Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = changes in food and medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4384 KB  
Article
Study on the Mechanism of Ganoderma lucidum Polysaccharides for Ameliorating Dyslipidemia via Regulating Gut Microbiota and Fecal Metabolites
by Wenshuai Wang, Rui Sun, Jianjun Zhang, Le Jia and Yuanjun Dong
Biomolecules 2026, 16(1), 153; https://doi.org/10.3390/biom16010153 - 14 Jan 2026
Viewed by 131
Abstract
In today’s world, unhealthy living habits have contributed to the rise in metabolic disorders like hyperlipidemia. Recognized as a popular edible and medicinal mushroom in China and various eastern nations, Ganoderma lucidum is a promising high-value functional and medicinal food with multiple biological [...] Read more.
In today’s world, unhealthy living habits have contributed to the rise in metabolic disorders like hyperlipidemia. Recognized as a popular edible and medicinal mushroom in China and various eastern nations, Ganoderma lucidum is a promising high-value functional and medicinal food with multiple biological activities. Our earlier research has demonstrated that G. lucidum polysaccharides (GLP) showed distinct lipid-lowering abilities by enhancing the response to oxidative stress and inflammation, adjusting bile acid production and lipid regulation factors, and facilitating reverse cholesterol transport through Nrf2-Keap1, NF-κB, LXRα-ABCA1/ABCG1, CYP7A1-CYP27A1, and FXR-FGF15 pathways, hence we delved deeper into the effects of GLP on hyperlipidemia, focusing on its structural characterization, gut microbiota, and fecal metabolites. Our findings showed that GLP changed the composition and structure of gut microbiota, and 10 key biomarker strains screened by LEfSe analysis markedly increased the abundance of energy metabolism, and cell growth and death pathways which were found by PICRUSt2. In addition, GLP intervention significantly altered the fecal metabolites, which enriched in amino acid metabolism and lipid metabolism pathways. The results of structural characterization showed that GLP, with the molecular weight of 12.53 kDa, consisted of pyranose rings and was linked by α-type and β-type glycosidic bonds, and its overall morphology appeared as an irregular flaky structure with some flecks and holes in the surface. Collectively, our study highlighted that the protective effects of GLP were closely associated with the modification of gut microbiota and the regulation of metabolites profiles, thus ameliorating dyslipidemia. Full article
Show Figures

Graphical abstract

22 pages, 1251 KB  
Article
Assessment of Woody Species Diversity and Ecosystem Services in Restored Manzonzi Forest Landscape, Democratic Republic of the Congo
by Jean-Paul M. Tasi, Jean-Maron Maloti Ma Songo, Jean Semeki Ngabinzeke, Didier Bazile, Bocar Samba Ba, Jean-François Bissonnette and Damase P. Khasa
Conservation 2026, 6(1), 11; https://doi.org/10.3390/conservation6010011 - 13 Jan 2026
Viewed by 112
Abstract
Forests are important biodiversity reservoirs and require sustainable management to prevent deforestation and forest degradation. Forest landscape restoration (FLR) has been proposed as a sustainable initiative aimed at restoring ecosystem functions and improving the well-being of surrounding populations. In 2005, the World Wildlife [...] Read more.
Forests are important biodiversity reservoirs and require sustainable management to prevent deforestation and forest degradation. Forest landscape restoration (FLR) has been proposed as a sustainable initiative aimed at restoring ecosystem functions and improving the well-being of surrounding populations. In 2005, the World Wildlife Fund (WWF) initiated a project to protect 200 ha of savanna in Manzonzi landscape, Democratic Republic of Congo, on the outskirts of the Luki Biosphere Reserve. The biodiversity changes related to this ecological restoration project remain unpublished. To address this knowledge gap, floristic inventories of the protected Manzonzi landscape were carried out over a 12-year period and we assessed how changes in the floral composition of this landscape evolved and affected the provision of ecosystem services (ES). We found that protection of the savanna by banning recurring bush fires and fencing off the area promoted the richness and abundance of forest species, such as Xylopia aethiopica (Dunal) A. Rich, Albizia adianthifolia (Schumach.) W. Wight. These forest taxa replaced grassland species, such as Hymenocardia acida Tul. and Maprounea africana Müll. Arg., and served to benefit the local population, who use these forest taxa as food, fuelwood, and medicines. This study revealed that protected savanna improved woody biomass, plant diversity (richness/abundance), and carbon storage, significantly boosting essential ES for communities; yet these positive trends reversed when active monitoring ceased. Protecting savannas improves the environment and benefits communities, but stopping protection efforts can undo these gains, emphasizing the need for ongoing conservation. Full article
18 pages, 1873 KB  
Review
Application of SNV Detection Methods for Market Control of Food Products from New Genomic Techniques
by Klaudia Urszula Bernacka, Krzysztof Michalski, Marek Wojciechowski and Sławomir Sowa
Int. J. Mol. Sci. 2026, 27(2), 626; https://doi.org/10.3390/ijms27020626 - 8 Jan 2026
Viewed by 197
Abstract
The detection of single-nucleotide variants (SNVs) is an important challenge in modern genomics, with broad applications in medicine, diagnostics, and agricultural biotechnology. Current detection approaches include PCR-based techniques with high-affinity probes, ligase-based strategies, and sequencing approaches, each with varying degrees of sensitivity, specificity, [...] Read more.
The detection of single-nucleotide variants (SNVs) is an important challenge in modern genomics, with broad applications in medicine, diagnostics, and agricultural biotechnology. Current detection approaches include PCR-based techniques with high-affinity probes, ligase-based strategies, and sequencing approaches, each with varying degrees of sensitivity, specificity, and practicality. Despite advances in SNV analysis in the medical field, their implementation in the official control and monitoring of genetically modified organisms (GMOs) remains limited. This challenge has gained priority with the advent of new genomic techniques (NGTs), such as CRISPR-Cas nucleases, which allow precise genome editing, including subtle changes at the nucleotide level without introducing foreign DNA. Therefore, traditional methods of GMO detection targeting transgene sequences may not be sufficient to monitor such GMOs. In the European Union, GMO legislation requires distinguishing between conventionally bred and genetically modified plants. The planned introduction of new regulatory categories of NGT plants (NGT1 and NGT2) with different surveillance requirements emphasizes the need for robust, sensitive, and cost-effective SNV detection methods suitable for distinguishing between GMOs, particularly in the context of food and feed safety, traceability, and compliance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 8628 KB  
Article
Variability and Permanency: Variation in the Density of Leaf Glandular Trichomes and Terpene Composition in Mentha spicata var. crispa (Benth.) Danert and M. × piperita var. citrata (Ehrh.) Briq.
by Anna Vladimirovna Shirokova, Maria Sergeevna Plykina, Alexander Olegovich Ruzhitskiy, Ludmila Alekseevna Limantceva, Sergey Leonidovich Belopukhov, Valeria Lvovna Dmitrieva, Raisa Musaevna Khatsaeva, Sofya Arsenovna Dzhatdoeva, Andrey Nikolaevich Tsitsilin and Natalia Nikolaevna Butorina
Horticulturae 2026, 12(1), 58; https://doi.org/10.3390/horticulturae12010058 - 1 Jan 2026
Viewed by 261
Abstract
Essential oils (EOs) of Mentha spicata var. crispa (Benth.) Danert and M. × piperita var. citrata (Ehrh.) Briq. and EO components are widely used in medicine, pharmaceuticals, cosmetics, hygiene products, the food industry, and other fields, and have a high commercial value. The [...] Read more.
Essential oils (EOs) of Mentha spicata var. crispa (Benth.) Danert and M. × piperita var. citrata (Ehrh.) Briq. and EO components are widely used in medicine, pharmaceuticals, cosmetics, hygiene products, the food industry, and other fields, and have a high commercial value. The variety Mentha spicata var. crispa is also used as an ornamental plant due to its distinctive curled leaves. Studying the influence of growing conditions and harvest timing on EO yield and the major compound concentrations is one of the key research directions for Mentha species, aimed at the ascertainment of the ways of increasing EO production and quality. Gas chromatography analysis of the component composition of EOs from leaves of Mentha spicata var. crispaKurchavaya” (MscK) showed that it remained stable both in July and September, with carvone predominating (81% and 85%, respectively). In contrast, the EO composition from M. × piperita var. citrataApelsinovaya” (MpcA) leaves changed in the course of the vegetation period. In July, menthofuran dominated (30%), while in September, linalool and its acetate were predominant (34% and 47%, respectively), which was typical for this chemotype. At the same time, the content of EOs and the density of glandular trichomes (GTs) (the OE storage sites) in MscK were higher in July and decreased by September, whereas in MpcA, both EO content and the number of GTs increased from July to September. These changes may have been caused by temperature fluctuations. Thus, MscK proved to be more resistant to environmental factors than MpcA. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

18 pages, 2878 KB  
Article
Short-Term Continuous Cropping of Dioscorea polystachya Alters the Rhizosphere Soil Microbiome and Degrades Soil Fertility
by Guoxia Liu, Wei Liu, Xueyan Chen, Chuan Yao, Qinghua Pei, Zhikun Ma, Guoxin Xu, Xun Bu and Quanfang Zhang
Agronomy 2026, 16(1), 59; https://doi.org/10.3390/agronomy16010059 - 25 Dec 2025
Viewed by 209
Abstract
Chinese yam (Dioscorea polystachya) serves as both a food crop and a traditional Chinese medicine herb, yet it suffers from severe continuous cropping obstacles, typically requiring a six-year fallow period before replanting. Long-term continuous cropping changes soil properties, including the concentration [...] Read more.
Chinese yam (Dioscorea polystachya) serves as both a food crop and a traditional Chinese medicine herb, yet it suffers from severe continuous cropping obstacles, typically requiring a six-year fallow period before replanting. Long-term continuous cropping changes soil properties, including the concentration of N, P, and K, as well as bacterial composition, but the overall impact of short-term continuous cropping on important soil factors such as mineral elements, enzymes, and microbial composition still remains poorly understood. To elucidate how monoculture affects soil health, we collected rhizosphere soils from D. polystachya fields under one-, two-, and three-year continuous cropping in Chenji Town, and analyzed soil properties using general chemical methods, as well as microbial composition by Illuminar high-throughput sequencing of 16S rRNA and ITS1 regions. Furthermore, the correlation between soil properties and microbial communities was examined. The results showed that soil pH, cation exchange capacity, and organic matter content increased significantly in continuous cropping soil, whereas the concentrations of soil mineral elements (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, S, and Si) decreased significantly, with the concentration of available P, K, Cu, and Zn decreased by 72.8%, 64.1%, 99.3%, and 79.4%, respectively, in 3-year continuously cropped soil. Enzyme activities, including sucrase, urease, and alkaline phosphatase, also showed a decrease of more than 81%. Fungal diversity and abundance were markedly reduced with cropping duration, whereas bacterial communities showed less response. Notably, pathogenic fungi such as Dactylonectria, Neocosmospora, and Ilyonectria, along with bacteria Streptomyces, became enriched. These microbial shifts were primarily associated with soil pH, available potassium, and alkaline phosphatase. Our study demonstrates that the decline in soil fertility coupled with pathogen buildup constitutes a major cause of the continuous cropping obstacle in Chinese yams. The results provide a scientific basis for developing targeted strategies to mitigate continuous cropping obstacles in Chinese yam production. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

17 pages, 1137 KB  
Article
Purification and Biochemical Characterization of Polyphenol Oxidase from Falcaria vulgaris Bernh.
by Ceylan Buse Atlas Okut and Ayşe Türkhan
Molecules 2025, 30(24), 4806; https://doi.org/10.3390/molecules30244806 - 17 Dec 2025
Viewed by 305
Abstract
The polyphenol oxidase (PPO) enzyme leads to undesirable consequences by causing enzymatic browning during the processing of vegetables and fruits. As these browning reactions occur, many phenolic compounds of PPO can lead to significant changes in active metabolites due to substrate utilization. This [...] Read more.
The polyphenol oxidase (PPO) enzyme leads to undesirable consequences by causing enzymatic browning during the processing of vegetables and fruits. As these browning reactions occur, many phenolic compounds of PPO can lead to significant changes in active metabolites due to substrate utilization. This may cause a loss of appearance and nutritional and commercial value of food. The sickleweed (Falcaria vulgaris Bernh.) plant studied in the current research is considered an edible and medicinal food. In the present research, polyphenol oxidase was purified 15.65-fold with a yield of 23.61% by affinity chromatography. The optimum pH and temperature for catechol, 4-methylcatechol, and 3,4-dihydroxyphenylpropionic acid substrates were determined in separate experiments. For all three substrates, the optimum pH was 7.0, while the optimum temperature was 20 °C. The catalytic efficiency ratio (Vmax/Km) was employed to assess the substrate specificity. Since the highest Vmax/Km ratio reflects the greatest substrate affinity, 4-methylcatechol was identified as the substrate with the highest affinity for sickleweed PPO based on these values. pH stability and thermal stability were examined in the presence of 4-methylcatechol. The inhibitory effects of widely used antibrowning agents, sodium metabisulphite, citric acid, and ascorbic acid, on PPO activity were investigated. The results show that ascorbic acid was the most efficient inhibitor. Full article
Show Figures

Figure 1

31 pages, 1933 KB  
Review
The Applications of Nanocellulose and Its Modulation of Gut Microbiota in Relation to Obesity and Diabetes
by Tai L. Guo, Ayushi Bhagat and Daniel J. Guo
J. Nanotheranostics 2025, 6(4), 34; https://doi.org/10.3390/jnt6040034 - 3 Dec 2025
Viewed by 796
Abstract
Obesity and type 2 diabetes are closely linked and often referred to as diabesity. Therapies of diabesity include improving intestinal health and reducing intake of fat and sugars. Diagnosis of diabesity-related metabolic disorders would involve monitoring of glucose and other factors. Nanocellulose, also [...] Read more.
Obesity and type 2 diabetes are closely linked and often referred to as diabesity. Therapies of diabesity include improving intestinal health and reducing intake of fat and sugars. Diagnosis of diabesity-related metabolic disorders would involve monitoring of glucose and other factors. Nanocellulose, also known as cellulose nanomaterials, is emerging as a potential material for various applications. It has unique properties, such as high surface area, biodegradable, biocompatibility and tunable surface chemistry. In this review, we initially provided a brief description of differently produced nanocellulose and their potential applications in different areas, including therapeutics and diagnostics, by focusing on obesity and diabetes. Then, the uptake, absorption, distribution, metabolism and excretion of nanocellulose were discussed. Further, the mechanisms of nanocellulose in modulating diabesity were summarized by emphasizing the role of gut microbiota. Finally, we discussed gut microbiota-related health effects of nanocellulose, both beneficial and detrimental. It was found that the interactions between nanocellulose and gut were complex, with alterations of microbial composition, metabolic activity, and the immune functions both locally and systemically. There seemed to be many beneficial changes following short-term exposure to nanocellulose (e.g., increased beneficial bacteria and decreased pathogenic ones); however, some of these effects were no longer seen after long-term consumption. Importantly, long-term nanocellulose consumption may be associated with certain detrimental health effects, e.g., malnutrition and its associated neurotoxicity, although additional studies are needed to substantiate such health implications. This information is critical for developing safe and effective nanocellulose derivatives that can be applied in food and medicine as well as to harness the benefits of the gut microbiota. Full article
Show Figures

Figure 1

25 pages, 5029 KB  
Article
An Exploratory Study on the Influence of Frying on Chemical Constituent Transformation and Antioxidant Activity in Ziziphi Spinosae Semen: A Multimodal Analytical Strategy Based on UPLC–Q–TOF–MS and GC–IMS
by Xinyi Ouyang, Xiaonuo Shi, Chang Zhou, Mengyuan Li, Rujia Huang, Huiping Liu, Dan Huang and Guomin Zhang
Foods 2025, 14(23), 4145; https://doi.org/10.3390/foods14234145 - 3 Dec 2025
Viewed by 728
Abstract
Ziziphi Spinosae semen (ZSS) is renowned for its rich nutritional composition and is traditionally consumed in China, Japan, and Korea, where it is widely incorporated into both medicinal diets and daily cuisine. To address the lack of systematic research comparing raw and fried [...] Read more.
Ziziphi Spinosae semen (ZSS) is renowned for its rich nutritional composition and is traditionally consumed in China, Japan, and Korea, where it is widely incorporated into both medicinal diets and daily cuisine. To address the lack of systematic research comparing raw and fried ZSS, this study aimed to elucidate the compositional and functional changes induced by the frying process. This study systematically compared the chemical profiles and antioxidant activities of ZSS and fried ZSS using ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry (UPLC–Q–TOF–MS) and gas chromatography–ion mobility spectrometry (GC–IMS). A total of 92 non-volatile compounds and 43 volatile organic compounds (VOCs) were identified. Frying significantly promoted the formation of polar compounds such as flavonoids and saponins and increased the content of aldehydes and alcohols, thereby generating aromas characteristic of Maillard reactions and lipid oxidation. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) clearly distinguished the two groups in terms of their chemical composition and flavor characteristics. In addition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays demonstrated that the antioxidant capacity of fried ZSS was significantly higher than that of the raw sample (p < 0.05). These results indicate that the frying process reshapes the chemical properties and bioactivity of ZSS via multiple pathways, including glycoside hydrolysis, lipid oxidation, and Maillard reactions. Overall, this study establishes a scientific foundation for the development of functional foods derived from ZSS. Full article
Show Figures

Figure 1

21 pages, 2225 KB  
Article
Biochemical Responses of Atacama and Blesbok Sweet Potato (Ipomoea batatas L.) Cultivars to Early Drought Stress
by Fikile N. Makhubu, Lebogang E. Siviya, Molemi E. Rauwane, Sunette M. Laurie, Ntakadzeni E. Madala and Sandiswa Figlan
Plants 2025, 14(22), 3532; https://doi.org/10.3390/plants14223532 - 19 Nov 2025
Viewed by 705
Abstract
Sweet potato is a nutrient-dense crop with the potential to improve food security, yet its productivity is constrained by drought stress. Metabolic profiling in sweet potato, particularly in response to abiotic stress, remains poorly understood, with limited knowledge on the metabolites contributing to [...] Read more.
Sweet potato is a nutrient-dense crop with the potential to improve food security, yet its productivity is constrained by drought stress. Metabolic profiling in sweet potato, particularly in response to abiotic stress, remains poorly understood, with limited knowledge on the metabolites contributing to drought response. The study aimed to profile and compare metabolites in drought-tolerant (cv Atacama) and drought-susceptible (cv Blesbok) sweet potato cultivars under water-deficient conditions. The cultivars were grown in a rainout shelter during the 2024 growing season at the Agricultural Research Council-Vegetable and Industrial Medicinal Plant (ARC-VIMP). The trial was laid out in a randomized block design with a plot size of 242 m squared with three drought treatment conditions, i.e., 30%, 50%, and 70% field capacity (FC). After two weeks of drought stress imposition, leaf samples were collected and analyzed for metabolite changes using untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Using chemometrics analysis, mainly using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), significant separation was shown between the three drought stress conditions and the two cultivars, highlighting variable metabolic accumulation. Ten significantly regulated metabolites were identified (VIP > 1, p < 0.05), with the most pronounced log2 fold changes observed for kaempferol-3-O-galactoside (3.48), chlorogenic acid (3.34), glc-glc-octadecatrienoyl-sn-glycerol (3.14), and apigenin-7-O-β-D-neohesperidoside (2.71). Metabolite concentration varied in the two cultivars, although most were positively correlated with Atacama. Enriched pathways included flavonoid biosynthesis, zeatin biosynthesis, and starch and sucrose metabolism. These findings highlight cultivar-specific metabolic responses and propose candidate biomarkers for breeding drought-tolerant sweet potato. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

42 pages, 633 KB  
Review
Impact of Bariatric Surgery on the Expression of Fertility-Related Genes in Obese Women: A Systematic Review of LEP, LEPR, MC4R, FTO, and POMC
by Charalampos Voros, Ioakeim Sapantzoglou, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Despoina Mavrogianni, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Ioannis Papapanagiotou, Dimitrios Vaitsis, Charalampos Tsimpoukelis, Maria Anastasia Daskalaki, Vasileios Topalis, Marianna Theodora, Nikolaos Thomakos, Fotios Chatzinikolaou, Panagiotis Antsaklis, Dimitrios Loutradis, Evangelos Menenakos and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(21), 10333; https://doi.org/10.3390/ijms262110333 - 23 Oct 2025
Viewed by 1710
Abstract
Obesity is a multifaceted disorder influenced by various factors, with heredity being a significant contributor. Bariatric surgery is the most effective long-term intervention for morbid obesity and associated comorbidities, while outcomes vary significantly across individuals. Recent studies indicate that genetic and molecular determinants, [...] Read more.
Obesity is a multifaceted disorder influenced by various factors, with heredity being a significant contributor. Bariatric surgery is the most effective long-term intervention for morbid obesity and associated comorbidities, while outcomes vary significantly across individuals. Recent studies indicate that genetic and molecular determinants, particularly alterations in the leptin–melanocortin signalling pathway involving the fat mass and obesity-associated gene (FTO), pro-opiomelanocortin (POMC), melanocortin 4 receptor (MC4R), leptin (LEP), and leptin receptor (LEPR), influence the efficacy of weight loss and metabolic adaptations post-surgery. This narrative review consolidates evidence from peer-reviewed papers available in PubMed and Scopus until July 2025. The emphasis was on novel research and systematic reviews examining genetic polymorphisms, gene–environment interactions, and outcomes following bariatric procedures such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). Recent research emphasised the integration of genetic screening and precision medicine models into clinical bariatric workflows. Variants in FTO (e.g., rs9939609), MC4R (e.g., rs17782313), LEPR, and POMC are associated with diminished weight loss post-surgery, an increased likelihood of weight regain, and reduced metabolic enhancement. Patients with bi-allelic mutations in MC4R, POMC, or LEPR exhibited poor long-term outcomes despite receiving effective physical interventions. Furthermore, genes regulating mitochondrial metabolism (such as PGC1A), adipokine signalling (such as ADIPOQ), and glucose regulation (such as GLP1R) have been demonstrated to influence the body’s response to sugar and the extent of weight gain or loss. Two recent systematic reviews elucidate that candidate gene investigations are beneficial; however, larger genome-wide association studies (GWAS) and machine learning techniques are necessary to enhance predictive accuracy. Integrating genetic and molecular screening with bariatric surgery planning possesses significant therapeutic potential. Genotyping can assist in patient selection, procedural decisions, and medication additions, particularly for those with variants that influence appetite regulation or metabolic flexibility. Advancements in precision medicine, including the integration of polygenic risk scores, omics-based profiling, and artificial intelligence, will enhance the customisation of surgical interventions and extend the lifespan of individuals with severe obesity. The epigenetic regulators of energy balance DNA methylation, histone changes, and microRNAs that may affect individual differences in weight-loss patterns after bariatric surgery are also briefly contextualised. We discuss the concept that epigenetic modulation of gene expression, mediated by microRNAs in response to food and exercise, may account for variations in metabolic outcomes post-surgery. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

27 pages, 6075 KB  
Article
In Vitro Gastrointestinal Digestion of Grifola frondosa Polysaccharides and Their Enhancement of GABA Production via Gut Microbiota Modulation
by Qingchi Wang, Yuhang Luo, Huabo Zhu, Xiaoyang Liu, Mingyuan Xue, Guiling Yang, Yue Chen, Shiguo Chen and Zhengshun Wen
Nutrients 2025, 17(21), 3332; https://doi.org/10.3390/nu17213332 - 23 Oct 2025
Cited by 1 | Viewed by 811
Abstract
Background: The water-soluble Grifola frondosa polysaccharides (GFPs) are the primary bioactive component of the edible and medicinal fungus Grifola frondosa. However, the digestive behavior of GFPs in the human gastrointestinal (GI) tract and their subsequent interaction with gut microbiota (GM) to [...] Read more.
Background: The water-soluble Grifola frondosa polysaccharides (GFPs) are the primary bioactive component of the edible and medicinal fungus Grifola frondosa. However, the digestive behavior of GFPs in the human gastrointestinal (GI) tract and their subsequent interaction with gut microbiota (GM) to exert health effects remain unclear. Methods: In this study, GFPs were extracted based on a traditional hot water decoction. An in vitro simulated GI digestion model and a human fecal microbiota fermentation model were established to systematically investigate the digestive stability of GFPs, GM modulation, and metabolite changes. Results: Results showed that GFPs remained structurally stable during in vitro oral, gastric, and small intestinal digestion, allowing them to reach the colon intact for microbial fermentation. During colonic fermentation, GFPs were efficiently degraded by GM, and significantly increased the relative abundance of beneficial bacteria such as Akkermansia, Bacteroides, Parabacteroides, and Lactobacillus while reducing the abundance of pathogenic Escherichia-Shigella. Meanwhile, GFPs enriched metabolites beneficial for intestinal health, among which γ-aminobutyric acid (GABA) was the most significantly upregulated. Single-strain fermentation confirmed that Lactobacillus (L. plantarum) was the core GABA-producing genus. Conclusions: This study highlights the potential of GFPs as prebiotics for GM modulation, expands the understanding of the health-promoting effects of fungal polysaccharides, and provides a theoretical basis for the development of GFP-based functional foods. Full article
(This article belongs to the Section Prebiotics, Probiotics and Postbiotics)
Show Figures

Figure 1

20 pages, 2429 KB  
Review
The Growing Antibiotic Resistance of Campylobacter Species: Is There Any Link with Climate Change?
by Eleni V. Geladari, Dimitris Kounatidis, Evangelia Margellou, Apostolos Evangelopoulos, Edison Jahaj, Andreas Adamou, Vassilios Sevastianos, Charalampia V. Geladari and Natalia G. Vallianou
Microbiol. Res. 2025, 16(11), 226; https://doi.org/10.3390/microbiolres16110226 - 22 Oct 2025
Viewed by 1522
Abstract
Campylobacter spp. remain among the most common pathogens causing acute diarrhea worldwide. Campylobacter jejuni and Campylobacter coli are the main species that cause gastroenteritis. Campylobacteriosis is a food-borne disease, although this Gram-negative bacterium may be transmitted via water-borne outbreaks as well as direct [...] Read more.
Campylobacter spp. remain among the most common pathogens causing acute diarrhea worldwide. Campylobacter jejuni and Campylobacter coli are the main species that cause gastroenteritis. Campylobacteriosis is a food-borne disease, although this Gram-negative bacterium may be transmitted via water-borne outbreaks as well as direct contact with animals, emphasizing its zoonotic potential. Campylobacterisosis does not usually require hospitalization. Antimicrobials are warranted only for patients with severe disease, as well as patients who are at risk for severe disease, such as the elderly, pregnant women or immunocompromised patients. Nonetheless, the irrational use of antibiotics in human and veterinary medicine enhances antimicrobial resistance (AMR). Resistance of Campylobacter spp. to fluoroquinolones, macrolides and tetracyclines is a significant concern to the scientific community. Point mutations, horizontal gene transfer and efflux pumps are the main mechanisms for the development and transmission of AMR in Campylobacter spp. Emerging evidence suggests that climate change may indirectly contribute to the spread of AMR in Campylobacter, particularly through its influence on bacterial ecology, transmission pathways and antibiotic use patterns. Higher temperatures and extreme weather events accelerate bacterial growth, amplify the transfer of AMR genes and magnify disease transmission, including drug-resistant infections. Horizontal gene transfer, especially in the context of biofilm formation, may further perplex the situation. Excessive farming and overuse of antibiotics as growth promoters in animals may also contribute to increased AMR rates. Climate change and AMR are interconnected and pose a significant threat to global public health. Multidisciplinary strategies mitigating both phenomena are crucial in order to contain the spread of Campylobacter-related AMR. The aim of this review is to describe the molecular mechanisms that result in AMR of Campylobacter spp. and underscore the association between climate change and Campylobacteriosis. Novel methods to mitigate Campylobacter-related AMR will also be discussed. Full article
Show Figures

Figure 1

12 pages, 414 KB  
Article
Effects of a Reclining Position on Postoperative Dysphagia After Esophagectomy for Esophageal Cancer
by Takahiro Ariga, Tetsuyuki Nagafusa, Kouji Watanabe, Mami Takahashi, Shunji Takashima, Makoto Hasui, Junko Honke, Sanshiro Kawata, Tomohiro Murakami, Eisuke Booka, Tomohiro Matsumoto, Hirotoshi Kikuchi, Hiroya Takeuchi, Katsuya Yamauchi and Yoshihiro Hiramatsu
J. Clin. Med. 2025, 14(20), 7401; https://doi.org/10.3390/jcm14207401 - 20 Oct 2025
Viewed by 1001
Abstract
Background/Objective: Postoperative dysphagia is a common cause of postoperative pulmonary complications (PPCs) following esophagectomy for esophageal cancer. Although the reclining posture is effective for general dysphagia, its effectiveness after esophagectomy remains unclear. Therefore, we aimed to explore effective approaches in the management of [...] Read more.
Background/Objective: Postoperative dysphagia is a common cause of postoperative pulmonary complications (PPCs) following esophagectomy for esophageal cancer. Although the reclining posture is effective for general dysphagia, its effectiveness after esophagectomy remains unclear. Therefore, we aimed to explore effective approaches in the management of dysphagia after esophagectomy. Methods: This study included patients who underwent esophagectomy at the Department of Surgery, Hamamatsu University School of Medicine Hospital between January 2018 and March 2021. For the postoperative swallowing evaluation, the patients underwent a videofluoroscopic swallowing study by drinking 30 mL of liquid in two postures, a 45-degree reclining position (45°R) and a 90-degree upright position (90°U), and assessments were performed using the Penetration–Aspiration Scale. Results: Eighty-seven patients participated in the study. Laryngeal penetration and aspiration were, respectively, observed in 19 (21.8%) and 21 patients (24.1%) at 90°U, and in 14 (16.1%) and five patients (5.7%) at 45°R (p < 0.05). PPCs occurred in 10 patients (11.5%), and vocal cord paralysis occurred in 22 patients (25.3%). However, after adjusting the feeding conditions based on the results of the swallowing assessment, PPCs after meal initiation occurred in only five of these 10 patients (5.7%). Conclusions: Although dysphagia after esophagectomy is observed in approximately half of the patients, including those with minor dysphagia, the risk of aspiration can be reduced by changing the patient’s posture during food consumption. Thus, postural changes may be a useful approach for reducing the risk of PPCs. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

14 pages, 3014 KB  
Article
Responses of Growth and Secondary Metabolites in Fish Mint (Houttuynia cordata Thunb.) Cuttings to Far-Red Light
by Zi-Yi Wang, Kuan-Hung Lin, Yen-Chi Yin and Chang-Chang Chen
Horticulturae 2025, 11(10), 1237; https://doi.org/10.3390/horticulturae11101237 - 13 Oct 2025
Viewed by 1012
Abstract
Fish mint (Houttuynia cordata Thunb.) is an aromatic herb used as food and medicine across Asia. We evaluated how far-red (FR) light influences growth and secondary metabolites in the non-flowering cultivar ‘BCV02’ propagated by cuttings. Seedlings were grown for 14 days under [...] Read more.
Fish mint (Houttuynia cordata Thunb.) is an aromatic herb used as food and medicine across Asia. We evaluated how far-red (FR) light influences growth and secondary metabolites in the non-flowering cultivar ‘BCV02’ propagated by cuttings. Seedlings were grown for 14 days under FR at 35, 50, and 70 μmol m−2 s−1 (as FR35, 50, and 70, respectively) or without FR (as control, CK). All FR treatments increased plant height but reduced the shoot/rhizome ratio. Total chlorophyll and carotenoid contents were unchanged, while the chlorophyll a/b ratio declined from 2.37 (CK) to 2.15 (FR70). In shoots, combined 3-, 4-, and 5-O-caffeoylquinic acids with rutin, hyperoside, isoquercitrin, and quercitrin reached 12.61–13.83 mg g−1 dry weight (DW) under FR treatments, exceeding CK (8.48 mg g−1 DW). However, in rhizomes, these secondary metabolite contents ranged 0.82–1.00 mg g−1 DW across all treatments. On a per-pot basis, the highest accumulated compounds (4.37 mg per pot) occurred at FR35. Overall, growth and secondary metabolite biosynthesis in fish mint cuttings respond differently to changes in FR treatments, with FR35 optimizing compound accumulation. Quercitrin in shoots was 0.09–0.20 mg g−1 DW and not quantifiable in rhizomes, potentially below pharmacopeial thresholds specified in the Taiwan Herbal Pharmacopeia and Hong Kong Chinese Materia Medica Standards. These results underscore the importance of aligning cultivar choice, light regime, and market specifications to secure both yield and quality of H. cordata. Full article
Show Figures

Figure 1

24 pages, 12694 KB  
Article
Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche
by Fernanda Artemisa Espinoza-Hernández, Angelina Daniela Moreno-Vargas, Andrea Díaz-Villaseñor, Gerardo Mata-Torres, Jazmín Samario-Román and Adolfo Andrade-Cetto
Pharmaceuticals 2025, 18(10), 1433; https://doi.org/10.3390/ph18101433 - 24 Sep 2025
Viewed by 1020
Abstract
Background/Objectives: Ethnopharmacological studies indicates that plant-based infusions are usually consumed by some people in advanced stages of diabetes, that is, when poor pancreatic dysfunction coexists with insulin resistance (IR). Current treatments aim to prevent β-cell deterioration by promoting improved insulin function and/or [...] Read more.
Background/Objectives: Ethnopharmacological studies indicates that plant-based infusions are usually consumed by some people in advanced stages of diabetes, that is, when poor pancreatic dysfunction coexists with insulin resistance (IR). Current treatments aim to prevent β-cell deterioration by promoting improved insulin function and/or enhancing pancreatic function to avoid the development of hyperglycemia. Therefore, Croton guatemalensis (Cg) and Eryngium cymosum (Ec), two medicinal plants with potential insulin-sensitizing effects described in previous studies, were assessed on parameters related to IR and on the architecture of pancreatic islets in rats exposed to a syrup containing 8.8% glucose and 5.2% fructose in drinking water. Methods: After an 8-week exposure to syrup, plant extracts were orally administered for four weeks at traditional doses (Cg: 30 mg/kg body weight; Ec: 470 mg/kg body weight). Body weight, food intake, and drinking water consumption were monitored. At the end of the study, IR surrogate indices were calculated, metabolic assays were performed, and white adipose tissues, liver, gastrocnemius muscle, and pancreas were extracted in fasting and postprandial state for lipid quantification (liver), measurement of Akt phosphorylation status by western blot (liver and muscle), and determination of insulin content by immunohistochemistry (pancreatic islets). Results: Both species decreased hepatic lipid content without promoting significant changes in visceral adiposity. Although they did not improve surrogate markers of fasting IR, both ameliorated insulin function, glucose tolerance, and restored the glucose-stimulated insulin secretory response in metabolic tests. Cg restored the insulin signaling response in liver and muscle, whereas Ec only did so in muscle. Moreover, both appeared to enhance insulin pancreatic content or restore pancreatic islet population. Conclusions: Cg and Ec can reverse the IR phenotype in a tissue-specific manner and improve pancreatic function. Full article
Show Figures

Graphical abstract

Back to TopTop