Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = chemical admixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 569 KB  
Article
Sustainable Production of Mullite Grogs from Industrial By-Products
by Josef Škvarka, Iva Janáková, František Pticen and Radmila Kučerová
Ceramics 2026, 9(1), 6; https://doi.org/10.3390/ceramics9010006 - 12 Jan 2026
Viewed by 150
Abstract
This study focuses on preparing mullite grogs derived from selected waste materials and kaolin treated with advanced technologies to achieve high thermal resistance and low thermal expansion. The investigated waste materials include dust removal RON, slurry DE, feldspar dust removal from Halamky, and [...] Read more.
This study focuses on preparing mullite grogs derived from selected waste materials and kaolin treated with advanced technologies to achieve high thermal resistance and low thermal expansion. The investigated waste materials include dust removal RON, slurry DE, feldspar dust removal from Halamky, and waste generated during the feldspar grinding at the Halamky I deposit. These materials (Red kaolin from Vidnava, Slurry DE, Dust-off RON, Feldspar dust-off Halamky) were processed into grogs and subsequently applied for the production of high-mullite ceramics. The influence of cristobalite admixture was also assessed. The chemical composition was determined by X-ray fluorescence (XRF), while the phase composition was analysed by X-ray diffraction (XRD). Amorphous mullite grogs with mullite contents greater than 40% were successfully prepared. Despite the relatively high iron content, the resulting products exhibited the desired white colour after firing and demonstrated properties that make them promising candidates for advanced refractory applications. The study highlights the potential to valorise industrial waste materials for high-value ceramic applications. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

25 pages, 8923 KB  
Review
Mechanisms and Protection Strategies for Concrete Degradation Under Magnesium Salt Environment: A Review
by Xiaopeng Shang, Xuetao Yue, Lin Pan and Jingliang Dong
Buildings 2026, 16(2), 264; https://doi.org/10.3390/buildings16020264 - 7 Jan 2026
Viewed by 238
Abstract
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and [...] Read more.
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and Scopus database (2000–2025), we first summarized the migration behavior, reaction paths, and interaction mechanism of Cl, SO42−, and Mg2+ in cementitious matrices. Secondly, from the perspective of Cl cyclic adsorption–desorption breaking the passivation film of steel bars, SO42− generating expansion products leads to crack expansion, then Mg2+ decalcifies C-S-H and transforms into M-S-H; we analyzed the main damage mechanisms, respectively. In addition, under the coexistence conditions of three kinds of ions, the “fixation–substitution–redissolution” process and “crack–transport” coupling positive feedback mechanism further increase the development rate of damage. Then, some anti-corrosion measures, such as mineral admixtures, functional chemical admixtures, fiber reinforcements, surface coatings, and new binder systems, are summarized, and the pros and cons of different anti-corrosion technologies are compared and evaluated. Lastly, from two aspects of simulation prediction for the coupled corrosion damage mechanism and service life prediction, respectively, we have critically evaluated the advances and problems existing in the current research on the aspects of ion migration-reaction coupled models, multi-physics coupled frameworks, phase-field methods, etc. We found that there is still much work to be conducted in three respects: deepening mechanism understanding, improving prediction precision, and strengthening the connection between laboratory test results and actual projects, so as to provide theoretical basis and technical support for the durability design and anti-corrosion strategies of concrete in complex Mg2+ environments. Full article
Show Figures

Figure 1

18 pages, 2159 KB  
Article
3D Printing of Cement-Based Materials Using Seawater for Simulated Marine Environments
by Fabian B. Rodriguez, Caiden Vugteveen, Xavier Fross, Hui Wei, Michael E. Himmel, Anastasia N. Aday, Drazenka Svedruzic and John T. Kevern
Materials 2026, 19(1), 93; https://doi.org/10.3390/ma19010093 - 26 Dec 2025
Viewed by 457
Abstract
Global demand for adaptable and rapidly deployable construction solutions in offshore, coastal, and fluvial environments continues to rise, driven by pressing needs to develop energy platforms, improve coastal resilience, and support emergency response in the face of natural disasters. Increased investment in human-made [...] Read more.
Global demand for adaptable and rapidly deployable construction solutions in offshore, coastal, and fluvial environments continues to rise, driven by pressing needs to develop energy platforms, improve coastal resilience, and support emergency response in the face of natural disasters. Increased investment in human-made coastal infrastructure, such as piers, support structures for power lines, offshore wind farms, and seawall protection systems, further underscores this trend. This study investigates the development of printable concrete mixtures for underwater environments using seawater as a replacement for freshwater, using a 3D printing syringe-based extrusion system. The effect of seawater addition and the printing medium (in air vs. underwater) was assessed via rheological and mechanical performance characterization. The results indicate rheological properties are favorable for seawater adoption by producing mixtures with higher yield stress and viscosity with the same levels of admixtures used for freshwater. Seawater-based mixtures demonstrated superior dimensional stability compared to freshwater counterparts, maintaining cross-sectional geometry, while compressive strength results showed no statistical differences between in-air and underwater samples. However, flexural strength was significantly influenced by geometry and printing medium. These findings establish critical rheological parameters for printable underwater mixtures and highlight the need for optimized curing strategies and layer bonding techniques to improve interfacial strength in underwater 3D printing applications. Full article
Show Figures

Graphical abstract

34 pages, 4471 KB  
Review
State of the Art on Prevention and Control Measures of Thermal Cracks in Mass Concrete
by Genhe Zhang, Feng Cao, Taotao Li, Chao Sun, Wei Guo, Yunfei Ma, Fangjie Ren, Yixuan Wang, Wei Si and Biao Ma
Sustainability 2025, 17(24), 11301; https://doi.org/10.3390/su172411301 - 17 Dec 2025
Viewed by 555
Abstract
Mass concrete is prone to temperature cracks at an early age due to concentrated hydration heat, significant temperature gradients, and complex constraints, which affect structural durability and service safety. This paper reviews the relevant measures for preventing and controlling such temperature cracks, analyzing [...] Read more.
Mass concrete is prone to temperature cracks at an early age due to concentrated hydration heat, significant temperature gradients, and complex constraints, which affect structural durability and service safety. This paper reviews the relevant measures for preventing and controlling such temperature cracks, analyzing that the cracks are caused by the coupling effects of hydration heat, temperature gradients and stress distribution, material properties, environmental factors, and structural dimensions. It elaborates on two types of prevention and control measures: material optimization (low-heat cement, mineral admixtures, chemical admixtures, phase change materials, etc.) and construction process improvement (reasonable placement, cooling systems, external thermal insulation). Among these, phase change materials (PCMs) have become a research focus due to their active temperature regulation function of “peak shaving and valley filling”. This paper also introduces temperature, stress, and crack width monitoring technologies, as well as monitoring-based feedback control and intelligent systems. It summarizes the progress of numerical simulations in temperature field, stress field, and cracking prediction, with particular emphasis on their role in improving the understanding and prevention of early-age thermal cracking. The review further identifies shortcomings in multi-factor coupling mechanisms and integrated material–construction design, and proposes future research directions—such as low-heat-of-hydration binders, PCM optimization, and intelligent monitoring integration—to support more effective crack-control practices in mass concrete. Full article
(This article belongs to the Special Issue Sustainable Pavement Engineering: Design, Materials, and Performance)
Show Figures

Figure 1

14 pages, 3202 KB  
Review
Cyclodextrin Complexes for Clinical Translatability: Applications for Cladribine and Retrometabolically Designed Estredox
by Nicholas Bodor and Peter Buchwald
Int. J. Mol. Sci. 2025, 26(22), 10976; https://doi.org/10.3390/ijms262210976 - 13 Nov 2025
Viewed by 744
Abstract
In this study, we review the use of cyclodextrin-based formulations to develop oral tablets of cladribine by enhancing its bioavailability and to improve the solubility and stability of retrometabolic chemical delivery systems (CDSs) in general and estredox, a brain-targeting estradiol-CDS, in particular. Cyclodextrins [...] Read more.
In this study, we review the use of cyclodextrin-based formulations to develop oral tablets of cladribine by enhancing its bioavailability and to improve the solubility and stability of retrometabolic chemical delivery systems (CDSs) in general and estredox, a brain-targeting estradiol-CDS, in particular. Cyclodextrins (CDs), cyclic oligosaccharides that can form host–guest inclusion complexes with a variety of molecules, are widely utilized in pharmaceuticals to increase drug solubility, stability, bioavailability, etc. The stability of the complex depends on how well the guest fits within the cavity of the CD host; a model connecting this to the size of the guest molecules is briefly discussed. Modified CDs, and particularly 2-hydroxypropyl-β-cyclodextrin (HPβCD), provided dramatically increased water solubility and oxidative stability for estredox (estradiol-CDS, E2-CDS), making its clinical development possible and highlighting the potential of our brain-targeted CDS approach for CNS-targeted delivery with minimal peripheral exposure. A unique HPβCD-based formulation also provided an innovative solution for the development of orally administrable cladribine. The corresponding complex dual CD-complex formed by an amorphous admixture of inclusion- and non-inclusion cladribine–HPβCD complexes led to the development of tablets that provide adequate oral bioavailability for cladribine, as demonstrated in both preclinical and clinical studies. Cladribine–HPβCD tablets (Mavenclad) offer a convenient, effective, and well-tolerated oral therapy for multiple sclerosis, achieving worldwide approval and significant clinical success. Overall, the developments summarized here underscore the importance of tailored cyclodextrin-based approaches for overcoming barriers in drug formulation for compounds with challenging physicochemical properties, and demonstrate the versatility and clinical impact of CD inclusion complexes in modern pharmaceutical development. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Figure 1

19 pages, 873 KB  
Article
Extended Stability of Ascorbic Acid in Pediatric TPN Admixtures: The Role of Storage Temperature and Emulsion Integrity
by Rafał Chiczewski, Żaneta Sobol, Alicja Pacholska and Dorota Wątróbska-Świetlikowska
Pharmaceutics 2025, 17(11), 1375; https://doi.org/10.3390/pharmaceutics17111375 - 24 Oct 2025
Viewed by 1105
Abstract
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) [...] Read more.
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) followed by addition of ascorbic acid and a 24-h period of storage at room temperature, and (B) vitamin supplementation within 24 h after composing and storage at 21 ± 2 °C. A validated high-performance liquid chromatography (HPLC) method was used to quantify ascorbic acid degradation. Physical stability was evaluated via optical microscopy, dynamic light scattering (DLS), laser diffraction (LD), zeta potential, and pH measurement. Results: Ascorbic acid content remained above 90% of the declared value in both protocols, although gradual degradation was observed with increasing storage time and temperature. Emulsion droplet sizes remained within pharmacopeial limits (<500 nm), and no coalescence or phase separation was detected. Zeta potential values (−20 to −40 mV) confirmed kinetic stability, while pH ranged from 5.8 to 6.2, remaining within acceptable safety margins. Conclusions: Vitamin C in pediatric TPN admixtures is stable under refrigerated conditions for up to 15 days. However, the additional 24 h at room temperature resulted in measurable loss of ascorbic acid content, suggesting a need for improved guidance in home-based parenteral nutrition, particularly regarding transport and handling. The study underscores the importance of strict cold-chain maintenance and highlights the role of emulsion matrix and packaging in protecting labile vitamins. This research provides practical implications for hospital pharmacists and caregivers, supporting better formulation practices and patient safety in pediatric home TPN programs. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

16 pages, 2324 KB  
Article
Molasses-Modified Mortars: A Sustainable Approach to Improve Cement Mortar Performance
by Zaid S. Aljoumaily, Mohammed Z. Al-Mulali, Amjad H. Albayati and Teghreed H. Ibrahim
Constr. Mater. 2025, 5(3), 68; https://doi.org/10.3390/constrmater5030068 - 16 Sep 2025
Viewed by 1315
Abstract
The utilization of sugarcane molasses (SCM), a byproduct of sugar refining, offers a promising bio-based alternative to conventional chemical admixtures in cementitious systems. This study investigates the effects of SCM at five dosage levels, 0.25%, 0.50%, 0.75%, 1.00%, and 1.25% by weight of [...] Read more.
The utilization of sugarcane molasses (SCM), a byproduct of sugar refining, offers a promising bio-based alternative to conventional chemical admixtures in cementitious systems. This study investigates the effects of SCM at five dosage levels, 0.25%, 0.50%, 0.75%, 1.00%, and 1.25% by weight of cement, on cement mortar performance across fresh, mechanical, thermal, durability, and density criteria. A comprehensive experimental methodology was employed, including flow table testing, compressive strength (7, 14, and 28 days) and flexural strength measurements, embedded thermal sensors for real-time hydration monitoring, water absorption and chloride ion penetration tests, as well as 28-day density determination. Results revealed clear dose-dependent behavior, with SCM enhancing mortar flowability proportional to dosage, raising the spread diameter from 11.5 cm (control) to 20 cm at 1.25%. At 0.25% SCM, compressive strength (47.5 MPa at 28 days) and flexural strength (~2.9 MPa) were higher than those of the remaining SCM dosages, supported by sustained heat release and positive temperature differentials. However, dosages ≥ 0.5% drastically suppressed hydration kinetics and mechanical performance, with compressive strength falling below 10 MPa. Furthermore, high SCM content led to increased water absorption (up to 10.6%) and chloride permeability (CIP above 5100 C), while bulk density declined from 2250 kg/m3 to 2080 kg/m3 at 1.25% SCM. Statistical validation using one-way ANOVA confirmed that these differences across dosage levels were significant (p < 0.05), underscoring the importance of dosage optimization. This investigation confirms that low-dosage SCM (≤0.25%) can be an effective bio-additive, providing improved workability with negligible compromise in strength and durability. In contrast, higher dosages undermine matrix integrity and performance. Future work is recommended to assess long-term microstructural evolution, field exposure durability, and adaptability across diverse cementitious systems. Full article
(This article belongs to the Topic Green Construction Materials and Construction Innovation)
Show Figures

Figure 1

28 pages, 5852 KB  
Article
Interaction of PCE and Chemically Modified Starch Admixtures with Metakaolin-Based Geopolymers—The Role of Activator Type and Concentration
by Stephan Partschefeld, Jasmine Aschoff and Andrea Osburg
Materials 2025, 18(17), 4154; https://doi.org/10.3390/ma18174154 - 4 Sep 2025
Cited by 1 | Viewed by 1269
Abstract
Water-reducing admixtures are of enormous importance to adjust the workability of alkali-activated materials. Especially in geopolymers activated by highly concentrated alkaline solutions, the polycarboxylate ether (PCE) superplasticizers are less effective than in conventional cementitious systems. The aim of this study was to clarify [...] Read more.
Water-reducing admixtures are of enormous importance to adjust the workability of alkali-activated materials. Especially in geopolymers activated by highly concentrated alkaline solutions, the polycarboxylate ether (PCE) superplasticizers are less effective than in conventional cementitious systems. The aim of this study was to clarify the reasons for the lower dispersing performance of PCE and the synthesis of alternative dispersing agents based on the biopolymer starch to improve the workability of highly alkaline geopolymers. Furthermore, the focus of investigations was on the role of activator type and concentration as key parameters for geopolymer reaction and interaction of water-reducing agents. Therefore, in this study the conformation of three different types of PCE (MPEG: methacrylate ester, IPEG: isoprenol ether, and HPEG: methallyl ether) and synthesized starch admixtures in sodium and potassium hydroxide solutions (1 mol/L up to 8 mol/L) were studied. Furthermore, the dispersing performance, adsorption behavior, and influence on reaction kinetics in metakaolin-based geopolymer pastes were investigated in dependence on activator type and concentration. While the PCE superplasticizers show coiling and formation of insoluble aggregates at activator concentrations of 3 mol/L and 4 mol/L, the synthesized starch admixtures show no significant change in conformation. The cationic starch admixtures showed a higher dispersing performance in geopolymer pastes at all activator concentrations and types. The obtained adsorption isotherms depend strongly on the activator type and the charge density of the starch admixtures. The reaction kinetics of geopolymer pastes were not significantly influenced using the synthesized starch admixtures. Especially the cationic starch admixtures allow the reduction of liquid/solid ratios, which leads to higher flexural and compressive strengths. Full article
(This article belongs to the Special Issue Geopolymers and Fiber-Reinforced Concrete Composites (Second Edition))
Show Figures

Figure 1

23 pages, 7456 KB  
Article
Recycling Spent Fluorescent Lamp Glass Waste in Calcium Aluminate Cement: Effects on Hydration and Mechanical Performance
by Lucía Reig, Ángel M. Pitarch, Antonio Gallardo, Lourdes Soriano, María V. Borrachero, Jordi Payá and José M. Monzó
Appl. Sci. 2025, 15(17), 9629; https://doi.org/10.3390/app15179629 - 1 Sep 2025
Viewed by 805
Abstract
Calcium aluminate cement (CAC) offers rapid strength development, chemical durability in harsh environments, and high-temperature resistance, but its long-term performance may be compromised by the conversion of metastable hexagonal hydrates into stable cubic phases. Concurrently, recycling spent fluorescent lamp glass (SFLG) is limited [...] Read more.
Calcium aluminate cement (CAC) offers rapid strength development, chemical durability in harsh environments, and high-temperature resistance, but its long-term performance may be compromised by the conversion of metastable hexagonal hydrates into stable cubic phases. Concurrently, recycling spent fluorescent lamp glass (SFLG) is limited because of its residual mercury content. This study investigates the use of manually (MAN) and mechanically (MEC) processed SFLG as partial CAC replacements (up to 50 wt.%). Both SFLG types had irregular morphologies with mean particle sizes of ~20 µm and mercury concentrations of 3140 ± 61 ppb (MAN) and 2133 ± 119 ppb (MEC). Moreover, the addition of SFLG reduced the initial and final setting times, whilst MEC waste notably extended the plastic state duration from 20 min (reference) to 69 min (50 wt.% MEC). Furthermore, strength development was accelerated, with SFLG/CAC mortars reaching peak strengths at 7–10 days versus 28 days as in the CAC reference. CAC and 15 wt.% SFLG mortars showed strength loss over time by reason of their phase conversion, whereas mortars with 25–50 wt.% SFLG experienced significant long-term strength gains, reaching ~60 MPa (25 wt.%) and ~45 MPa (35 wt.%), respectively, after 365 days, with strength activity indexes (SAI) near 90% and 70%, respectively. These improvements are attributed to the formation of strätlingite (C2ASH8), which stabilized hexagonal CAH10 and mitigated conversion to cubic katoite (C3AH6). Mercury leaching remained below 0.01 mg/kg dry matter for all mixes and curing ages, classifying the mortars as non-hazardous and inert under Spanish Royal Decree 646/2020. The results suggest that SFLG can be safely reused as a sustainable admixture in CAC systems, enhancing long-term mechanical performance while minimizing environmental impact. Full article
(This article belongs to the Special Issue Advances in the Sustainability and Energy Efficiency of Buildings)
Show Figures

Figure 1

22 pages, 36383 KB  
Article
Alkali Cation Effects on Compressive Strength of Metakaolin–Low-Calcium Fly Ash-Based Geopolymers
by Yan Li and Hongguang Wang
Materials 2025, 18(17), 4080; https://doi.org/10.3390/ma18174080 - 31 Aug 2025
Cited by 1 | Viewed by 864
Abstract
Considering the current requirement for high temperatures and the significant energy consumption in the preparation of geopolymer-based cements, this paper presents a study on the compressive strength of metakaolin-based geopolymers containing various low-calcium fly ash admixtures, prepared at room temperature (25 ± 2 [...] Read more.
Considering the current requirement for high temperatures and the significant energy consumption in the preparation of geopolymer-based cements, this paper presents a study on the compressive strength of metakaolin-based geopolymers containing various low-calcium fly ash admixtures, prepared at room temperature (25 ± 2 °C). The physical properties and microstructure of the geopolymers were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The type of alkaline cations, phase transformation, evolution of characteristic functional groups, and hydration characteristics of the microstructures were analyzed, and the hydration mechanism is discussed. The experimental results indicated that the fly ash content had a more significant impact on compressive strength than the alkaline cation type (Na+/K+). The optimal formulation (20% fly ash with 20% KOH activator) reached a compressive strength of 76.70 MPa at 28 days, which was around 6% higher than that of the NaOH-activated counterpart (72.34 MPa). Crystalline phase analysis in the transformation of mullite and microstructure analysis indicated that the increase in compressive strength could be attributed to the effective filling of the matrix interface by chemically inert fillers and the dense N-A-S-H and C-(A)-S-H multi-dimensional gel structures. These experiments prove the feasibility of using fly ash and metakaolin to prepare geopolymer materials with high compressive strength at room temperature. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 1676 KB  
Article
Mitigating Strength Loss in Geopolymers in Low-Temperature Environments by Sodium Nitrite Addition
by Andrie Harmaji and Reza Jafari
Materials 2025, 18(17), 3987; https://doi.org/10.3390/ma18173987 - 26 Aug 2025
Viewed by 1093
Abstract
Geopolymer binders are a promising low-carbon substitute for Portland cement, but their behavior in cold climates remains underexplored. This study investigates the influence of sodium nitrite (NaNO2) on geopolymer properties cured at −10 °C for 28 days. The binders were formulated [...] Read more.
Geopolymer binders are a promising low-carbon substitute for Portland cement, but their behavior in cold climates remains underexplored. This study investigates the influence of sodium nitrite (NaNO2) on geopolymer properties cured at −10 °C for 28 days. The binders were formulated from bauxite residue, fly ash, and waste glass, and NaNO2 was added in various dosages as a chemical admixture. The geopolymer was tested for its setting time, compressive strength, and chemical and morphological characterizations. The addition of the 3 wt% NaNO2 significantly improved the strength retention in the cold environment, with a compressive strength of 40.7 MPa, compared to a geopolymer without an admixture (26.1 MPa). The X-ray diffraction (XRD) analysis confirmed the presence of gismondine, quartz, and FeSiO3, with NaNO2 remaining largely unreacted within the matrix. Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of Si–O–T bonds in the NaNO2-modified samples, which showed continued geopolymerization at low temperatures. Scanning electron microscopy (SEM) revealed reduced cracking and a denser microstructure with increasing concentrations of NaNO2. The results indicate that NaNO2 not only mitigates the adverse effects of subzero curing but also promotes structure development, and hence it is a viable admixture for enhancing the cold weather durability of geopolymer materials. Full article
(This article belongs to the Special Issue Advanced Geomaterials and Reinforced Structures (Second Edition))
Show Figures

Graphical abstract

16 pages, 2954 KB  
Article
The Influence of Two-Region Morphology and Grain Shape on the Transport Critical Current Density in the Range from 15 K to 30 K in SiC-Doped MgB2 Wires Fabricated by the Powder-in-Tube Method
by Daniel Gajda, Michał Babij, Andrzej Zaleski, Dogan Avci, Hakan Yetis, Ibrahim Belenli, Fırat Karaboga, Damian Szymanski and Tomasz Czujko
Materials 2025, 18(17), 3960; https://doi.org/10.3390/ma18173960 - 24 Aug 2025
Viewed by 944
Abstract
The paper presents the results of the influence of SiC dopant, annealing temperature, and annealing time on the morphology of MgB2 material in superconducting wires. The results of measurements of critical temperature (Tc), irreversible magnetic field (Birr [...] Read more.
The paper presents the results of the influence of SiC dopant, annealing temperature, and annealing time on the morphology of MgB2 material in superconducting wires. The results of measurements of critical temperature (Tc), irreversible magnetic field (Birr), resistance in the normal state (Rn), and transport critical current density (Jct) at the temperature range from 15 K to 30 K are presented. The MgB2 material is characterized by the presence of two specific regions. The first region with high density, excess Mg, and rectangular MgB2 grains is located outside the voids surrounding them. The second region occurs inside the ceramic core, away from voids, and its chemical composition corresponds to a stoichiometric Mg to B ratio (1:2), and it is characterized by the presence of spherical grains and lower material density. A higher amount of SiC admixtures (6 at.%) causes an increase in the first region surface area. This kind of structure observation in MgB2 superconducting wires has never been reported previously. The transport measurements showed that higher SiC dopant leads to lower Jct at higher temperatures and high magnetic fields. The studies showed that the point-dominant mechanism and the first region allow for obtaining high Jct at 30 K. Full article
(This article belongs to the Special Issue Advanced Superconducting Materials and Technology)
Show Figures

Figure 1

23 pages, 12244 KB  
Article
The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate–Carbonatite Complex, NW Anatolia
by Yalçın E. Ersoy, Hikmet Yavuz, İbrahim Uysal, Martin R. Palmer and Dirk Müller
Minerals 2025, 15(8), 867; https://doi.org/10.3390/min15080867 - 17 Aug 2025
Viewed by 1297
Abstract
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on [...] Read more.
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastnäsite. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical–elliptical pelletal lapilli (2–3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate–carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

30 pages, 5274 KB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 - 31 Jul 2025
Viewed by 1270
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

15 pages, 2645 KB  
Article
Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA)
by Quddus Tushar, Muhammed A. Bhuiyan, Ziyad Abunada, Charles Lemckert and Filippo Giustozzi
C 2025, 11(3), 55; https://doi.org/10.3390/c11030055 - 28 Jul 2025
Cited by 9 | Viewed by 5535
Abstract
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2 [...] Read more.
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2SiO3), superplasticizer, and others, are assessed to reflect the actual scenarios of the carbon footprint. The conjugate application of the life cycle assessment (LCA) tool SimPro 9.4 and @RISK Monte Carlo simulation justifies the variations in carbon emissions rather than a specific determined value for concrete binders, precursors, and filler materials. A reduction of 43% in carbon emissions has been observed by replacing cement with alkali-activated binders. However, the associative uncertainties of chemical admixtures reveal that even a slight increase may cause significant environmental damage rather than its benefit. Pearson correlations of carbon footprint with three admixtures, namely sodium silicate (r = 0.80), sodium hydroxide (r = 0.52), and superplasticizer (r = 0.19), indicate that the shift from cement to alkaline activation needs additional precaution for excessive use. Therefore, a suitable method of manufacturing chemical activators utilizing renewable energy sources may ensure long-term sustainability. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

Back to TopTop