Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection
Abstract
:1. Introduction
2. Hydrogels: Concept and Design
2.1. The Role of Hydrogels in SERS Technology
2.2. Hydrogel-Based Materials for SERS Applications
2.2.1. Natural Materials
2.2.2. Synthetic Materials
Material Category | Specific Material | Source/ Composition | Key Properties | Material Types | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
Natural Materials | Chitosan | Crustacean shells | Cationic, antimicrobial; biodegradable | Biopolymers | Selective binding; inherent antimicrobial activity | Limited stability at low pH; batch variability | [68,96] |
Cicada wings | Cicada exoskeleton | Hierarchical nanostructure; light trapping | Natural photonic template | Enhanced light absorption; ordered nanostructure | Fragility; limited scalability | [97,98,99] | |
Alginate | Brown seaweed | Anionic; ionic cross-linkable | Polysaccharides | Facile gelation; biocompatible; thickening stability | Poor mechanical strength; limited shelf-life | [100,101] | |
Mussel shell | Marine mollusk shell | Layered nacre structure; high mechanical strength | Inorganic template | Structural ordering; high mechanical durability | Brittle; complex processing | [102,103] | |
Cotton swabs | Cotton plant fibers | High porosity; hydrophilicity; cellulose-based | Cellulose-based template | Low cost; easy availability; high surface area | Poor structural stability; batch variability | [104,105] | |
Gelatin gel | Animal-derived collagen | Biodegradable; thermoresponsive; forms physical hydrogels | Biopolymers | Good film-forming ability; edible; biocompatible | Temperature sensitive; poor mechanical strength | [106,107,108] | |
Diatom frustule | Diatom microalgae | Hierarchical porous silica structure; optical properties | Silica-based template | High surface area; light manipulation capability | Fragility; batch variability | [109] | |
Canna generalis leaf | Plant leaf microstructure | Micro/nano ridges; super hydrophobicity | Natural template | Antireflective; self-cleaning surface | Limited mechanical robustness | [110] | |
Fish scale substrate | Collagen-hydroxyapatite composite | Hierarchical structure; transparency; biocompatible | Natural composite | Renewable source; high flexibility; biocompatibility | Processing complexity; low mechanical strength | [111,112] | |
Bacterial nanocellulose | Bacterial fermentation | Highly crystalline; fibrous network | Nanocellulose | High mechanical strength; thermal stability | Slow production; high cost | [113,114] | |
DNA-based | Synthetic or extracted | Sequence-specific recognition | Nucleic acids | High selectivity; programmable | Temperature sensitive; enzyme degradation | [9,115,116,117] | |
Silk Fibroin | Silkworm cocoons | β-sheet structures | Proteins | Stability across pH range; optical clarity | Complex extraction; high cost | [118,119] | |
Cellulose (Microcrystalline cellulose) | Plant fibers | Biodegradable, high mechanical strength | Polysaccharides | Biodegradable; high strength | Limited availability; expensive processing | [120,121,122,123] | |
Synthetic Materials | PVA | Polyvinyl alcohol | High transparency; tunable crosslinking | Synthetic polymers | Optical clarity; good mechanical properties | Limited selectivity | [124,125] |
PEG | Polyethylene glycol | Hydrophilic; low fouling | Polymers | Reduced non-specific binding | Limited functionality | [126,127] | |
GO-based | Graphene oxide | High surface area; conductive | Nanomaterials | Enhanced EM field; improved signal | Complex synthesis; batch variability | [128] | |
Pluronic-based | PEO-PPO-PEO copolymers | Thermoresponsive; amphiphilic | Block copolymers | Dynamic structure; capture-release | Limited temperature range | [129] | |
MIP | Templated polymers | Highly selective binding sites | Synthetic polymers | Antibody-like specificity; stability | Template removal challenges | [95,130,131] | |
Conductive Polymers | PANI, PPy, PTh | Electrically conductive; redox active | Conductive polymers | Dual optical-electrical detection | Environmental sensitivity | [132,133] | |
Zwitterion | pCBMA, pSBMA | Ultra-low fouling | Polymers | Reduced non-specific binding | Complex synthesis; higher cost | [134] | |
Hybrid Systems | Natural-Synthetic Composites | Chitosan, polyvinyl alcohol (PVA), alginate | Enhanced mechanical properties | Polysaccharides; Synthetic Polymers | Structural reinforcement with bio recognition | Optimizing component ratios | [135] |
IPNs (Interpenetrating Polymer Networks) | Gelatin-polyacrylamide | Interlaced networks | Hydrogels | Improved mechanical strength | Complex fabrication | [136,137] | |
Graphene Oxide-Polymer Hybrid Hydrogels | Graphene oxide, polymers (e.g., PVA) | High mechanical strength; conductivity; bioactivity | Nanomaterials; synthetic polymers | High mechanical strength; flexibility | Processing complexity; limited scalability | [138] | |
Ti3C2/Sodium Alginate Hybrid Hydrogel | Ti3C2 MXene, Sodium Alginate | Highly conductive; biocompatible, electrochemical sensing | 2D materials; natural polymer | High conductivity; excellent biocompatibility | Fabrication complexity; material degradation | [139] | |
Serotonin-Modified Gelatin and Oxidized Hyaluronic Acid Hydrogel | Serotonin-modified Gelatin, Oxidized Hyaluronic Acid | Antibacterial, self-healing; tissue-like behavior | Proteins; natural polymers | High bioactivity; controlled release | Complexity in functionalization; high cost | [140] | |
Polyacrylamide-Starch Hybrid Hydrogel | Polyacrylamide, Starch, silver nanoparticles (AgNPs) | Eco-friendly; sensitive detection | Synthetic polymer; biopolymer; nanoparticles | High sensitivity; low cost | Limited stability at higher temperatures | [141] |
2.2.3. Hybrid Hydrogel Systems
2.3. Structure-Function Relationship in Hydrogels for Enhanced SERS Performance
2.3.1. Crosslinking Density
2.3.2. Porosity
2.3.3. Surface Charge
2.3.4. Hydrophilicity
2.3.5. Hydrophobicity
2.3.6. Nanoparticle Distribution
2.3.7. Network Relaxation
2.3.8. Pore Connectivity
3. Advantages of Hydrogel-Integrated SERS Platforms in Food Safety Detection
4. Applications in Food Safety Detection
4.1. Food Adulteration and Fraud Detection
Analyte | Hydrogel-Based Substrate | Type of Material | Fabrication Method | Plasmonic Metal | LOD | Relative Standard Deviation (RSD) | Real Sample | Reference |
---|---|---|---|---|---|---|---|---|
Crystal violet | Cicada wing | Natural | Magnetron sputtering | Cu@Ag core–shell NP | 10−10 M | <15% | - | [229] |
Melamine and thiamethoxan | Chitosan film | Natural | Direct Incorporation | AuNPs | 1.5 mg.kg−1 (melamine) 0.001 mg.kg−1 (thiamethoxan) | 5.66% | Milk and apple surfaces, respectively | [230] |
6-benzylaminopurine auxin and 4-amino-5,6-dimethylthieno (2,3-d) pyrimidin-2(1H)-one hydrochloride additive | Cicada wing | Natural | Magnetron sputtering | Au@Ag nanodome-cones array (Au@Ag NDCA) | 38.8 μg/L (6-benzylaminopurine auxin) 18.0 μg/L (4-amino-5,6-dimethylthieno (2,3-d) pyrimidin-2(1H)-one hydrochloride additive | 1.5–6.5% and 3.5–7.9% respectively | Sprout and beverage, respectively | [99] |
Glucose monitoring | 3D Hydrogel-SERS chip | Natural | Encapsulated probe molecules in nanoscale gaps | Gold nanoflower-like nanotags | 0.25 mM (glucose) | 2.58% | Sweet | [231] |
Melamine | Ag nanoparticles in agar gel hydrogel | Hybrid | In situ reduction method | AgNPs | 10−15 M | 7.58% | Camel milk powder | [198] |
Rhodamine and crystal violet | Graphene oxide hydrogel | Synthetic | Hydrothermal self-assembled of GO nanosheets into GO hydrogel | AuNPs | 10−8 M | - | [232] | |
Phenolic residues | Polyacrylamide-Starch Hybrid Hydrogel | Hybrid | Silver nanoparticles encapsulated in hybrid hydrogel | AgNPs | 1 × 10−8 M | - | Water | [141] |
Streptomycin | DNAzyme crosslinked DNA hydrogel | Natural | Controlled evaporation self-assembly of AuNRs + Thermal annealing DNA hybridization | Au nanorods (AuNRs) | 4.85 × 10−3 nM | 0.16–2.55% and 2.11–3.60% respectively | Honey, milk | [233] |
Sudan Red (SR) III | Poly(vinyl alcohol) (PVA) hydrogel | Synthetic | Conformal hydrogel SERS substrate | AgNPs | 1.6 ng/4 cm2 | - | Fruit peel (kumquat) | [234] |
Cyanine5 (Cy5) acid dye | Metal film over polyimide nanopillars (MFPNs) with hydrogel encapsulation | Synthetic | Maskless plasma etching and hydrogel coating | Silver (200 nm) + Gold (5 nm) | 100 pM | 10.0% | Aqueous samples | [235] |
Rhodamine 6G, Thiram, 2-naphthalenethiol | Bacterial nanocellulose (BNC) with in situ AgNPs | Natural | Silver mirror reaction and volume shrinkage treatment | AgNPs | 1.6 × 10−8 M (R6G), 3.8 × 10−9 M (Thiram) | 10.8% | Organic pollutants in solution | [236] |
E. coli | Chitosan hydrogel | Natural | Hydrogel crosslinked with glutaraldehyde combined with aptamer-modified gold nanostars | AuNPs | 3.46 CFU/mL | 14.0–15.2% and 13.2–22.2% respectively | Milk, juice | [237] |
Kanamycin (antibiotic) | DNA hydrogel | Synthetic | Ligation-rolling circle amplification | Au@Au core–shell NP | 2.3 fM | 1.6–7.9% | Milk, honey | [238] |
4.2. Pesticide Detection
4.3. Detection of Food Toxins and Illegal Additives
5. Challenges and Future Prospects
- (i)
- Signal reproducibility presents a particularly persistent challenge when moving from controlled research environments to real-world food matrices with heterogeneous compositions of proteins, lipids, carbohydrates, and various additives. This complex chemical landscape can dramatically alter detection reliability, necessitating comprehensive validation under authentic food processing conditions rather than simplified model systems [227]. Future developments should focus on standardizing testing protocols that reflect real-world food matrices and establishing benchmark standards for signal consistency across different sample conditions.
- (ii)
- Manufacturing scalability represents another significant hurdle limiting commercial viability. Laboratory-scale fabrication typically produces small batches with variations in nanoparticle distribution patterns, pore network connectivity, and crosslinking density gradients, leading to inconsistent SERS enhancement factors and compromised reliability across production batches [195]. Addressing this requires developing continuous manufacturing protocols that automate hydrogel synthesis while maintaining precise control over physicochemical properties. Advanced quality control innovations—including in-line spectroscopic monitoring and real-time assessment—could track critical attributes such as viscosity profiles, particle size distributions, and plasmonic activity during fabrication. Furthermore, establishing standardized characterization frameworks with defined acceptance criteria for enhancement factors, signal reproducibility, and environmental stability would provide benchmarks for both batch consistency and cross-manufacturer comparison.
- (iii)
- Long-term stability of plasmonic nanoparticles within hydrogel matrices presents additional barriers. Environmental variables in food systems—including temperature fluctuations, pH shifts, and oxidizing agents—can degrade nanoparticle performance, particularly with easily oxidized silver nanoparticles. Future hydrogel designs could incorporate more sophisticated nanoparticle architectures such as core–shell configurations, protective polymer coatings, or noble metal alloy structures that balance optimal plasmonic enhancement with improved environmental durability. Additionally, integrating stabilizing matrix additives—including antioxidants or metal-chelating agents—could create protective microenvironments around embedded nanoparticles, extending their functional lifespan. Furthermore, strategically designed multilayered hydrogel architectures with robust outer protective layers could shield SERS-active internal regions while permitting selective analyte permeation.
- (iv)
- Translation to accessible detection systems represents another crucial direction for advancement. While SERS analysis traditionally relies on sophisticated, laboratory-based Raman spectrometers, recent developments in miniaturized, smartphone-compatible Raman devices offer promising alternatives for field deployment. Combined with optimized hydrogel substrates, these could support rapid, on-site testing with minimal expertise requirements. Moreover, automated data interpretation algorithms incorporating machine learning approaches could further streamline analysis workflows, enabling real-time decision making at critical control points throughout food production and distribution networks.
- (v)
- Molecular selectivity enhancement remains a priority challenge. Current platforms rely primarily on size exclusion and non-specific charge-based interactions, which may prove insufficient for distinguishing structurally similar analytes in multi-contaminant scenarios. Next-generation designs could incorporate multiple biomimetic recognition elements arranged within spatially segregated detection zones, enabling simultaneous, multiplexed detection of various contaminant classes. Additionally, the integration of molecular recognition elements such as aptamers, antibodies, or molecularly imprinted polymers could significantly improve specificity for target analytes even in complex food matrices.
- (vi)
- Regulatory considerations introduce additional complexity for commercial adoption pathways. Hydrogels incorporating nanomaterials must comply with evolving global food safety regulations, which necessitate thorough evaluation of potential nanoparticle migration, toxicological profiles, and environmental impacts throughout the product lifecycle. Ensuring compliance with international regulatory standards, conducting comprehensive biocompatibility assessments, and examining potential ecological consequences all represent necessary steps toward broader acceptance of these advanced sensing technologies within regulatory frameworks. Key regulatory agencies such as the U.S. Food and Drug Administration (FDA) [260], the European Food Safety Authority (EFSA) [261], and the China National Center for Food Safety Risk Assessment (CFSA) [262] have begun to address the safety of nanomaterials in food applications. However, comprehensive and harmonized international standards specific to hydrogel-nanomaterial hybrids for food detection are still evolving. Development of standardized testing protocols specifically designed for nanomaterial-containing hydrogels would greatly facilitate regulatory approval processes.
- (vii)
- Advanced manufacturing integration shows particular promise for future development. The convergence of hydrogel chemistry with advanced manufacturing techniques—including 3D and 4D printing—enables unprecedented control over nanoparticle organization and hydrogel properties. Programmable hydrogels capable of visible structural or colorimetric changes upon specific analyte detection could provide intuitive visual indicators. Integrating wireless communication and Internet of Things (IoT) capabilities may enable continuous monitoring throughout global supply chains. Multimodal sensing platforms that synergistically combine SERS with complementary techniques like fluorescence spectroscopy or electrochemical methods could enhance detection accuracy through orthogonal verification and reduce false positive or false negative results.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pearson, A.J.; Mukherjee, K.; Fattori, V.; Lipp, M. Opportunities and challenges for global food safety in advancing circular policies and practices in agrifood systems. npj Sci. Food 2024, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO global strategy for food safety Report by the Director-General. Nutr. Food Saf. 2021, EB150/25, 1–7. [Google Scholar]
- Gao, R.; Liu, X.; Xiong, Z.; Wang, G.; Ai, L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res. Int. 2024, 193, 114767. [Google Scholar] [CrossRef] [PubMed]
- Fakhlaei, R.; Babadi, A.A.; Ariffin, N.M.; Xiaobo, Z. Development of FTIR-ATR spectra and PLS regression combination model for discrimination of pure and adulterated acacia honey. Food Control 2025, 169, 110996. [Google Scholar] [CrossRef]
- Gao, S.; Yang, W.; Zheng, X.; Wang, T.; Zhang, D.; Zou, X. Advances of nanobody-based immunosensors for detecting food contaminants. Trends Food Sci. Technol. 2025, 156, 104871. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, M.; Barimah, A.O.; Chen, Q.; Li, H.; Shi, J.; El-Seedi, H.R.; Zou, X. Label-free surface enhanced Raman scattering spectroscopy for discrimination and detection of dominant apple spoilage fungus. Int. J. Food Microbiol. 2021, 338, 108990. [Google Scholar] [CrossRef]
- Huang, A.J.; Dong, X.X.; Tan, S.; Chen, K.; Zhang, M.; Li, B.; Deng, H.; He, F.; Ni, H.; Wang, H.; et al. A covalent organic framework-derived pretreatment for pesticides in vegetables and fruits. Front. Sustain. Food Syst. 2024, 8, 1472174. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Hassan, M.M.; Zhu, J.; Wang, A.; Ouyang, Q.; Zareef, M.; Chen, Q. Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four Pseudomonas. Int. J. Food Microbiol. 2019, 304, 58–67. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Liu, P.; Zhao, K.; Ye, S.; Liang, G. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid. Food Chem. 2021, 357, 129753. [Google Scholar] [CrossRef]
- Adade, S.Y.S.S.; Lin, H.; Haruna, S.A.; Johnson, N.A.N.; Fuyun, W.; Chen, Z.; Zhu, A.; Ekumah, J.N.; Agyekum, A.A.; Li, H.; et al. Quantitative SERS detection of aflatoxin B1 in edible crude palm oil using QuEChERS combined with chemometrics. J. Food Compos. Anal. 2024, 125, 105841. [Google Scholar] [CrossRef]
- Shan, Y.; Lu, Y.N.; Yi, W.; Wang, B.; Li, J.; Guo, J.; Li, W.; Yin, Y.; Wang, S.; Liu, F. On-site food safety detection: Opportunities, advancements, and prospects. Biosens. Bioelectron. X 2023, 14, 100350. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Calogero, A.; Montesano, D.; Naviglio, D. Relationships between food and diseases: What to know to ensure food safety. Food Res. Int. 2020, 137, 109414. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.K.; Cai, W.D.; Wang, C.; Yu, Y.B.; Zhang, H.N.; Yang, Y.; Wang, W.H. Macromolecular behavior, structural characteristics and rheological properties of alkali-neutralization curdlan at different concentrations. Food Hydrocoll. 2020, 105, 105785. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Wang, M.; Zuo, M.; El-Seedi, H.R.; Chen, Q.; Shi, J.; Zou, X. Rapid enrichment detection of patulin and alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. LWT 2021, 152, 112333. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.A.; Chen, Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Jayan, H.; Yin, L.; Xue, S.; El-Seedi, H.R.; Zou, X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem. 2024, 434, 137469. [Google Scholar] [CrossRef]
- Jiang, L.; Mehedi Hassan, M.; Jiao, T.; Li, H.; Chen, Q. Rapid detection of chlorpyrifos residue in rice using surface-enhanced Raman scattering coupled with chemometric algorithm. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2021, 261, 119996. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Haruna, S.A.; Zareef, M.; Chen, Q.; Ding, Z.; Yan, Y. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Food Chem. 2023, 428, 136798. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Zhang, X.; Zhang, W.; Yu, S. Activated carbon@silver nanoparticles conjugates as SERS substrate for capturing malathion analyte molecules for SERS detection. J. Food Saf. 2023, 43, e13072. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Xu, Y.; Li, H.; Chen, Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem. 2021, 344, 128652. [Google Scholar] [CrossRef]
- Hassan, M.M.; Li, H.; Ahmad, W.; Zareef, M.; Wang, J.; Xie, S.; Wang, P.; Ouyang, Q.; Wang, S.; Chen, Q. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT 2019, 105, 290–297. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Ebdali, H.; Soltani, M.; Abdolahi-Fard, P.; Heydari, M.; Assadpour, E.; Azizi-Lalabadi, M.; Zhang, F.; Jafari, S.M. Nanomaterial-based sensors for the detection of pathogens and microbial toxins in the food industry; a review on recent progress. Coord. Chem. Rev. 2024, 500, 215545. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega 2022, 7, 36918–36928. [Google Scholar] [CrossRef] [PubMed]
- Shruti, A.; Bage, N.; Kar, P. Nanomaterials based sensors for analysis of food safety. Food Chem. 2024, 433, 137284. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Ma, H.; Zhou, C.; Yagoub, A.E.G.A.; Hu, J.; Yang, X. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides. J. Sci. Food Agric. 2016, 96, 4861–4873. [Google Scholar] [CrossRef]
- Liu, E.; Terumasa, T. Effects of Applying Recycled Urban Green Waste Compost Made from Pruning Materials to Soil on the Growth of Plants. J. Soil Sci. Plant Nutr. 2022, 22, 1088–1097. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang, D.; Sun, Y.; Yang, Z.; Holmes, M.; et al. Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, R.; Rawat, H.; Kumar, V.; Jagtap, C.; Jain, A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. Food Humanit. 2024, 2, 100202. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.; Zheng, J.; He, L. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC Trends Anal. Chem. 2017, 90, 1–13. [Google Scholar] [CrossRef]
- Goel, R.; Chakraborty, S.; Awasthi, V.; Bhardwaj, V.; Kumar Dubey, S. Exploring the various aspects of Surface enhanced Raman spectroscopy (SERS) with focus on the recent progress: SERS-active substrate, SERS-instrumentation, SERS-application. Sensors Actuators A Phys. 2024, 376, 115555. [Google Scholar] [CrossRef]
- Men, D.; Liu, G.; Xing, C.; Zhang, H.; Xiang, J.; Sun, Y.; Hang, L. Dynamically Tunable Plasmonic Band for Reversible Colorimetric Sensors and Surface-Enhanced Raman Scattering Effect with Good Sensitivity and Stability. ACS Appl. Mater. Interfaces 2020, 12, 7494–7503. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Qi, Y.; You, C. Recent Studies and Applications of Hydrogel-Based Biosensors in Food Safety. Foods 2023, 12, 4405. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dumont, E.; Slipets, R.; Thersleff, T.; Boisen, A.; Sotiriou, G.A. Democratizing robust SERS nano-sensors for food safety diagnostics. Chem. Eng. J. 2023, 470, 144023. [Google Scholar] [CrossRef]
- Bernat, A.; Samiwala, M.; Albo, J.; Jiang, X.; Rao, Q. Challenges in SERS-based pesticide detection and plausible solutions. J. Agric. Food Chem. 2019, 67, 12341–12347. [Google Scholar] [CrossRef]
- Cao, J.; Hu, S.; Tang, W.; Wang, Y.; Yang, Y.; Wang, F.; Guo, X.; Ying, Y.; Liu, X.; Wen, Y.; et al. Reactive Hydrogel Patch for SERS Detection of Environmental Formaldehyde. ACS Sensors 2023, 8, 1929–1938. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.H.; Agyekum, A.A.; Annavaram, V.; Chen, Q. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chem. 2020, 315, 126231. [Google Scholar] [CrossRef]
- Li, Y.; Yao, L.; Zhang, L.; Zhang, Y.; Zheng, T.; Liu, L.; Zhang, L. Enhanced physicochemical stabilities of cyanidin-3-O-glucoside via combination with silk fibroin peptide. Food Chem. 2021, 355, 129479. [Google Scholar] [CrossRef]
- Li, Y.; Meng, S.; Dong, N.; Wei, Y.; Wang, Y.; Li, X.; Liu, D.; You, T. Space-Confined Electrochemical Aptasensing with Conductive Hydrogels for Enhanced Applicability to Aflatoxin B1 Detection. J. Agric. Food Chem. 2023, 71, 14806–14813. [Google Scholar] [CrossRef]
- Wei, B.; Zou, J.; Pu, Q.; Shi, K.; Xu, B.; Ma, Y. One-step preparation of hydrogel based on different molecular weights of chitosan with citric acid. J. Sci. Food Agric. 2022, 102, 3826–3834. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, D.; Cao, X.; Gu, H.; Deng, W. Self-Assembled Microgels Arrays for Electrostatic Concentration and Surface-Enhanced Raman Spectroscopy Detection of Charged Pesticides in Seawater. Anal. Chem. 2019, 91, 11192–11199. [Google Scholar] [CrossRef] [PubMed]
- Virk, M.S.; Virk, M.A.; Liang, Q.; Sun, Y.; Zhong, M.; Tufail, T.; Rashid, A.; Qayum, A.; Rehman, A.; Ekumah, J.N.; et al. Enhancing storage and gastroprotective viability of Lactiplantibacillus plantarum encapsulated by sodium caseinate-inulin-soy protein isolates composites carried within carboxymethyl cellulose hydrogel. Food Res. Int. 2024, 187, 114432. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nakagawa, S.; Tsuji, Y.; Watanabe, N.; Shibayama, M. Polymer gel with a flexible and highly ordered three-dimensional network synthesized via bond percolation. Sci. Adv. 2019, 5, eaax8647. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Y.; Li, C.; Chen, X.; Lin, L. Antibacterial efficacy of Satureja montana L. essential oil encapsulated in methyl-β-cyclodextrin/soy soluble polysaccharide hydrogel and its assessment as meat preservative. LWT 2021, 152, 112427. [Google Scholar] [CrossRef]
- Odendaal, J.H.; Bhatia, N.; Wilson, R.; Potgieter, J. Exploring non-destructive mechanical characterisation of hydrogels using hyperspectral imaging and machine vision. In Proceedings of the 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 16–18 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Zhu, X.; Liu, Z.; Huang, J.; Jiang, X.; Fu, F.; Lin, Z.; Dong, Y. Hybridizing Silver Nanoparticles in Hydrogel for High-Performance Flexible SERS Chips. ACS Appl. Mater. Interfaces 2022, 14, 26216–26224. [Google Scholar] [CrossRef]
- Fu, X.; Su, B.; Xu, J.; Pan, C.; Huang, S.; Fu, F.; Lin, Z.; Dong, Y. Rapid detection of maleic hydrazide based on the hydrogel SERS platform. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2025, 325, 125080. [Google Scholar] [CrossRef]
- Cong, L.; Wang, X.; Wang, J.; Liu, W.; Xu, W.; Zhang, S.; Xu, S. Three-Dimensional SERS-Active Hydrogel Microbeads Enable Highly Sensitive Homogeneous Phase Detection of Alkaline Phosphatase in Biosystems. ACS Appl. Mater. Interfaces 2025, 17, 5933–5941. [Google Scholar] [CrossRef]
- Tan, E.X.; Zhong, Q.Z.; Ting Chen, J.R.; Leong, Y.X.; Leon, G.K.; Tran, C.T.; Phang, I.Y.; Ling, X.Y. Surface-Enhanced Raman Scattering-Based Multimodal Techniques: Advances and Perspectives. ACS Nano 2024, 18, 32315–32334. [Google Scholar] [CrossRef]
- Cui, H.Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 2016, 99, 6097–6104. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Nicolas, J.; Mura, S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. Adv. Funct. Mater. 2024, 35, 2409670. [Google Scholar] [CrossRef]
- Dehchani, A.J.; Jafari, A.; Shahi, F. Nanogels in Biomedical Engineering: Revolutionizing Drug Delivery, Tissue Engineering, and Bioimaging. Polym. Adv. Technol. 2024, 35, e6595. [Google Scholar] [CrossRef]
- Chaurasia, R.; Kaur, B.P.; Pandian, N.; Pahari, S.; Das, S.; Bhattacharya, U.; Majood, M.; Mukherjee, M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024, 25, 7543–7562. [Google Scholar] [CrossRef]
- Surendhiran, D.; Cui, H.; Lin, L. Encapsulation of Phlorotannin in Alginate/PEO blended nanofibers to preserve chicken meat from Salmonella contaminations. Food Packag. Shelf Life 2019, 21, 100346. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Cen, S.; Liang, N.; Shi, J.; Huang, X.; Zou, X. Preparation of Pangasius hypophthalmus protein-stabilized pickering emulsions and 3D printing application. J. Food Eng. 2023, 341, 111333. [Google Scholar] [CrossRef]
- Samchenko, Y.; Terpilowski, K.; Samchenko, K.; Golovkova, L.; Oranska, O.; Goncharuk, O. Calcium Alginate/Laponite Nanocomposite Hydrogels: Synthesis, Swelling, and Sorption Properties. Coatings 2024, 14, 1519. [Google Scholar] [CrossRef]
- Gomez-Florit, M.; Pardo, A.; Domingues, R.M.A.; Graça, A.L.; Babo, P.S.; Reis, R.L.; Gomes, M.E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020, 25, 5858. [Google Scholar] [CrossRef]
- Mu, R.; Hong, X.; Ni, Y.; Li, Y.; Pang, J.; Wang, Q.; Xiao, J.; Zheng, Y. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci. Technol. 2019, 93, 136–144. [Google Scholar] [CrossRef]
- Jiao, H.; Shi, Y.; Sun, J.; Lu, X.; Zhang, H.; Li, Y.; Fu, Y.; Guo, J.; Wang, Q.; Liu, H.; et al. Sawdust-derived cellulose nanofibrils with high biosafety for potential bioprinting. Ind. Crops Prod. 2024, 209, 118025. [Google Scholar] [CrossRef]
- Padmanabhan, S.K.; Lionetto, F.; Nisi, R.; Stoppa, M.; Licciulli, A. Sustainable Production of Stiff and Crystalline Bacterial Cellulose from Orange Peel Extract. Sustainability 2022, 14, 2247. [Google Scholar] [CrossRef]
- Cavka, A.; Guo, X.; Tang, S.J.; Winestrand, S.; Jönsson, L.J.; Hong, F. Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol. Biofuels 2013, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqtari, Q.A.; Al-Gheethi, A.A.S.; Ghaleb, A.D.S.; Mahdi, A.A.; Al-Ansi, W.; Noman, A.E.; Al-Adeeb, A.; Odjo, A.K.O.; Du, Y.; Wei, M.; et al. Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocoll. 2022, 129, 107624. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Riaz, T.; Yasmin, I.; Leghari, A.A.; Amin, S.; Bilal, M.; Qi, X. Chitosan-Based Materials as Edible Coating of Cheese: A Review. Starch/Staerke 2021, 73, 2100088. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Y.; Cui, H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life 2019, 19, 86–93. [Google Scholar] [CrossRef]
- Cui, H.; Bai, M.; Rashed, M.M.A.; Lin, L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int. J. Food Microbiol. 2018, 266, 69–78. [Google Scholar] [CrossRef]
- Wu, S.; Wu, S.; Zhang, X.; Feng, T.; Wu, L. Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety. Biosensors 2023, 13, 93. [Google Scholar] [CrossRef]
- Strozyk, M.S.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. Composite Polymer Colloids for SERS-Based Applications. Chem. Rec. 2018, 18, 807–818. [Google Scholar] [CrossRef]
- Hashim, S.B.H.; Tahir, H.E.; Mahdi, A.A.; Al-Maqtari, Q.A.; Shishir, M.R.I.; Mahunu, G.K.; Akpabli-Tsigbe, N.D.K.; Zhang, J.; Xiaobo, Z.; Jiyong, S. Enhancing the functionality of the Origanum compactum essential oil capsules by combining sugarcane wax with various biopolymers. J. Food Meas. Charact. 2024, 19, 833–849. [Google Scholar] [CrossRef]
- Chen, X.; Wu, T.; Bu, Y.; Yan, H.; Lin, Q. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. Int. J. Mol. Sci. 2024, 25, 7810. [Google Scholar] [CrossRef]
- Pellá, M.C.G.; Lima-Tenório, M.K.; Tenório-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr. Polym. 2018, 196, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Press, T.U. Team fabricates chitin hydrogel via chemical transformation of chitosan. Nano Res. 2023, 17, 771–777. [Google Scholar] [CrossRef]
- Boominathan, T.; Sivaramakrishna, A. Recent Advances in the Synthesis, Properties, and Applications of Modified Chitosan Derivatives: Challenges and Opportunities; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 379, ISBN 0123456789. [Google Scholar]
- Xie, Y.; Gao, P.; He, F.; Zhang, C. Application of Alginate-Based Hydrogels in Hemostasis. Gels 2022, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Fang, Z.; Lee, H.J. Exploring Applications and Preparation Techniques for Cellulose Hydrogels: A Comprehensive Review. Gels 2024, 10, 365. [Google Scholar] [CrossRef]
- Guan, Q.F.; Yang, H.B.; Han, Z.M.; Ling, Z.C.; Yin, C.H.; Yang, K.P.; Zhao, Y.X.; Yu, S.H. Sustainable Cellulose-Nanofiber-Based Hydrogels. ACS Nano 2021, 15, 7889–7898. [Google Scholar] [CrossRef]
- Feng, L.; Wu, J.; Cai, L.; Li, M.; Dai, Z.; Li, D.; Liu, C.; Zhang, M. Effects of different hydrocolloids on the water migration, rheological and 3D printing characteristics of β-carotene loaded yam starch-based hydrogel. Food Chem. 2022, 393, 133422. [Google Scholar] [CrossRef]
- Fang, W.; Wang, X.; Han, D.; Chen, X. Review of Material Parameter Calibration Method. Agriculture 2022, 12, 706. [Google Scholar] [CrossRef]
- Qin, C.; Guo, W.; Liu, Y.; Liu, Z.; Qiu, J.; Peng, J. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles–Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Firoozi, M.; Entezam, M.; Ejeian, F.; Masaeli, E. A Model of Mechanotransduction in Polyvinyl Alcohol-Based Composite Hydrogels for Regulating Musculoskeletal Differentiation. Macromol. Mater. Eng. 2023, 308, 2300035. [Google Scholar] [CrossRef]
- Zakrzewska, A.; Zargarian, S.S.; Rinoldi, C.; Gradys, A.; Jarząbek, D.; Zanoni, M.; Gualandi, C.; Lanzi, M.; Pierini, F. Electrospun Poly(vinyl alcohol)-Based Conductive Semi-interpenetrating Polymer Network Fibrous Hydrogel: A Toolbox for Optimal Cross-Linking. ACS Mater. Au 2023, 3, 464–482. [Google Scholar] [CrossRef]
- Huang, Z.; Zhai, X.; Yin, L.; Shi, J.; Zou, X.; Li, Z.; Huang, X.; Ma, X.; Povey, M. A smart bilayer film containing zein/gelatin/carvacrol and polyvinyl alcohol/chitosan/anthocyanin for Lateolabrax japonicus preservation and freshness monitoring. J. Food Meas. Charact. 2023, 17, 6470–6483. [Google Scholar] [CrossRef]
- Schrof, S.; Varga, P.; Hesse, B.; Schöne, M.; Schütz, R.; Masic, A.; Raum, K. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Acta Biomater. 2016, 44, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Hume, S.L.; Hoyt, S.M.; Walker, J.S.; Sridhar, B.V.; Ashley, J.F.; Bowman, C.N.; Bryant, S.J. Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels. Acta Biomater. 2012, 8, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Guan, Y.; Huang, X.; Arslan, M.; Shi, J.; Li, Z.; Gong, Y.; Holmes, M.; Zou, X. High- sensitivity bilayer nanofiber film based on polyvinyl alcohol/sodium alginate/polyvinylidene fluoride for pork spoilage visual monitoring and preservation. Food Chem. 2022, 394, 133439. [Google Scholar] [CrossRef]
- Witzdam, L.; Meurer, Y.L.; Garay-Sarmiento, M.; Vorobii, M.; Söder, D.; Quandt, J.; Haraszti, T.; Rodriguez-Emmenegger, C. Brush-Like Interface on Surface-Attached Hydrogels Repels Proteins and Bacteria. Macromol. Biosci. 2022, 22, e2200025. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Sabater i Serra, R.; Molina-Mateo, J.; Torregrosa-Cabanilles, C.; Andrio-Balado, A.; Dueñas, J.M.M.; Serrano-Aroca, Á. Bio-Nanocomposite hydrogel based on zinc alginate/graphene oxide: Morphology, structural conformation, thermal behavior/degradation, and dielectric properties. Polymers 2020, 12, 702. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Zou, X.; Li, Y.; Haroon Elrasheid, T.; Huang, X.; Li, Z.; Zhai, X.; Hu, X. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem. 2017, 237, 423–430. [Google Scholar] [CrossRef]
- Han, E.; Pan, Y.; Li, L.; Cai, J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem. 2023, 426, 136608. [Google Scholar] [CrossRef]
- Önal Acet, B.; İnanan, T.; Salieva, K.; Borkoev, B.; Odabaşı, M.; Acet, Ö. Molecular imprinted polymers: Important advances in biochemistry, biomedical and biotechnology. Polym. Bull. 2024, 81, 10439–10459. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Tang, Q.; Guo, Y.; Zhang, Z.; Zhang, W.; Zou, X.; Sun, Z. Molecularly imprinted electrochemical sensor for ethyl carbamate detection in Baijiu based on “on-off” nanozyme-catalyzing process. Food Chem. 2024, 453, 139626. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Gao, L.; Wang, J.; Pan, J.; Yan, Y.; Zhang, X. A precise and efficient detection of Beta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem. 2017, 217, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, X.; Yu, F.; Quan, Y. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detection of acrylamide in potato chips. Food Chem. 2020, 317, 126431. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M.; Rasib, S.Z.M. Functional properties of chitosan built nanohydrogel with enhanced glucose-sensitivity. Int. J. Biol. Macromol. 2016, 83, 376–384. [Google Scholar] [CrossRef]
- Yan, X.Y.; Wang, Y.H.; Shi, G.C.; Wang, M.L.; Zhang, J.Z.; Sun, X.; Xu, H.J. Flower-like Cu nanoislands decorated onto the cicada wing as SERS substrates for the rapid detection of crystal violet. Optik 2018, 172, 812–821. [Google Scholar] [CrossRef]
- Nair, S.; Gomez-Cruz, J.; Ascanio, G.; Docoslis, A.; Sabat, R.G.; Escobedo, C. Cicada wing inspired template-stripped sers active 3d metallic nanostructures for the detection of toxic substances. Sensors 2021, 21, 1699. [Google Scholar] [CrossRef]
- Lai, H.; Li, G.; Zhang, Z. Au@Ag nanodome-cones array substrate for efficient residue analysis of food samples by surface-enhanced Raman scattering. Anal. Chim. Acta 2023, 1259, 341159. [Google Scholar] [CrossRef]
- Shahriari-Khalaji, M.; Hong, S.; Hu, G.; Ji, Y.; Hong, F.F. Bacterial nanocellulose-enhanced alginate double-network hydrogels cross-linked with six metal cations for antibacterial wound dressing. Polymers 2020, 12, 2683. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased materials for active food packaging: A review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Yuan, K.; Zheng, J.; Yang, D.; Jurado Sánchez, B.; Liu, X.; Guo, X.; Liu, C.; Dina, N.E.; Jian, J.; Bao, Z.; et al. Self-Assembly of Au@Ag Nanoparticles on Mussel Shell to Form Large-Scale 3D Supercrystals as Natural SERS Substrates for the Detection of Pathogenic Bacteria. ACS Omega 2018, 3, 2855–2864. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, Y.; Xu, Q.; He, Y.; Tian, S.; Zhu, S.; Zhu, Y.; Dong, X. Mussel oligopeptides ameliorate cognition deficit and attenuate brain senescence in d-galactose-induced aging mice. Food Chem. Toxicol. 2013, 59, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Memon, M.S.; Shen, B.; Guo, J.; Du, Z.; Tang, Z.; Guo, X.; Memon, H. Identification of weeds in cotton fields at various growth stages using color feature techniques. Ital. J. Agron. 2024, 19, 100021. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, K.; Xu, J.; Xu, J.; Ding, L.; Wu, L.; Liu, X.; Du, Z.; Jiang, S. Cotton swabs wrapped with three-dimensional silver nanoflowers as SERS substrates for the determination of food colorant carmine on irregular surfaces. Microchim. Acta 2024, 191, 222. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, B.; Wang, W.; Dong, J.; Qu, J.; Zhang, Z. Controlled shrinkage surface driven by solvent evaporation for highly sensitive residual fungicides detection. Appl. Surf. Sci. 2024, 648, 158982. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Shi, J.; Zou, X.; Zhai, X.; Huang, X.; Li, Z.; Holmes, M.; Daglia, M.; Xiao, J. Physical properties and bioactivities of chitosan/gelatin-based films loaded with tannic acid and its application on the preservation of fresh-cut apples. LWT 2021, 144, 111223. [Google Scholar] [CrossRef]
- Dai, J.; Bai, M.; Li, C.; Cui, H.; Lin, L. The improvement of sodium dodecyl sulfate on the electrospinning of gelatin O/W emulsions for production of core-shell nanofibers. Food Hydrocoll. 2023, 145, 109092. [Google Scholar] [CrossRef]
- Chamuah, N.; Chetia, L.; Zahan, N.; Dutta, S.; Ahmed, G.A.; Nath, P. A naturally occurring diatom frustule as a SERS substrate for the detection and quantification of chemicals. J. Phys. D Appl. Phys. 2017, 50, 175103. [Google Scholar] [CrossRef]
- Sharma, V.; Balaji, R.; Walia, R.; Krishnan, V. Au Nanoparticle Aggregates Assembled on 3D Mirror-like Configuration Using Canna generalis Leaves for SERS Applications. Colloids Interface Sci. Commun. 2017, 18, 9–12. [Google Scholar] [CrossRef]
- Kumar, J.; Jinachandran, A.; Ponnusamy, V.K.; Huang, G.G.; Suresh, A.K.; Noothalapati, H.; Panneerselvam, R. Ag nanoparticle-embedded fish scales as SERS substrates for sensitive detection of forever chemical in real samples. Appl. Surf. Sci. 2024, 674, 160961. [Google Scholar] [CrossRef]
- Anandkumar, A.; Li, J.; Prabakaran, K.; Xi Jia, Z.; Leng, Z.; Nagarajan, R.; Du, D. Accumulation of toxic elements in an invasive crayfish species (Procambarus clarkii) and its health risk assessment to humans. J. Food Compos. Anal. 2020, 88, 103449. [Google Scholar] [CrossRef]
- Bai, L.; Liu, L.; Esquivel, M.; Tardy, B.L.; Huan, S.; Niu, X.; Liu, S.; Yang, G.; Fan, Y.; Rojas, O.J. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem. Rev. 2022, 122, 11604–11674. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yu, X.; Yagoub, A.E.G.A.; Wahia, H.; Zhou, C. Application and challenge of nanocellulose in the food industry. Food Biosci. 2021, 43, 101285. [Google Scholar] [CrossRef]
- Hong, K.L.; Sooter, L.J. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. Biomed Res. Int. 2015, 2015, 419318. [Google Scholar] [CrossRef] [PubMed]
- Huo, B.; Hu, Y.; Gao, Z.; Li, G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 2021, 222, 121565. [Google Scholar] [CrossRef]
- Mu, W.Y.; Huang, P.Z.; Chen, Q.Y.; Wang, W. Determination of melamine and melamine–Cu(II) complexes in milk using a DNA-Ag hydrocolloid as the sensor. Food Chem. 2020, 311, 125889. [Google Scholar] [CrossRef]
- Lin, L.; Luo, C.; Li, C.; Abdel-Samie, M.A.; Cui, H. Eugenol/silk fibroin nanoparticles embedded Lycium barbarum polysaccharide nanofibers for active food packaging. Food Packag. Shelf Life 2022, 32, 100841. [Google Scholar] [CrossRef]
- Panneerselvam, D.; Murugesan, P.; Moses, J.A. Silk fibroin and prospective applications in the food sector. Eur. Polym. J. 2024, 212, 113058. [Google Scholar] [CrossRef]
- Liou, P.; Nayigiziki, F.X.; Kong, F.; Mustapha, A.; Lin, M. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr. Polym. 2017, 157, 643–650. [Google Scholar] [CrossRef]
- Ahmad, K.; Din, Z.; Ullah, H.; Ouyang, Q.; Rani, S.; Jan, I.; Alam, M.; Rahman, Z.; Kamal, T.; Ali, S.; et al. Preparation and Characterization of Bio-based Nanocomposites Packaging Films Reinforced with Cellulose Nanofibers from Unripe Banana Peels. Starch/Staerke 2022, 74, 2100283. [Google Scholar] [CrossRef]
- Ji, Q.; Zhou, C.; Li, Z.; Boateng, I.D.; Liu, X. Is nanocellulose a good substitute for non-renewable raw materials? A comprehensive review of the state of the art, preparations, and industrial applications. Ind. Crops Prod. 2023, 202, 117093. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Tian, Y.; Dar, M.A.; Yun, J.; Zhao, M.; Ragauskas, A.J.; Li, J.; Qi, X. Assessing microbial systems and process configurations for improved ethanol production from sugary stovers by integrating soluble sugars and holocellulose. Ind. Crops Prod. 2024, 212, 118269. [Google Scholar] [CrossRef]
- Malka, E.; Margel, S. Engineering of PVA/PVP Hydrogels for Agricultural Applications. Gels 2023, 9, 895. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, J.; Yang, Y.; Qiao, S.; Ma, L.; Wang, H.; Zhang, Y. Effect of polyethylene glycol on polysaccharides: From molecular modification, composite matrixes, synergetic properties to embeddable application in food fields. Carbohydr. Polym. 2024, 327, 121647. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, H.; Li, C.; Lin, L. A novel polyethylene oxide/Dendrobium officinale nanofiber: Preparation, characterization and application in pork packaging. Food Packag. Shelf Life 2019, 21, 100329. [Google Scholar] [CrossRef]
- Aljarid, A.A.K.; Doty, K.L.; Wei, C.; Salvage, J.P.; Boland, C.S. Food-Inspired, High-Sensitivity Piezoresistive Graphene Hydrogels. ACS Sustain. Chem. Eng. 2023, 11, 1820–1827. [Google Scholar] [CrossRef]
- Lupu, A.; Gradinaru, L.M.; Rusu, D.; Bercea, M. Self-Healing of Pluronic® F127 Hydrogels in the Presence of Various Polysaccharides. Gels 2023, 9, 719. [Google Scholar] [CrossRef]
- Villa, C.C.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly imprinted polymers for food applications: A review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, H.; Han, Y.; Yu, F.; Shi, X. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chem. 2018, 240, 893–897. [Google Scholar] [CrossRef]
- Wang, B.; Huang, D.; Weng, Z. Recent Advances in Polymer-Based Biosensors for Food Safety Detection. Polymers 2023, 15, 3253. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.W.; Jiang, C.; Holmes, M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, H.; Wang, X.; Zhang, Y.; Sun, W.; Liu, Q.; Zhou, X.; Xu, W.; Luo, Y.; Huang, K.; et al. Zwitterions modified biosensors improve detection performance in complex food matrices. Trends Food Sci. Technol. 2024, 145, 104374. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Wei, D.; Liu, Z.; Yang, L. Innovative bioinspired hydrogel scaffolds enabling in-situ hybrid nanoflower integration for dual-mode acetylcholinesterase inhibitor profiling. Biosens. Bioelectron. 2025, 271, 117032. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Thariq, M.; Rahim, A.; Talib, A.; Ezzah, F.; Derahman, A. Interpenetrating Polymer Network (IPN) with Epoxidized and Acrylated Bioresins and their Composites with Glass and Jute Fibres. BioResources 2016, 11, 2820–2838. [Google Scholar] [CrossRef]
- Ngolong Ngea, G.L.; Yang, Q.; Castoria, R.; Zhang, X.; Routledge, M.N.; Zhang, H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2447–2472. [Google Scholar] [CrossRef]
- Murai, K.; Funamizu, Y.; Ogura, T.; Nishio, K. Bioinspired mineralization of calcium carbonate in peptide hydrogel acting as a multifunctional three-dimensional template. J. Asian Ceram. Soc. 2021, 9, 771–781. [Google Scholar] [CrossRef]
- Ren, X.; Yang, M.; Yang, T.; Xu, C.; Ye, Y.; Wu, X.; Zheng, X.; Wang, B.; Wan, Y.; Luo, Z. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. ACS Appl. Mater. Interfaces 2021, 13, 25374–25382. [Google Scholar] [CrossRef]
- Tao, G.; Cai, R.; Wang, Y.; Zuo, H.; He, H. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C 2021, 119, 111597. [Google Scholar] [CrossRef]
- Dutra, M.A.L.; Marques, N.d.N.; Fernandes, R. da S.; de Souza Filho, M. de S.M.; Balaban, R. de C. ECO-FRIENDLY hybrid hydrogels for detection of phenolic RESIDUES in water using SERS. Ecotoxicol. Environ. Saf. 2020, 200, 110771. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Chen, T.; You, T. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem. 2022, 373, 131443. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Y.; Liu, T.; Sun, D. “On-site” analysis of pesticide residues in complex sample matrix by plasmonic SERS nanostructure hybridized hydrogel. Anal. Chim. Acta 2023, 1282, 341903. [Google Scholar] [CrossRef] [PubMed]
- Engler, L.G.; Farias, N.C.; Crespo, J.S.; Gately, N.M.; Major, I.; Pezzoli, R.; Devine, D.M. Designing Sustainable Polymer Blends: Tailoring Mechanical Properties and Degradation Behaviour in PHB/PLA/PCL Blends in a Seawater Environment. Polymers 2023, 15, 2874. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Fan, H.; Huang, J.; Sun, T.; Kurokawa, T.; Gong, J.P. Fabrication of Tough Hydrogel Composites from Photoresponsive Polymers to Show Double-Network Effect. ACS Appl. Mater. Interfaces 2019, 11, 37139–37146. [Google Scholar] [CrossRef] [PubMed]
- Rigatelli, B.; Montarnal, D.; Drockenmuller, E. Synthesis of polyethylene-based covalent adaptable networks including 1,2,3-triazolium or imine dynamic cross-links by reactive processing. Polymer 2024, 307, 127281. [Google Scholar] [CrossRef]
- Hafeez, S.; Decarli, M.C.; Aldana, A.; Ebrahimi, M.; Ruiter, F.A.A.; Duimel, H.; van Blitterswijk, C.; Pitet, L.M.; Moroni, L.; Baker, M.B. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks. Adv. Mater. 2023, 35, 2301242. [Google Scholar] [CrossRef]
- Sharma, R.; Ungar, D.; Dyson, E.; Rimmer, S.; Chechik, V. Functional magnetic nanoparticles for protein delivery applications: Understanding protein-nanoparticle interactions. Nanoscale 2023, 16, 2466–2477. [Google Scholar] [CrossRef]
- Rana, V.K.; Karami, P.; Nasrollahzadeh, N.; Pioletti, D.P. Nano Surface-Heterogeneities of Particles Modulate the Macroscopic Properties of Hydrogels. Adv. Mater. Interfaces 2023, 10, 202202248. [Google Scholar] [CrossRef]
- Toader, G.; Podaru, I.A.; Rusen, E.; Diacon, A.; Ginghina, R.E.; Alexandru, M.; Zorila, F.L.; Gavrila, A.M.; Trica, B.; Rotariu, T.; et al. Nafcillin-Loaded Photocrosslinkable Nanocomposite Hydrogels for Biomedical Applications. Pharmaceutics 2023, 15, 1588. [Google Scholar] [CrossRef]
- Crăciunescu, I.; Ispas, G.M.; Ciorîța, A.; Leoștean, C.; Illés, E.; Turcu, R.P. Novel Magnetic Composite Materials for Dental Structure Restoration Application. Nanomaterials 2023, 13, 1215. [Google Scholar] [CrossRef]
- Jose, J.; Thomas, S.; Kumar, V.; Editors, T. Nano Hydrogels Physico-Chemical Properties and Recent Advances in Structural Designing; Gels Horizons: From Science to Smart Materials; Springer Nature: Singapore, 2018; ISBN 9789811571374. [Google Scholar] [CrossRef]
- Xing, Y.; Qiu, L.; Liu, D.; Dai, S.; Sheu, C.L. The role of smart polymeric biomaterials in bone regeneration: A review. Front. Bioeng. Biotechnol. 2023, 11, 1240861. [Google Scholar] [CrossRef]
- Salehi, S.; Naghib, S.M.; Garshasbi, H.R.; Ghorbanzadeh, S.; Zhang, W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front. Bioeng. Biotechnol. 2023, 11, 1104126. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liu, D.; Wang, Z.; Li, C.; Huang, W.; Liu, S.; Li, Y. Interpenetrating network hydrogels loaded with nanostructured lipid carriers for curcumin delivery: Impact of dual crosslinking with genipin and calcium ions. Food Res. Int. 2025, 202, 115704. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Lou, J.; Xia, Y.; Chaudhuri, O. Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. bioRxiv 2024, 2402059, 202402059. [Google Scholar] [CrossRef]
- Peleg-Evron, O.; Wirzeberger, D.; Davidovich-Pinhas, M.; Cometa, S.; De Giglio, E.; Bianco-Peled, H. Comparative analysis of classic network vs. nanogel junction network in konjac glucomannan/kappa carrageenan hybrid hydrogels. Int. J. Biol. Macromol. 2024, 279, 135244. [Google Scholar] [CrossRef]
- Teoh, J.Y.; Jeon, S.; Yim, B.; Yang, H.M.; Hwang, Y.; Kim, J.; Lee, S.K.; Park, E.; Kong, T.Y.; Kim, S.Y.; et al. Tuning Surface Plasmon Resonance Responses through Size and Crosslinking Control of Multivalent Protein Binding-Capable Nanoscale Hydrogels. ACS Biomater. Sci. Eng. 2022, 8, 2878–2889. [Google Scholar] [CrossRef]
- Quilis, N.G.; Hageneder, S.; Fossati, S.; Auer, S.K.; Venugopalan, P.; Bozdogan, A.; Petri, C.; Moreno-Cencerrado, A.; Toca-Herrera, J.L.; Jonas, U.; et al. UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel. J. Phys. Chem. C 2020, 124, 3297–3305. [Google Scholar] [CrossRef]
- Kopač, T.; Abrami, M.; Grassi, M.; Ručigaj, A.; Krajnc, M. Polysaccharide-based hydrogels crosslink density equation: A rheological and LF-NMR study of polymer-polymer interactions. Carbohydr. Polym. 2022, 277, 118895. [Google Scholar] [CrossRef]
- Yata, V.K.; Ranjan, S.; Dasgupta, N.; Lichtfouse, E. Nanopharmaceuticals: Principles and Applications; Springer Nature: Cham, Switzerland, 2005; Volume 1, ISBN 9783540228608. [Google Scholar] [CrossRef]
- Zhao, Z.; Fang, R.; Rong, Q.; Liu, M. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. Adv. Mater. 2017, 29, 201703045. [Google Scholar] [CrossRef]
- Jiang Luo, J.; Rui Zhu, L.; Guo, Z.; Pi, N.; Li, X.; Lin Zou, H.; Qun Luo, H.; Bing Li, N.; Li, B.L. Hydrogel-innovated nanotechnologies for chemical and biological analysis. Coord. Chem. Rev. 2024, 511, 215874. [Google Scholar] [CrossRef]
- Quazi, M.Z.; Park, N. Nanohydrogels: Advanced Polymeric Nanomaterials in the Era of Nanotechnology for Robust Functionalization and Cumulative Applications. Int. J. Mol. Sci. 2022, 23, 1943. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Ma, Y.; Wang, M.; Pan, G. Nano-crosslinked dynamic hydrogels for biomedical applications. Mater. Today Bio 2023, 20, 100640. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Li, A.; Ye, Y.; Peng, S.; Deng, M.; Jiang, B. A Novel pH- and Salt-Responsive N-Succinyl-Chitosan Hydrogel via a One-Step Hydrothermal Process. Molecules 2019, 24, 4211. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Han, Y. Two-in-One MOF Structure with Tunable Porosity for Enhanced Separation. ACS Cent. Sci. 2022, 8, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Navas, J.L.; Han, W.; Ibarra, M.R.; Cho Kwan, J.K.; Yeung, K.L. Gel transformation as a general strategy for fabrication of highly porous multiscale MOF architectures. Chem. Sci. 2023, 14, 7114–7125. [Google Scholar] [CrossRef]
- Pan, Y.T.; Zhang, L.; Zhao, X.; Wang, D.Y. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity. Chem. Sci. 2017, 8, 3399–3409. [Google Scholar] [CrossRef]
- Yang, B.; Yang, C.; Liu, Y.; Chen, D.; Zhao, Q. Independent Configuration and Reprogramming of Porous Characters in Macroporous Hydrogel Enabled by the Orthogonal Dynamic Network. ACS Appl. Mater. Interfaces 2024, 16, 41534–41541. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, B.; Chen, J.; Lai, Y.; Yin, P. The Coordination Nanocages-Integrated Polymer Brush Networks for Flexible Microporous Membranes with Exceptional H2/CO2 Separation Performance. Macromol. Rapid Commun. 2023, 44, 202300477. [Google Scholar] [CrossRef]
- Zhang, N.; Sreekanth, K.V.; Chen, Y.F.; Teo, S.L.; Ke, L.; Zhao, M.; Teng, J. Scalable Multilayered Plasmonic Nanoporous Films for Surface-Enhanced Raman Spectroscopy. ACS Appl. Opt. Mater. 2024, 2, 744–749. [Google Scholar] [CrossRef]
- Li, H.T.; Chen, S.Q.; Bui, A.T.; Xu, B.; Dhital, S. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocoll. 2021, 117, 106657. [Google Scholar] [CrossRef]
- Su, R.; Li, G.; Xiao, X. Ag/Poly(N-isopropylacrylamide)-laponite Hydrogel Surface-Enhanced Raman Membrane Substrate for Rapid Separation, Concentration and Detection of Hydrophilic Compounds in Complex Sample All-in-One. Anal. Chem. 2023, 95, 6399–6409. [Google Scholar] [CrossRef]
- Ma, L.; Long, T.; Yuan, S.; Qi, P.; Han, L.; Hao, J. A pH-indicating smart tag based on porous hydrogel as food freshness sensors. J. Colloid Interface Sci. 2023, 647, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Keidel, R.; Ghavami, A.; Lugo, D.M.; Lotze, G.; Virtanen, O.; Beumers, P.; Pedersen, J.S.; Bardow, A.; Winkler, R.G.; Richtering, W. Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition. Sci. Adv. 2018, 4, eaao7086. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yan, H.; Zhao, L.; Duan, N.; Wang, Z.; Wu, S. Hydrogel-integrated sensors for food safety and quality monitoring: Fabrication strategies and emerging applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 6395–6414. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Hang, X.; Li, Z.; Zou, X. Convenient self-assembled PDADMAC/PSS/Au@Ag NRs filter paper for swift SERS evaluate of non-systemic pesticides on fruit and vegetable surfaces. Food Chem. 2023, 424, 136232. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Xia, X.; Cen, Y.; Wei, F.; Yang, J.; Wang, L.; Hu, Q.; Xu, G. Spherical Hydrogel Sensor Based on PB@Fe-COF@Au Nanoparticles with Triplet Peroxidase-like Activity and Multiple Capture Sites for Effective Detection of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2023, 15, 6473–6485. [Google Scholar] [CrossRef]
- Liang, J.; Dong, Z.; Xu, N.; Chen, T.; Liang, J.; Xia, M.; Wang, F. A Comprehensive Review of Multifunctional Nanozymes for Degradation and Detection of Organophosphorus Pesticides in the Environment. Toxics 2024, 12, 926. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Xin, H. A Portable Fluorescent Hydrogel-Based Device for On-Site Quantitation of Organophosphorus Pesticides as Low as the Sub-ppb Level. Front. Chem. 2022, 10, 855281. [Google Scholar] [CrossRef]
- Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Zhou, C.; Yagoub, A.E.G.A.; Cai, Z.; Yu, X. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles. Food Hydrocoll. 2022, 122, 107110. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, M.; Zheng, N.; Deng, Y.; Wang, Q.; Osire, T.; Xia, X. Microstructural, physicochemical properties, and interaction mechanism of hydrogel nanoparticles modified by high catalytic activity transglutaminase crosslinking. Food Hydrocoll. 2024, 147, 109384. [Google Scholar] [CrossRef]
- Wang, X.; Yan, J.; Zhang, H.; Xu, Z.; Zhang, J.Z.H. An electrostatic energy-based charge model for molecular dynamics simulation. J. Chem. Phys. 2021, 154, 134107. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Huang, Y.; Ma, Y.; Jia, S.; Gao, M.; Li, J.; Zhang, H.; Xu, D.; Wu, M.; Chen, Y.; et al. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl. Mater. Interfaces 2015, 7, 6982–6990. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, D.J.; Lee, S.; Kim, D.H.; Park, S.G.; Kim, S.H. Microfluidic Designing Microgels Containing Highly Concentrated Gold Nanoparticles for SERS Analysis of Complex Fluids. Small 2019, 15, e1905076. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhu, S.; Wen, P.; Zhou, D.; Yin, Y.; Lan, Y.; Lee, T.C.; Zhang, Y.; Pu, Q. Raspberry-Like Plasmonic Nanoaggregates with Programmable Hierarchical Structures for Reproducible SERS Detection of Wastewater Pollutants and Biomarkers. Anal. Chem. 2024, 96, 17620–17630. [Google Scholar] [CrossRef]
- Xu, X.; Ma, M.; Zhou, X.; Zhao, X.; Feng, D.; Zhang, L. Portable Hydrogel Kits Made with Bimetallic Nanozymes for Point-of-Care Testing of Perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 2024, 16, 15959–15969. [Google Scholar] [CrossRef]
- Shu, Q.; Yuan, Y.; Sun, J.; Zhang, Y.; Yu, H.; Tian, X.; Cai, C. Hydrophobic association hydrogel with toughness, high stretch, and sensitivity for flexible sensing. J. Appl. Polym. Sci. 2024, 142, e56348. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Pham, N.A.T.; Duong, T.H.T.; Nguyen, T.V.; Pham, L.H.; Ly, P.H.; Nguyen, D.M.; Thuy, N.T.N.; Hoang, D.Q. High-performance hydrophobic aerogel based on nanocellulose, graphene oxide, polyvinyl alcohol, and hexadecyltrimethoxysilane: Structure, properties, and applicability. J. Environ. Chem. Eng. 2024, 12, 113215. [Google Scholar] [CrossRef]
- Wang, L.; Yu, G.; Li, J.; Feng, Y.; Peng, Y.; Zhao, X.; Tang, Y.; Zhang, Q. Stretchable hydrophobic modified alginate double-network nanocomposite hydrogels for sustained release of water-insoluble pesticides. J. Clean. Prod. 2019, 226, 122–132. [Google Scholar] [CrossRef]
- Chang, S.; Chen, X.; Liu, S.; Wang, C. Novel gel-like Pickering emulsions stabilized solely by hydrophobic starch nanocrystals. Int. J. Biol. Macromol. 2020, 152, 703–708. [Google Scholar] [CrossRef]
- Zhang, B.; Qiu, J.; Meng, X.; Sakai, E.; Feng, H.; Zhang, L.; Tang, J.; Zhang, G.; Wu, H.; Guo, S. Hydrophilic-Hydrophobic Network Hydrogels Achieving Optimal Strength and Hysteresis Balance. ACS Appl. Mater. Interfaces 2024, 16, 57769–57777. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Ryu, K.; Lee, H.; Kim, K.; Chung, H.; Sohn, D. Au nanoparticle-encapsulated hydrogel substrates for robust and reproducible SERS measurement. Analyst 2013, 138, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Lu, J.; Li, C.; Lin, L. Fabrication of phospholipid nanofibers containing eugenol@cationic starch nanoparticles against Bacillus cereus in beef. LWT 2021, 144, 111262. [Google Scholar] [CrossRef]
- Chang, R.; Wang, T.; Liu, Q.; Tang, J.; Wu, D. Ag Nanoparticles@Agar Gel as a 3D Flexible and Stable SERS Substrate with Ultrahigh Sensitivity. Langmuir 2022, 38, 13822–13832. [Google Scholar] [CrossRef]
- Sadat Hosseini, M.; Hemmati, K.; Ghaemy, M. Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. Int. J. Biol. Macromol. 2016, 82, 806–815. [Google Scholar] [CrossRef]
- You, Y.H.; Nagaraja, A.; Biswas, A.; Marks, H.; Cote, G.L.; McShane, M.J. SERS-based hydrogel sensors for pH and enzymatic substrates. In Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea, 1–4 November 2015; pp. 5–8. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Liu, Y.; Zhi, W.; Han, J.; Wang, Y.; Ni, L. Green separation of bromelain in food sample with high retention of enzyme activity using recyclable aqueous two-phase system containing a new synthesized thermo-responsive copolymer and salt. Food Chem. 2019, 282, 48–57. [Google Scholar] [CrossRef]
- Aldeanueva-Potel, P.; Faoucher, E.; Alvarez-Puebla, R.A.; Liz-Marzán, L.M.; Brust, M. Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. Anal. Chem. 2009, 81, 9233–9238. [Google Scholar] [CrossRef]
- Zhang, T.; Silverstein, M.S. Highly porous, emulsion-templated, zwitterionic hydrogels: Amplified and accelerated uptakes with enhanced environmental sensitivity. Polym. Chem. 2018, 9, 3479–3487. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Hou, B.; Hao, C.; Li, X.; Wu, J. Construction of a Lignosulfonate-Lysine Hydrogel for the Adsorption of Heavy Metal Ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, X.; Cao, Y.; Pu, S.; Zhou, X.; Gu, R.; Zhang, Y.; Wu, C.; Luo, X.; He, Y. High-efficiency SERS platform based on 3D porous PPDA@Au NPs as a substrate for the detection of pesticides on vegetables. Anal. Methods 2023, 15, 4842–4850. [Google Scholar] [CrossRef]
- Wahid, F.; Wang, H.S.; Zhong, C.; Chu, L.Q. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym. 2017, 165, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Kinyua, C.K.; Owino, A.O.; Kaur, K.; Das, D.; Karuri, N.W.; Müller, M.; Schönherr, H. Impact of Surface Area on Sensitivity in Autonomously Reporting Sensing Hydrogel Nanomaterials for the Detection of Bacterial Enzymes. Chemosensors 2022, 10, 299. [Google Scholar] [CrossRef]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, C.; Guo, Z.; Yang, T.; Zhang, X.; Huang, X.; Shi, J.; Gao, S.; Zou, X. Ultrasensitive Analysis of Escherichia coli O157:H7 Based on Immunomagnetic Separation and Labeled Surface-Enhanced Raman Scattering with Minimized False Positive Identifications. J. Agric. Food Chem. 2024, 72, 22349–22359. [Google Scholar] [CrossRef]
- Ashiagbor, K.; Jayan, H.; Yosri, N.; Amaglo, N.K.; Zou, X.; Guo, Z. Advancements in SERS based systematic evolution of ligands by exponential enrichment for detection of pesticide residues in fruits and vegetables. Food Chem. 2025, 463, 141394. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Picchetti, P.; Zheng, K.; Zhang, X.; Wu, Y.; Shen, Y.; De Cola, L.; Shi, J.; Guo, Z.; et al. Quantitative SERS sensor for mycotoxins with extraction and identification function. Food Chem. 2024, 456, 140040. [Google Scholar] [CrossRef]
- Xie, L. State of the art in flexible SERS sensors toward label-free and onsite detection. From design to applications. Nano Res. 2022, 15, 4374–4394. [Google Scholar] [CrossRef]
- Jin, R.; Wang, F.; Li, Q.; Yan, X.; Liu, M.; Chen, Y.; Zhou, W.; Gao, H.; Sun, P.; Lu, G. Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sens. Actuators B Chem. 2021, 327, 128922. [Google Scholar] [CrossRef]
- Luo, Q.; Ren, T.; Lei, Z.; Huang, Y.; Huang, Y.; Xu, D.; Wan, C.; Guo, X.; Wu, Y. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline. Chem. Eng. J. 2022, 427, 131738. [Google Scholar] [CrossRef]
- Wang, J.; Bai, S.; Wang, Y.; Luo, G.; Wang, T. Preparation of large In(OH)3 and In2O3 particles through a seed-mediated growth method in a microreactor. Particuology 2020, 49, 1–8. [Google Scholar] [CrossRef]
- Yang, N.; You, T.T.; Gao, Y.K.; Zhang, C.M.; Yin, P.G. Fabrication of a Flexible Gold Nanorod Polymer Metafilm via a Phase Transfer Method as a SERS Substrate for Detecting Food Contaminants. J. Agric. Food Chem. 2018, 66, 6889–6896. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Su, B.; Wu, H.; Dai, Y.; Chen, T.; Fu, F.; Lin, Z.; Dong, Y. Hydrogel SERS chip with strong localized surface plasmon resonance for sensitive and rapid detection of T-2 toxin. Talanta 2024, 268, 125329. [Google Scholar] [CrossRef] [PubMed]
- Parnsubsakul, A.; Ngoensawat, U.; Wutikhun, T.; Sukmanee, T.; Sapcharoenkun, C.; Pienpinijtham, P.; Ekgasit, S. Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydr. Polym. 2020, 235, 115956. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Zhu, L.; Ruan, Y.; Tang, H. Preparation of a native β-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced Raman scattering scaffold for antibiotics identification. J. Mater. Chem. C 2015, 3, 7575–7582. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, C.; Wang, C.; Tang, C.; Cheng, F.; Du, H.; Fan, M.; Brolo, A.G. A silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst 2014, 139, 5283–5289. [Google Scholar] [CrossRef]
- Naqvi, T.K.; Bajpai, A.; Dwivedi, S.; Bhaiyya, M.; Goel, S.; Dwivedi, P.K. Flexible, label free and low-cost paper based microfluidic SERS substrates for thiram detection. Sensors Actuators A Phys. 2023, 356, 114341. [Google Scholar] [CrossRef]
- Kim, S.; Choi, W.; Kim, D.J.; Jung, H.S.; Kim, D.H.; Kim, S.H.; Park, S.G. Encapsulation of 3D plasmonic nanostructures with ultrathin hydrogel skin for rapid and direct detection of toxic small molecules in complex fluids. Nanoscale 2020, 12, 12942–12949. [Google Scholar] [CrossRef]
- Chen, Z.; Lian, X.; Zhou, M.; Zhang, X.; Wang, C. Quantitation of L-cystine in Food Supplements and Additives Using 1H qNMR: Method Development and Application. Foods 2023, 12, 2421. [Google Scholar] [CrossRef]
- Xu, B.G.; Zhang, M.; Bhandari, B.; Sun, J.; Gao, Z. Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process. Innov. Food Sci. Emerg. Technol. 2016, 35, 194–203. [Google Scholar] [CrossRef]
- Adade, S.Y.-S.S.; Lin, H.; Johnson, N.A.N.; Nunekpeku, X.; Aheto, J.H.; Ekumah, J.-N.; Kwadzokpui, B.A.; Teye, E.; Ahmad, W.; Chen, Q. Advanced Food Contaminant Detection through Multi-Source Data Fusion: Strategies, Applications, and Future Perspectives. Trends Food Sci. Technol. 2025, 156, 104851. [Google Scholar] [CrossRef]
- Sun, D.; Cao, F.; Wang, H.; Guan, S.; Su, A.; Xu, W.; Xu, S. SERS hydrogel pellets for highly repeatable and reliable detections of significant small biomolecules in complex samples without pretreatment. Sensors Actuators, B Chem. 2021, 327, 128943. [Google Scholar] [CrossRef]
- He, X.; Zhou, X.; Liu, W.; Liu, Y.; Wang, X. Flexible DNA Hydrogel SERS Active Biofilms for Conformal Ultrasensitive Detection of Uranyl Ions from Aquatic Products. Langmuir 2020, 36, 2930–2936. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-Trapping SERS Substrate with Regular Bioinspired Arrays for Detecting Trace Dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, M.; Sun, X.; Wang, Y.; Shi, G.; Ma, W.; Hou, P. Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl. Surf. Sci. 2019, 479, 879–886. [Google Scholar] [CrossRef]
- Fu, F.; Yang, B.; Hu, X.; Tang, H.; Zhang, Y.; Xu, X.; Zhang, Y.; Touhid, S.S.B.; Liu, X.; Zhu, Y.; et al. Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection. Chem. Eng. J. 2020, 392, 123693. [Google Scholar] [CrossRef]
- Guan, P.C.; Qi, Q.J.; Wang, Y.Q.; Lin, J.S.; Zhang, Y.J.; Li, J.F. Development of a 3D Hydrogel SERS Chip for Noninvasive, Real-Time pH and Glucose Monitoring in Sweat. ACS Appl. Mater. Interfaces 2024, 16, 48139–48146. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Yan, W.; Zhao, Z.; Shi, L.; Huang, L.; Liu, Y.; He, X.; Cui, S. Construction of ultra-sensitive surface-enhanced Raman scattering substrates based on 3D graphene oxide aerogels. Carbon 2023, 202, 389–397. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Waterhouse, G.I.N.; Qiao, X.; Xu, Z. Ultra-sensitive detection of streptomycin in foods using a novel SERS switch sensor fabricated by AuNRs array and DNA hydrogel embedded with DNAzyme. Food Chem. 2022, 393, 133413. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, C.; Pu, S.; Wang, C.; Cheng, F.; Wang, Y.; Fan, M. Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Anal. Methods 2016, 8, 4816–4820. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.; Yang, J.Y.; Mun, C.; Lee, S.; Kim, S.H.; Park, S.G. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. Int. J. Mol. Sci. 2022, 23, 1004. [Google Scholar] [CrossRef]
- Huo, D.; Chen, B.; Meng, G.; Huang, Z.; Li, M.; Lei, Y. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. ACS Appl. Mater. Interfaces 2020, 12, 50713–50720. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Qi, X.; Wang, H.; Zhao, B.; Xu, L.; Zhang, Y.; Wang, X.; Zhou, N. A surface-enhanced Raman scattering aptasensor for Escherichia coli detection based on high-performance 3D substrate and hot spot effect. Anal. Chim. Acta 2022, 1221, 340141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tian, R.; Liu, G.; Wen, Y.; Bian, X.; Luan, D.; Wang, H.; Lai, K.; Yan, J. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin. Biosens. Bioelectron. 2022, 207, 114187. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Zhao, Y.; Zhou, Y.; Yi, Y.; Weng, W.; Zhu, G. Colorimetric detection of organophosphorus pesticides based on Nb2CTx MXene self-reducing PdPt nanozyme integrated with hydrogel and smartphone. J. Food Meas. Charact. 2024, 18, 9223–9232. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.; Yin, L.; Han, E.; Wang, C.; Zhou, R.; Bai, J.; Wang, Y.; Guo, Z.; Cai, J. Rapid dual-modal detection of two types of pesticides in fruits using SERS-based immunoassay. J. Food Compos. Anal. 2024, 136, 106781. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Y.; Li, Y.; Yang, W.; Jiang, W.; Liang, Y.; Zhang, Z. Residue behaviors of six pesticides during apple juice production and storage. Food Res. Int. 2024, 177, 113894. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, Y.; Qian, L.; Yin, Y.; Yuan, Z.; Dai, Y.; Zhang, T.; Yang, D.; Qiu, F. Lamellar Ti3C2 MXene composite decorated with platinum-doped MoS2 nanosheets as electrochemical sensing functional platform for highly sensitive analysis of organophosphorus pesticides. Food Chem. 2024, 459, 140379. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.; Ahmad, W.; Li, H.; Chen, Q. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Babadi, A.A.; Sun, C.; Ariffin, N.M.; Khatib, A.; Selamat, J.; Xiaobo, Z. Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety. Food Chem. 2024, 441, 138402. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Liu, D.; An, J.; Zhang, M.; hua Li, J.; Jiang, C. Plasmonic AgNPs reinforced flexible hydrogel Surface-Enhanced Raman scattering (SERS) sensor for in-situ detection of curved samples. Chem. Eng. J. 2024, 494, 153082. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Wu, B.; Dai, C.; Fu, H. Rapid authentication of the geographical origin of milk using portable near-infrared spectrometer and fuzzy uncorrelated discriminant transformation. J. Food Process Eng. 2022, 45, e14040. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, X.; Xu, Y.; Liu, C.; Zou, X.; Li, Z.; Shi, J.; Huang, X. Facile fabrication of three-dimensional gold nanodendrites decorated by silver nanoparticles as hybrid SERS-active substrate for the detection of food contaminants. Food Control 2021, 122, 107772. [Google Scholar] [CrossRef]
- Hu, X.; Shi, J.; Shi, Y.; Zou, X.; Arslan, M.; Zhang, W.; Huang, X.; Li, Z.; Xu, Y. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem. 2019, 272, 58–65. [Google Scholar] [CrossRef]
- Yang, N.; Xie, L.L.; Pan, C.; Yuan, M.F.; Tao, Z.H.; Mao, H.P. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones. J. Food Process Eng. 2019, 42, 12976. [Google Scholar] [CrossRef]
- Rasheed, H.A.; Rehman, A.; Karim, A.; Al-Asmari, F.; Cui, H.; Lin, L. A comprehensive insight into plant-derived extracts/bioactives: Exploring their antimicrobial mechanisms and potential for high-performance food applications. Food Biosci. 2024, 59, 104035. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. Food Control 2021, 123, 107856. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, D.; Zeng, K.; Shao, J.; Zhu, F.; Du, D. An Enhanced Direct Competitive Immunoassay for the Detection of Kanamycin and Tobramycin in Milk Using Multienzyme-Particle Amplification. Food Anal. Methods 2018, 11, 2066–2075. [Google Scholar] [CrossRef]
- Gan, Z.; Hu, X.; Xu, X.; Zhang, W.; Zou, X.; Shi, J.; Zheng, K.; Arslan, M. A portable test strip based on fluorescent europium-based metal–organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Li, X.; Afoakwah, N.A. Effects of Ultrasound, High Pressure, and Manosonication Processes on Phenolic Profile and Antioxidant Properties of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine. Food Bioprocess Technol. 2017, 10, 1210–1223. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Xiao, L.; Apaliya, M.T. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. Food Chem. 2018, 239, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.; Miranda, B.; Lonardo, E.; Rea, I.; De Stefano, L.; De Luca, A.C. SERS-based pH-Dependent detection of sulfites in wine by hydrogel nanocomposites. Biosens. Bioelectron. 2024, 245, 115836. [Google Scholar] [CrossRef] [PubMed]
- Okeke, E.S.; Ezeorba, T.P.C.; Okoye, C.O.; Chen, Y.; Mao, G.; Feng, W.; Wu, X. Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J. Food Compos. Anal. 2022, 114, 104778. [Google Scholar] [CrossRef]
- Neng, J.; Xu, K.; Wang, Y.; Jia, K.; Zhang, Q.; Sun, P. Sensitive and selective detection of New Red colorant based on surface-enhanced Raman spectroscopy using molecularly imprinted hydrogels. Appl. Sci. 2019, 9, 2672. [Google Scholar] [CrossRef]
- Mennini, T. FDA draft guidance. Nutrafoods 2012, 11, 165. [Google Scholar] [CrossRef]
- Rasmussen, K.; Rauscher, H.; Gottardo, S.; Hoekstra, E.; Schoonjans, R.; Peters, R.; Aschberger, K. Regulatory Status of Nanotechnologies in Food in the EU; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128141311. [Google Scholar]
- Kaur, S.; Medhi, B. Guidelines for Nanopharmaceutical Products for Regulatory Approval. Int. J. Pharm. Sci. Nanotechnol. 2022, 15, 5723–5725. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunekpeku, X.; Li, H.; Zahid, A.; Li, C.; Zhang, W. Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection. Biosensors 2025, 15, 363. https://doi.org/10.3390/bios15060363
Nunekpeku X, Li H, Zahid A, Li C, Zhang W. Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection. Biosensors. 2025; 15(6):363. https://doi.org/10.3390/bios15060363
Chicago/Turabian StyleNunekpeku, Xorlali, Huanhuan Li, Ayesha Zahid, Chenhui Li, and Wei Zhang. 2025. "Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection" Biosensors 15, no. 6: 363. https://doi.org/10.3390/bios15060363
APA StyleNunekpeku, X., Li, H., Zahid, A., Li, C., & Zhang, W. (2025). Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection. Biosensors, 15(6), 363. https://doi.org/10.3390/bios15060363