible, “green”, and facile route for the decontamination of chemical warfare agents (CWAs, namely the blistering agent—mustard gas/sulfur mustard (HD)) from contaminated surfaces, by decomposition and entrapment of CWAs and their degradation products inside the hydrogel films generated “on-site”. The decontamination of the notorious warfare agent HD was successfully achieved through a dual hydrolytic–photocatalytic degradation process. Subsequently, the post-decontamination residues were encapsulated within a hydrogel membrane film produced via an ionic crosslinking mechanism. Polyvinyl alcohol (PVA) and sodium alginate (ALG) are the primary constituents of the decontaminating formulations. These polymeric components were chosen for this application due to their cost-effectiveness, versatility, and their ability to form hydrogen bonds, facilitating hydrogel formation. In the presence of divalent metallic ions, ALG undergoes ionic crosslinking, resulting in rapid gelation. This facilitated prompt PVA-ALG film curing and allowed for immediate decontamination of targeted surfaces. Additionally, bentonite nanoclay, titanium nanoparticles, and a tetrasulfonated nickel phthalocyanine (NiPc) derivative were incorporated into the formulations to enhance absorption capacity, improve mechanical properties, and confer photocatalytic activity to the hydrogels obtained via Zn2+—mediated ionic crosslinking. The resulting hydrogels underwent characterization using a variety of analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscometry, and mechanical analysis (shear, tensile, and compression tests), as well as swelling investigations, to establish the optimal formulations for CWA decontamination applications. The introduction of the fillers led to an increase in the maximum strain up to 0.14 MPa (maximum tensile resistance) and 0.39 MPa (maximum compressive stress). The UV-Vis characterization of the hydrogels allowed the determination of the band-gap value and absorption domain. A gas chromatography–mass spectrometry assay was employed to evaluate the decontamination efficacy for a chemical warfare agent (sulfur mustard—HD) and confirmed that the ionic crosslinked hydrogel films achieved decontamination efficiencies of up to 92.3%. Furthermore, the presence of the photocatalytic species can facilitate the degradation of up to 90% of the HD removed from the surface and entrapped inside the hydrogel matrix, which renders the post-decontamination residue significantly less dangerous. Full article
(This article belongs to the Special Issue Advances and Current Applications in Gel-Based Membranes)
Show Figures

Graphical abstract

20 pages, 6180 KiB  
Article
Novel High-Performance Functionalized and Grafted Bio-Based Chitosan Adsorbents for the Efficient and Selective Removal of Toxic Heavy Metals from Contaminated Water
by Mohammad Monir, Rasha E. Elsayed, Rasha A. Azzam and Tarek M. Madkour
Polymers 2024, 16(12), 1718; https://doi.org/10.3390/polym16121718 - 16 Jun 2024
Cited by 4 | Viewed by 1809
Abstract
Novel functionalized and/or grafted crosslinked chitosan adsorbents were synthesized and used to remove several toxic heavy metal ions such as nickel, lead, chromium, and cadmium ions from contaminated water. The chitosan biopolymer was functionalized by maleic anhydride (CS_MA) acting also as a crosslinking [...] Read more.
Novel functionalized and/or grafted crosslinked chitosan adsorbents were synthesized and used to remove several toxic heavy metal ions such as nickel, lead, chromium, and cadmium ions from contaminated water. The chitosan biopolymer was functionalized by maleic anhydride (CS_MA) acting also as a crosslinking agent. Glutaraldehyde-crosslinked chitosan (CS_GA) grafted with poly(methyl methacrylate) (CS_MMA) was also synthesized. The synthesized adsorbents were characterized using a variety of analytical techniques such as SEM, TGA, and FTIR, which confirmed their chemical structures and morphology. The adsorption capacity of the adsorbents was analyzed under various conditions of contact time, adsorbent dose, initial concertation, temperature, and pH and evaluated against those of pure chitosan (CS) and the crosslinked chitosan(CS_GA). The ultimate removal conditions were 0.5 g/100 mL adsorbent dose, an initial metal ion concentration of 50 ppm, a temperature of 45 °C, and pH 9. CS_MMA had the highest removal percentages for all metal ions, ranging from 92% to 94%. The adsorption was demonstrated to fit a pseudo-first-order model that followed a Langmuir adsorption isotherm. The results highlight the capacity of the synthesized polymers to efficiently remove major toxic contaminants at low cost from contaminated water, present especially in low-income areas, without harming the environment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

23 pages, 2043 KiB  
Article
Enhancing Wastewater Depollution: Sustainable Biosorption Using Chemically Modified Chitosan Derivatives for Efficient Removal of Heavy Metals and Dyes
by Jana Ayach, Luminita Duma, Adnan Badran, Akram Hijazi, Agathe Martinez, Mikhael Bechelany, Elias Baydoun and Hussein Hamad
Materials 2024, 17(11), 2724; https://doi.org/10.3390/ma17112724 - 3 Jun 2024
Cited by 8 | Viewed by 1835
Abstract
Driven by concerns over polluted industrial wastewater, particularly heavy metals and dyes, this study explores biosorption using chemically cross-link chitosan derivatives as a sustainable and cost-effective depollution method. Chitosan cross-linking employs either water-soluble polymers and agents like glutaraldehyde or copolymerization of hydrophilic monomers [...] Read more.
Driven by concerns over polluted industrial wastewater, particularly heavy metals and dyes, this study explores biosorption using chemically cross-link chitosan derivatives as a sustainable and cost-effective depollution method. Chitosan cross-linking employs either water-soluble polymers and agents like glutaraldehyde or copolymerization of hydrophilic monomers with a cross-linker. Chemical cross-linking of polymers has emerged as a promising approach to enhance the wet-strength properties of materials. The chitosan thus extracted, as powder or gel, was used to adsorb heavy metals (lead (Pb2+) and copper (Cu2+)) and dyes (methylene blue (MB) and crystal violet (CV)). Extensive analysis of the physicochemical properties of both the powder and hydrogel adsorbents was conducted using a range of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM), as well as 1H and 13C nuclear magnetic resonance (NMR). To gain a comprehensive understanding of the sorption process, the effect of contact time, pH, concentration, and temperature was investigated. The adsorption capacity of chitosan powder for Cu(II), Pb(II), methylene blue (MB), and crystal violet (CV) was subsequently determined as follows: 99, 75, 98, and 80%, respectively. In addition, the adsorption capacity of chitosan hydrogel for Cu(II), Pb(II), MB, and CV was as follows: 85, 95, 85, and 98%, respectively. The experimental data obtained were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. The isotherm study revealed that the adsorption equilibrium is well fitted to the Freundlich isotherm (R2 = 0.998), and the sorption capacity of both chitosan powder and hydrogel was found to be exceptionally high (approximately 98%) with the adsorbent favoring multilayer adsorption. Besides, Dubinin has given an indication that the sorption process was dominated by Van der Waals physical forces at all studied temperatures. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

Back to TopTop