Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau
Abstract
1. Introduction
2. Introduction of the Observation Network and Data
3. Analysis of the Charge Structure and Lightning Activity Characteristics During the Thunderstorm Process
3.1. Introduction of the Thunderstorm Overview
3.2. Analysis of the Thunderstorm Charge Structure
3.2.1. Analysis of the Charge Structure Before Hailing
3.2.2. Characteristics of the Charge Structure After Hailing
3.3. Analysis of the Relationship Between Characteristics of Lightning Activity and Charge Structure
4. Conclusions and Discussion
- Throughout the thunderstorm’s development stage, the charge structure remained a negative dipole, although the vertical positions of the same-polarity charge layers differed between the two discharge regions. In one region, the positive-charge region lay between 2.0 and 3.5 km (−1 °C to −10 °C), with the negative-charge region above it from 3.5 to 5.0 km (−11 °C to −21 °C). In the other region, the positive-charge region was from 4.0 to 5.0 km (−15 °C to −21 °C), and the negative-charge region from 5.0 to 6.0 km (−21 °C to −29 °C).
- In the development stage of the thunderstorm, multiple discharge regions existed within the same thunderstorm cell. The horizontal propagation distance of lightning discharge processes was relatively short, remaining within 10 km.
- Initially, the frequency of negative IC lightning flashes was approximately equal to that of negative CG lightning flashes. However, as the thunderstorm progressed, the frequency of negative IC flashes surpassed that of negative CG flashes, ultimately leading to a situation where negative IC flashes significantly outnumbered negative CG flashes; negative IC flashes reached six times as many as negative CG flashes.
- Negative IC lightning flashes accounted for 83% of the total lightning activity during the thunderstorm, with negative CG lightning flashes constituting 16%, and positive CG lightning flashes being extremely rare at only 1%. The average discharge duration for positive CG lightning flashes was the longest, while the duration for negative CG flashes was longer than that for IC flashes.
- A few lightning flashes occurred during the hail period. The ongoing hail significantly diminished the intensity of the thunderstorm, leading to a decrease in overall height of the charge region and a reduction in lightning flash frequency. Additionally, the hail process resulted in adjustments to the charge regions within the thunderstorm, causing charge regions of the same polarity in different discharge areas to become connected. Despite these changes, the charge structure continued to exhibit negative dipolar polarity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qie, X.S.; Toumi, R.; Zhou, Y.J. Lightning activity on the central Tibetan Plateau and its response to convective available potential energy. Chin. Sci. Bull. 2003, 48, 296–299. [Google Scholar] [CrossRef]
- Qie, X.S.; Zhang, T.L.; Chen, C.P.; Zhang, G.S.; Zhang, T.; Wei, W.Z. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett. 2005, 32, L05814. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Dong, W.S.; Zhao, Y.; Zhang, G.S.; Zhang, H.F.; Chen, C.P.; Zhang, T. Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau. Sci. China Earth Sci. 2004, 47, 108–114. [Google Scholar]
- Zheng, D.; Zhang, Y. New insights into the correlation between lightning flash rate and size in thunderstorms. Geophys. Res. Lett. 2021, 48, e2021GL096085. [Google Scholar] [CrossRef]
- Qie, X.S.; Zhang, T.L.; Zhang, G.S.; Zhang, T.; Kong, X.Z. Electrical characteristics of thunderstorms in different plateau regions of China. Atmos. Res. 2009, 91, 244–249. [Google Scholar] [CrossRef]
- Williams, E.R. The tripole structure of thunderstorms. J. Geophys. Res. 1989, 94, 13151. [Google Scholar] [CrossRef]
- Simpson, G.; Scrase, F.J. The distribution of electricity in thunderclouds. Proc. R. Soc. Lond. Ser. A 1937, 161, 309–352. [Google Scholar]
- Marshall, T.C.; Winn, W.P. Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge center. J. Geophys. Res. 1982, 87, 7141–7157. [Google Scholar] [CrossRef]
- Marshall, T.C.; Stolzenburg, M. Estimates of cloud charge densities in thunderstorms. Geophys. Res. 1998, 103, 19769–19775. [Google Scholar] [CrossRef]
- Bateman, M.G.; Marshall, T.C.; Stolzenburg, M.; Rust, W.D. Precipitation charge and size measurements inside a New Mexico mountain thunderstorm. J. Geophys. Res. Atmos. 1999, 104, 9643–9653. [Google Scholar] [CrossRef]
- Mo, Q.; Helsdon, J.H., Jr.; Winn, W.P. Aircraft observations of the creation of lower 893 positive charges in thunderstorms. J. Geophys. Res. Atmos. 2002, 107, ACL 4-1–ACL 4-15. [Google Scholar] [CrossRef]
- Qie, X.S. The possible charge structure of thunderstorm and lightning discharges in northeastern verge of Qinghai-Tibetan Plateau. Atmos. Res. 2005, 76, 231–246. [Google Scholar] [CrossRef]
- Qie, X.; Zhang, Y.; Zhang, Q. Characteristics of lightning discharges and electric structure of thunderstorm. Acta Meteorol. Sin. 2006, 20, 244–257. [Google Scholar]
- Cui, H.; Qie, X.; Zhang, Q.; Zhang, T.; Zhang, G.; Yang, J. Intracloud discharge and the correlated basic charge structure of a thunderstorm in Zhongchuan, a Chinese inland plateau region. Atmos. Res. 2008, 91, 425–429. [Google Scholar] [CrossRef]
- Zhang, T.; Qie, X.; Yuan, T.; Zhang, G.; Zhang, T.; Zhao, Y. Charge source of cloud-to-ground lightning and charge structure of a typical thunderstorm in the Chinese inland plateau. Atmos. Res. 2009, 92, 475–480. [Google Scholar] [CrossRef]
- Zhao, Z.; Qie, X.; Zhang, T.; Zhang, T.; Zhang, H.; Wang, Y.; She, Y.; Sun, B.; Wang, H. Electric field soundings and the charge structure within an isolated thunderstorm. Chin. Sci. Bull. 2010, 55, 872–876. [Google Scholar] [CrossRef]
- Liu, X.S.; Ye, Z.X.; Shao, X.M.; Wang, C.W.; Yan, M.H.; Guo, C.M. Intracloud lightning discharges in the lower part of thundercloud. Acta Meteorol. Sin. 1989, 3, 212–219. [Google Scholar]
- Wang, D.H.; Liu, X.S. Preliminary Analysis of Thunderstorm Ground Flash Characteristics in Zhongchuan Area, Gansu. Plateau Meteorol. 1990, 9, 405–410. [Google Scholar]
- Wu, B.; Zhang, G.; Wen, J.; Zhang, T.; Li, Y.; Wang, Y. Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 12434–12459. [Google Scholar] [CrossRef]
- Fan, X.P.; Zhang, Y.J.; Zhang, G.S.; Zheng, D. Lightning characteristics and electric charge structure of a hail-producing thunderstorm on the Eastern Qinghai–Tibetan Plateau. Atmosphere 2018, 9, 295. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, G.S.; Wang, Y.H.; Wu, B. Observation and analysis of electrical structure change and diversity in thunderstorms on the Qinghai-Tibet Plateau. Atmos. Res. 2017, 194, 130–141. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Zhang, Y. Evolution of the charge structure and lightning discharge characteristics of a Qinghai-Tibet Plateau thunderstorm dominated by negative cloud-to-ground flashes. J. Geophys. Res. Atmos. 2020, 125, e2019JD031129. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hua, G.Y.; Yan, M.H.; An, X.M. Correlative Analysis of Electrical Activities, Convection and Precipitation Characteristics in Convective and Stratiform Cloud Systems. Plateau Meteorol. 1995, 14, 396–405. [Google Scholar]
- Zhang, Y.J.; Xu, L.T.; Zheng, D.; Wang, F. Research Progress on An tipolar Charge Structures in Severe Storms. J. Appl. Meteorol. Sci. 2014, 25, 513–526. [Google Scholar]
- Feng, G.L.; Chen, W.X.; Liu, S.J.; Li, Q.C. Analysis of Lightning Characteristics in Shandong Region. J. Appl. Meteorol. Sci. 2002, 13, 347–355. [Google Scholar]
- Feng, G.L.; Qie, X.S.; Yuan, T.; Niu, S. Lightning activity and precipitation structure of hailstorms. Sci. China Ser. D Earth Sci. 2007, 50, 629–639. [Google Scholar] [CrossRef]
- Chen, Z.Z. The characteristics of lightning from cloud to ground accompanying with hailstroms. Acta Meteorol. Sin. 1995, 53, 367–374. [Google Scholar]
- Qie, X.S.; Zhang, Y.J.; Yuan, T. A review of atmospheric electricity research in China. Adv. Atmos. Sci. 2015, 32, 169–191. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wang, P.X.; Yang, J.C.; Yan, H.X.; Mao, Y.Q.; Cheng, P. Statistical Characteristics of Local Hail in the Northeastern Tibetan Plateau and Discussion on Special Hail Cloud Monomers. J. Arid Meteorol. 2007, 25, 7. [Google Scholar]
- Zhang, G.S.; Wang, Y.H.; Qie, X.S.; Zhang, T.; Zhao, Y.X.; Li, Y.J.; Cao, D.J. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes. Sci. China Earth Sci. 2010, 53, 591–602. [Google Scholar] [CrossRef]
- Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576. [Google Scholar] [CrossRef]
- Krehbiel, P.R.; Thomas, R.J.; Rison, W.; Hamlin, T.; Hamlin, J.; Davis, M. GPS-based mapping system reveals lightning inside storms. Eos Trans. Am. Geophys. Union 2000, 81, 21–25. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Rust, W.D.; Schuur, T.J.; Biggerstaff, M.I.; Straka, J.M.; Ziegler, C.L.; Mansell, E.R.; Bruning, E.C.; Kuhlman, K.M.; Lund, N.R.; et al. TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Am. Meteorol. Soc. 2008, 9, 997–1013. [Google Scholar] [CrossRef]
- Mazur, V.; Ruhnke, L.H. Common physical processes in natural and artificially triggered lightning. J. Geophys. Res. Atmos. 1993, 98, 12913–12930. [Google Scholar] [CrossRef]
- Kasemir, H.W. A contribution to the electrostatic theory of lightning discharge. J. Geophys. Res. Atmos. 1960, 65, 1873–1878. [Google Scholar] [CrossRef]
- Shao, X.M.; Krehbiel, P.R. The spatial and temporal development of intracloud lightning. Geophys. Res. Lett. 1996, 101, 26641–26668. [Google Scholar] [CrossRef]
- Krehbiel, P.R.; Brook, M.; Mccrory, R.A. An analysis of the charge structure of lightning discharges to ground. J. Geophys. Res. 1979, 84, 2432. [Google Scholar] [CrossRef]
- Krehbiel, P.R. The Electrical Structure of Thunderstorms, The Earth′s Electrical Environment; National Academy Press: Washington, DC, USA, 1986; pp. 90–113. [Google Scholar]
- Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Bruning, E.C.; Weiss, S.A.; Calhoun, K.M. Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res. 2014, 135–136, 274–284. [Google Scholar] [CrossRef]
- Liu, D.; Li, F.; Qie, X.; Sun, Z.; Wang, Y.; Yuan, S.; Sun, C.; Zhu, K.; Wei, L.; Lyu, H.; et al. Charge structure and lightning discharge in a thunderstorm over the central Tibetan Plateau. Geophys. Res. Lett. 2024, 51, e2024GL109602. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Lyu, W.; Zhao, Y. Analysis of Inverted Charge Structure and Lightning Activity during the 8.14 Local Hailstorm on the Qinghai–Tibet Plateau. Atmosphere 2023, 14, 1795. [Google Scholar] [CrossRef]
PRES (hPa) | Height (m) | Wind Direction (°) | Wind Speed (m/s) | Wind Speed Shear Rate (m/s/100 m) | Wind Direction Shear Rate (°/100 m) |
---|---|---|---|---|---|
700.0 | 187 | 0 | 3.1 | 0.39 | 0 |
500.0 | 2905 | 285 | 11.8 | 0.39 | 10.4 |
400.0 | 4605 | 300 | 18.0 | 0.36 | 0.88 |
300.0 | 6675 | 300 | 39.1 | 1.02 | 0 |
250.0 | 7935 | 290 | 46.8 | 0.6 | 0.79 |
225.0 | 8648 | 285 | 50.9 | 0.57 | 0.7 |
200.0 | 9445 | 290 | 50.9 | 0 | 0.62 |
Type of Lightning Flash | Maximum Value (ms) | Minimum Value (ms) | Average Value (ms) |
---|---|---|---|
IC | 639 | 32 | 227 |
Negative CG | 430 | 132 | 267 |
Positive CG | 607 | 282 | 383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Fan, X.; Zhao, Y. Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau. Atmosphere 2025, 16, 906. https://doi.org/10.3390/atmos16080906
Li Y, Fan X, Zhao Y. Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau. Atmosphere. 2025; 16(8):906. https://doi.org/10.3390/atmos16080906
Chicago/Turabian StyleLi, Yajun, Xiangpeng Fan, and Yuxiang Zhao. 2025. "Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau" Atmosphere 16, no. 8: 906. https://doi.org/10.3390/atmos16080906
APA StyleLi, Y., Fan, X., & Zhao, Y. (2025). Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau. Atmosphere, 16(8), 906. https://doi.org/10.3390/atmos16080906