Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (679)

Search Parameters:
Keywords = channel radiator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 182
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 273
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

19 pages, 5148 KiB  
Article
Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau
by Yajun Li, Xiangpeng Fan and Yuxiang Zhao
Atmosphere 2025, 16(8), 906; https://doi.org/10.3390/atmos16080906 - 26 Jul 2025
Viewed by 211
Abstract
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system [...] Read more.
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system and broadband electric field. The research results show that two discharge regions appeared during the development stage of the thunderstorm. The charge structure was all a negative dipolar polarity in two discharge regions; however, the heights of the charge regions were different. The positive-charge region at a height of 2–3.5 km corresponds to −1–−10 °C and the negative-charge region at a height of 3.5–5 km corresponds to −11–−21 °C in one discharge region; the positive-charge region at a height of 4–5 km corresponds to −15–−21 °C and the negative-charge region at a height of 5–6 km corresponds to −21–−29 °C in another region. The charge regions with the same polarity at different heights in the two discharge regions gradually connected with the occurrence of the hail-falling process during the development stage of the thunderstorm, and the overall height of the charge regions decreased. All the intracloud lightning flashes that occurred in the thunderstorm were of inverted polarity discharge, and the horizontal transmission distance of the discharge channel was short, all within 10 km. The negative intracloud lightning flash, negative cloud-to-ground lightning flash, and positive cloud-to-ground lightning flash generated during the thunderstorm process accounted for 83%, 16%, and 1% of the total number of lightning flashes, respectively. Negative cloud-to-ground lightning flashes mainly occurred more frequently in the early phase of the thunderstorm development stage. As the thunderstorm developed, the frequency of intracloud lightning flashes became greater than that of negative cloud-to-ground lightning flashes, and finally far exceeded it. The frequency of lightning flashes decreases sharply and the intensity of thunderstorms decreases during the hail-falling period. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 4345 KiB  
Article
Single-Thermocouple Suspended Microfluidic Thermal Sensor with Improved Heat Retention for the Development of Multifunctional Biomedical Detection
by Lin Qin, Xiasheng Wang, Chenxi Wu, Yuan Ju, Hao Zhang, Xin Cheng, Yuanlin Xia, Cao Xia, Yubo Huang and Zhuqing Wang
Sensors 2025, 25(15), 4532; https://doi.org/10.3390/s25154532 - 22 Jul 2025
Viewed by 268
Abstract
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study [...] Read more.
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study reviews current sensor-related theories of heat conduction, convective heat transfer and thermal radiation. Heat loss models for suspended and non-suspended bridge structures are established, and finite element analysis is conducted to evaluate their thermal performance. The thermal performance of the suspended bridge structure is further validated through infrared temperature measurements on the manufactured sensor device. Theoretical calculations demonstrate that the proposed suspension bridge structure reduces heat loss by 88.64% compared with traditional designs. Benefiting from this improved heat retention, which was also confirmed by infrared thermography, the thermal sensor fabricated based on the suspension bridge structure achieves an ultra-high sensitivity of 0.38 V/W and a fast response time of less than 200 ms, indicating a high accuracy in thermal characterization. The correlation coefficient obtained for the sensor output voltage and input power of the sensor is approximately 1.0. Based on this design, multiple microfluidic channels with suspended bridge structures can be integrated to realize multi-component detection, which is important for the development of multifunctional biomedical detection. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 2263 KiB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 252
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

16 pages, 6343 KiB  
Article
Smart Sensor Platform for MIMO Antennas with Gain and Isolation Enhancement Using Metamaterial
by Kranti Dhirajsinh Patil, Dinesh M. Yadav and Jayshri Kulkarni
Electronics 2025, 14(14), 2892; https://doi.org/10.3390/electronics14142892 - 19 Jul 2025
Viewed by 285
Abstract
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed [...] Read more.
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed on an FR4 substrate (1.6 mm thick), the proposed antenna configurations include a base hexagonal patch, an orthogonally oriented two-element system (TEH_OC), and further enhanced variants employing metamaterial arrays as the superstrate and reflector (TEH_OC_MTS and TEH_OC_MTR). The metamaterial structures significantly suppress mutual coupling, yielding superior diversity parameters such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL). All configurations were fabricated and validated through comprehensive anechoic chamber measurements. The results demonstrate robust isolation and radiation performance across the 3 GHz and 5 GHz bands, making these antennas well-suited for deployment in compact, low-latency smart sensor networks operating in 5G and IoT environments. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

35 pages, 10456 KiB  
Article
Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region
by Ildiko Horvath and Brian C. Lovell
Atmosphere 2025, 16(7), 862; https://doi.org/10.3390/atmos16070862 - 15 Jul 2025
Viewed by 323
Abstract
Rare (only 10) observations, made in the southern topside ionosphere during 2015–2016, demonstrate the amplification of westward subauroral polarization streams (SAPS) up to 3000 m/s near the Harang region. The observed amplified SAPS flows were streaming antisunward after midnight and sunward at midnight, [...] Read more.
Rare (only 10) observations, made in the southern topside ionosphere during 2015–2016, demonstrate the amplification of westward subauroral polarization streams (SAPS) up to 3000 m/s near the Harang region. The observed amplified SAPS flows were streaming antisunward after midnight and sunward at midnight, where the dusk convection cell intruded dawnward. One SAPS event illustrates the elevated electron temperature (Te; ~5500 K) and the stable auroral red arc developed over Rothera. Three inner-magnetosphere SAPS events depict the Harang region’s earthward edge within the plasmasheet’s earthward edge, where the outward SAPS electric (E) field (within the downward Region 2 currents) and inward convection E field (within the upward Region 2 currents) converged. Under isotropic or weak anisotropic conditions, the hot zone was fueled by the interaction of auroral kilometric radiation waves and electron diamagnetic currents. Generated for the conjugate topside ionosphere, the SAMI3 simulations reproduced the westward SAPS flow in the deep electron density trough, where Te became elevated, and the dawnward-intruding westward convection flows. We conclude that the near-midnight westward SAPS flow became amplified because of the favorable conditions created near the Harang region by the convection E field reaching subauroral latitudes and the positive feedback mechanisms in the SAPS channel. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

20 pages, 1811 KiB  
Article
Enhancing Direction-of-Arrival Estimation for Single-Channel Reconfigurable Intelligent Surface via Phase Coding Design
by Changcheng Hu, Ruoyu Zhang, Jingqi Wang, Boyu Sima, Yue Ma, Chen Miao and Wei Kang
Remote Sens. 2025, 17(14), 2394; https://doi.org/10.3390/rs17142394 - 11 Jul 2025
Viewed by 311
Abstract
Traditional antenna arrays for direction-of-arrival (DOA) estimation typically require numerous elements to achieve target performance, increasing system complexity and cost. Reconfigurable intelligent surfaces (RISs) offer a promising alternative, yet their performance critically depends on phase coding design. To address this, we propose a [...] Read more.
Traditional antenna arrays for direction-of-arrival (DOA) estimation typically require numerous elements to achieve target performance, increasing system complexity and cost. Reconfigurable intelligent surfaces (RISs) offer a promising alternative, yet their performance critically depends on phase coding design. To address this, we propose a phase coding design method for RIS-aided DOA estimation with a single receiving channel. First, we establish a system model where averaged received signals construct a power-based formulation. This transforms DOA estimation into a compressed sensing-based sparse recovery problem, with the RIS far-field power radiation pattern serving as the measurement matrix. Then, we derive the decoupled expression of the measurement matrix, which consists of the phase coding matrix, propagation phase shifts, and array steering matrix. The phase coding design is then formulated as a Frobenius norm minimization problem, approximating the Gram matrix of the equivalent measurement matrix to an identity matrix. Accordingly, the phase coding design problem is reformulated as a Frobenius norm minimization problem, where the Gram matrix of the equivalent measurement matrix is approximated to an identity matrix. The phase coding is deterministically constructed as the product of a unitary matrix and a partial Hadamard matrix. Simulations demonstrate that the proposed phase coding design outperforms random phase coding in terms of angular estimation accuracy, resolution probability, and the requirement of coding sequences. Full article
Show Figures

Figure 1

21 pages, 2471 KiB  
Article
Attention-Based Mask R-CNN Enhancement for Infrared Image Target Segmentation
by Liang Wang and Kan Ren
Symmetry 2025, 17(7), 1099; https://doi.org/10.3390/sym17071099 - 9 Jul 2025
Viewed by 403
Abstract
Image segmentation is an important method in the field of image processing, while infrared (IR) image segmentation is one of the challenges in this field due to the unique characteristics of IR data. Infrared imaging utilizes the infrared radiation emitted by objects to [...] Read more.
Image segmentation is an important method in the field of image processing, while infrared (IR) image segmentation is one of the challenges in this field due to the unique characteristics of IR data. Infrared imaging utilizes the infrared radiation emitted by objects to produce images, which can supplement the performance of visible-light images under adverse lighting conditions to some extent. However, the low spatial resolution and limited texture details in IR images hinder the achievement of high-precision segmentation. To address these issues, an attention mechanism based on symmetrical cross-channel interaction—motivated by symmetry principles in computer vision—was integrated into a Mask Region-Based Convolutional Neural Network (Mask R-CNN) framework. A Bottleneck-enhanced Squeeze-and-Attention (BNSA) module was incorporated into the backbone network, and novel loss functions were designed for both the bounding box (Bbox) regression and mask prediction branches to enhance segmentation performance. Furthermore, a dedicated infrared image dataset was constructed to validate the proposed method. The experimental results demonstrate that the optimized model achieves higher segmentation accuracy and better segmentation performance compared to the original network and other mainstream segmentation models on our dataset, demonstrating how symmetrical design principles can effectively improve complex vision tasks. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Computer Vision)
Show Figures

Figure 1

11 pages, 681 KiB  
Communication
Compact Four-Port MIMO Antenna Using Dual-Polarized Patch and Defected Ground Structure for IoT Devices
by Dat Tran-Huy, Cuong Do-Manh, Hung Pham-Duy, Nguyen Tran-Viet-Duc, Hung Tran, Dat Nguyen-Tien and Niamat Hussain
Sensors 2025, 25(14), 4254; https://doi.org/10.3390/s25144254 - 8 Jul 2025
Viewed by 346
Abstract
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized [...] Read more.
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized radiator, which increases the antenna size when scaling to a multi-port MIMO array, a dual-polarized radiator is utilized. This helps to achieve multi-port operation with compact size features. To reduce the mutual coupling between the MIMO elements, an I-shaped defected ground structure is inserted into the ground plane. The measured results indicate that the final four-port MIMO antenna with overall dimensions of 0.92 λ× 0.73 λ× 0.03 λ at 5.5 GHz can achieve an operating bandwidth of about 2.2% with isolation better than 20 dB and a gain higher than 6.0 dBi. Additionally, the proposed method is also applicable to a large-scale MIMO array. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 301
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

18 pages, 6082 KiB  
Article
Metamaterial-Enhanced MIMO Antenna for Multi-Operator ORAN Indoor Base Stations in 5G Sub-6 GHz Band
by Asad Ali Khan, Zhenyong Wang, Dezhi Li, Atef Aburas, Ali Ahmed and Abdulraheem Aburas
Appl. Sci. 2025, 15(13), 7406; https://doi.org/10.3390/app15137406 - 1 Jul 2025
Viewed by 412
Abstract
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable [...] Read more.
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable framework for radio access networks (RANs), while SDR refers to a radio communication system where functions are implemented via software on a programmable platform. A 3 × 3 metamaterial (MTM) superstrate is placed above the MIMO antenna array to improve gain and reduce the mutual coupling of MIMO. The proposed MIMO antenna operates over a 300 MHz bandwidth (3.5–3.8 GHz), enabling shared infrastructure for multiple operators. The antenna’s dimensions are 75 × 75 × 18.2 mm3. The antenna possesses a reduced mutual coupling less than −30 dB and a 3.5 dB enhancement in gain with the help of a novel 3 × 3 MTM superstrate 15 mm above the radiating MIMO elements. A performance evaluation based on simulated results and lab measurements demonstrates the promising value of key MIMO metrics such as a low envelope correlation coefficient (ECC) < 0.002, diversity gain (DG) ~10 dB, total active reflection coefficient (TARC) < −10 dB, and channel capacity loss (CCL) < 0.2 bits/sec/Hz. Real-world testing of the proposed antenna for ORAN-based sub-6 GHz indoor wireless systems demonstrates a downlink throughput of approximately 200 Mbps, uplink throughput of 80 Mbps, and transmission delays below 80 ms. Additionally, a walk test in an indoor environment with a corresponding floor plan and reference signal received power (RSRP) measurements indicates that most of the coverage area achieves RSRP values exceeding −75 dBm, confirming its suitability for indoor applications. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

17 pages, 4438 KiB  
Article
Y5F3[AsO3]4 and Y5Cl3[AsO3]4: Two Non-Isostructural Yttrium Halide Oxoarsenates(III) and Their Potential as Hosts for Luminescent Eu3+- and Tb3+-Doping
by Ralf J. C. Locke, Martina Mikuta, Florian Ledderboge, Frank C. Zimmer, Henning A. Höppe and Thomas Schleid
Crystals 2025, 15(7), 611; https://doi.org/10.3390/cryst15070611 - 30 Jun 2025
Viewed by 283
Abstract
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure [...] Read more.
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure linked via secondary contacts forms a three-dimensional network 3{[Y5F3]12+} and the remaining part consists of ψ1-tetrahedral [AsO3]3− units, which leave lone-pair channels along [001]. In contrast, platelet-shaped Y5Cl3[AsO3]4 crystals adopt the monoclinic space group C2/c with the lattice parameters a = 1860.56(9) pm, b = 536.27(3) pm, c = 1639.04(8) pm and β = 105.739(3)° for Z = 4. Condensation of [(Y1,2)O8]13− polyhedra via four common edges each leads to fluorite-like 2 {[(Y1,2)O e8/2 ]5−} layers spreading out parallel to the (100) plane. Their three-dimensional linkage occurs via the (Y3)3+ cations with their Cl ligands on the one hand and the As3+ cations with their lone-pairs of electrons on the other, which also form within [AsO3]3− anions lone-pair channels along [010]. Both colorless compounds can be obtained by solid-state reactions from corresponding mixtures of the binaries (Y2O3, As2O3 and YX3 with X = F and Cl) at elevated temperatures of 825 °C, most advantageously under halide-flux assistance (CsBr for Y5F3[AsO3]4 and ZnCl2 for Y5Cl3[AsO3]4). By replacing a few percent of YX3 with EuX3 or TbX3, Eu3+- or Tb3+-doped samples are accessible, which show red or green luminescence upon excitation with ultraviolet radiation. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure of Rare-Earth Metal Compounds)
Show Figures

Figure 1

20 pages, 3340 KiB  
Article
Infrared Monocular Depth Estimation Based on Radiation Field Gradient Guidance and Semantic Priors in HSV Space
by Rihua Hao, Chao Xu and Chonghao Zhong
Sensors 2025, 25(13), 4022; https://doi.org/10.3390/s25134022 - 27 Jun 2025
Viewed by 405
Abstract
Monocular depth estimation (MDE) has emerged as a powerful technique for extracting scene depth from a single image, particularly in the context of computational imaging. Conventional MDE methods based on RGB images often degrade under varying illuminations. To overcome this, an end-to-end framework [...] Read more.
Monocular depth estimation (MDE) has emerged as a powerful technique for extracting scene depth from a single image, particularly in the context of computational imaging. Conventional MDE methods based on RGB images often degrade under varying illuminations. To overcome this, an end-to-end framework is developed that leverages the illumination-invariant properties of infrared images for accurate depth estimation. Specifically, a multi-task UNet architecture was designed to perform gradient extraction, semantic segmentation, and texture reconstruction from infrared RAW images. To strengthen structural learning, a Radiation Field Gradient Guidance (RGG) module was incorporated, enabling edge-aware attention mechanisms. The gradients, semantics, and textures were mapped to the Saturation (S), Hue (H), and Value (V) channels in the HSV color space, subsequently converted into an RGB format for input into the depth estimation network. Additionally, a sky mask loss was introduced during training to mitigate the influence of ambiguous sky regions. Experimental validation on a custom infrared dataset demonstrated high accuracy, achieving a δ1 of 0.976. These results confirm that integrating radiation field gradient guidance and semantic priors in HSV space significantly enhances depth estimation performance for infrared imagery. Full article
Show Figures

Figure 1

23 pages, 3114 KiB  
Article
Heat Transfer Enhancement in Flue-Gas Systems with Radiation-Intensifying Inserts: An Analytical Approach
by Justina Menkeliūnienė, Rolandas Jonynas, Linas Paukštaitis, Algimantas Balčius and Kęstutis Buinevičius
Energies 2025, 18(13), 3383; https://doi.org/10.3390/en18133383 - 27 Jun 2025
Viewed by 363
Abstract
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative [...] Read more.
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative and convective heat transfer in flue-gas heated channels. A systematic literature review revealed a research gap in understanding the interaction between these mechanisms in flue-gas heat exchangers. To address this, analytical calculations were conducted for two geometries: a radiation-intensifying plate between parallel plates and the same insert in a circular pipe. The analysis covered a range of gas-flue and wall temperatures (560–1460 K and 303–393 K, respectively), flow velocities, and spectral emissivity values. Key performance metrics included Reynolds and Nusselt numbers to assess flow resistance and heat transfer. Results indicated that flue-gas temperature has the most significant effect on total rate of heat transfer, and the insert significantly enhanced radiative heat transfer by over 60%, increasing flow resistance. A local Nusselt number minimum at a length-to-diameter ratio of approximately 26 suggested transitional flow behavior. These results provide valuable insights for the design of high-temperature heat exchangers, with future work planned to validate the findings experimentally. Full article
Show Figures

Figure 1

Back to TopTop