Impact of Bariatric Surgery on the Expression of Fertility-Related Genes in Obese Women: A Systematic Review of LEP, LEPR, MC4R, FTO, and POMC
Abstract
1. Introduction
2. Material and Methods
2.1. Choosing Studies
2.2. Eligibility Criteria
2.3. Sources of Information and Search Methodologies
2.4. The Data Acquisition Process
2.5. Assessment of Bias and Quality Control
3. Results
3.1. Study Selection and PRISMA Flow
3.2. Study Characteristics
3.3. Genetic Associations with Postoperative Weight Loss
4. Discussion
4.1. Genetic Factors Influencing Post-Bariatric Surgery Weight Loss
4.2. Integrating Recent Findings on the Molecular Genetics of Obesity with the Outcomes of Bariatric Surgery
4.3. The Clinical Utility of Genetic Screening Prior to Bariatric Surgery
4.4. What Are the Forthcoming Developments in Precision Bariatric Medicine?
4.5. Limitations and Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Mohammed, R.A. Obesity: Prevalence, causes, consequences, management, preventive strategies and future research directions. Metab. Open 2025, 27, 100375. [Google Scholar] [CrossRef] [PubMed]
- Brown, R. Evaluating the Effectiveness and Long-term Outcomes of Roux-en-Y Gastric Bypass vs Gastric Sleeve Bariatric Surgery in Obese and Diabetic Patients: Systematic Review. J. Am. Coll. Surg. 2025. [Google Scholar] [CrossRef]
- Fatima, M.T.; Ahmed, I.; Fakhro, K.A.; Akil, A.S.A. Melanocortin-4 receptor complexity in energy homeostasis, obesity and drug development strategies. Diabetes Obes. Metab. 2022, 24, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Valette, M.; Poitou, C.; Le Beyec, J.; Bouillot, J.-L.; Clement, K.; Czernichow, S. Melanocortin-4 Receptor Mutations and Polymorphisms Do Not Affect Weight Loss after Bariatric Surgery. PLoS ONE 2012, 7, e48221. [Google Scholar] [CrossRef]
- Zhang, L.; Hernandez-Sanchez, D.; Herzog, H. Regulation of feeding related behaviours by Arcuate neuropeptide Y neurons. Endocrinology 2019, 160, 1411–1420. [Google Scholar] [CrossRef]
- Aslan, I.R.; Campos, G.M.; Calton, M.A.; Evans, D.S.; Merriman, R.B.; Vaisse, C. Weight Loss after Roux-en-Y Gastric Bypass in Obese Patients Heterozygous for MC4R Mutations. Obes. Surg. 2011, 21, 930–934. [Google Scholar] [CrossRef]
- Pratama, K.G.; Nugroho, H.; Hengky, A.; Tandry, M.; Pauliana, P. Glucagon-like peptide-1 receptor agonists for post-bariatric surgery weight regain and insufficient weight loss: A systematic review. Obes. Med. 2024, 46, 100533. [Google Scholar] [CrossRef]
- Lubbers, T.; De Haan, J.J.; Hadfoune, M.; Zabeau, L.; Tavernier, J.; Zhang, Y.; Grundy, D.; Greve, J.W.M.; Buurman, W.A. Chylomicron formation and glucagon-like peptide 1 receptor are involved in activation of the nutritional anti-inflammatory pathway. J. Nutr. Biochem. 2011, 22, 1105–1111. [Google Scholar] [CrossRef]
- Li, L.; Zang, L.; Zhang, F.; Chen, J.; Shen, H.; Shu, L.; Liang, F.; Feng, C.; Chen, D.; Tao, H.; et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum. Mol. Genet. 2017, 26, 2398–2411. [Google Scholar] [CrossRef]
- Shill, L.C.; Alam, M.R. Crosstalk between FTO gene polymorphism (rs9939609) and obesity-related traits among Bangladeshi population. Health Sci. Rep. 2023, 6, e1414. [Google Scholar] [CrossRef] [PubMed]
- Brzozowska, M.M.; Isaacs, M.; Bliuc, D.; Baldock, P.A.; Eisman, J.A.; White, C.P.; Greenfield, J.R.; Center, J.R. Effects of bariatric surgery and dietary intervention on insulin resistance and appetite hormones over a 3 year period. Sci. Rep. 2023, 13, 6032. [Google Scholar] [CrossRef] [PubMed]
- Bandstein, M.; Schultes, B.; Ernst, B.; Thurnheer, M.; Schiöth, H.B.; Benedict, C. The Role of FTO and Vitamin D for the Weight Loss Effect of Roux-en-Y Gastric Bypass Surgery in Obese Patients. Obes. Surg. 2015, 25, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Park, H.-K.; Ahima, R.S. Leptin signaling. F1000Prime Rep. 2014, 6, 73. [Google Scholar] [CrossRef]
- Ramos-Molina, B.; Martin, M.G.; Lindberg, I. PCSK1 Variants and Human Obesity. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 47–74. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1877117315002380 (accessed on 29 July 2025).
- Campos, A.; Cifuentes, L.; Hashem, A.; Busebee, B.; Hurtado-Andrade, M.D.; Ricardo-Silgado, M.L.; McRae, A.; De La Rosa, A.; Feris, F.; Bublitz, J.T.; et al. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-en-Y Gastric Bypass Outcomes: A 15-Year Case–Control Study. Obes. Surg. 2022, 32, 2632–2640. [Google Scholar] [CrossRef]
- Torrego-Ellacuría, M.; Barabash, A.; Matía-Martín, P.; Sánchez-Pernaute, A.; Torres, A.J.; Calle-Pascual, A.L.; Rubio-Herrera, M.A. Combined Effect of Genetic Variants on Long-Term Weight Response after Bariatric Surgery. J. Clin. Med. 2023, 12, 4288. [Google Scholar] [CrossRef]
- Popović, A.-M.; Huđek Turković, A.; Žuna, K.; Bačun-Družina, V.; Rubelj, I.; Matovinović, M. FTO Gene Polymorphisms at the Crossroads of Metabolic Pathways of Obesity and Epigenetic Influences. Food Technol. Biotechnol. 2022, 61, 14–26. [Google Scholar] [CrossRef]
- Moore, B.S.; Mirshahi, U.L.; Yost, E.A.; Stepanchick, A.N.; Bedrin, M.D.; Styer, A.M.; Jackson, K.K.; Still, C.D.; Breitwieser, G.E.; Gerhard, G.S.; et al. Long-Term Weight-Loss in Gastric Bypass Patients Carrying Melanocortin 4 Receptor Variants. PLoS ONE 2014, 9, e93629. [Google Scholar] [CrossRef]
- Mohammed, I.; Selvaraj, S.; Ahmed, W.S.; Al-Barazenji, T.; Hammad, A.S.; Dauleh, H.; Saraiva, L.R.; Al-Shafai, M.; Hussain, K. Functional Characterization of Novel MC4R Variants Identified in Two Unrelated Patients with Morbid Obesity in Qatar. Int. J. Mol. Sci. 2023, 24, 16361. [Google Scholar] [CrossRef]
- Cifuentes, L.; Anazco, D.; O’Connor, T.; Hurtado, M.D.; Ghusn, W.; Campos, A.; Fansa, S.; McRae, A.; Madhusudhan, S.; Kolkin, E.; et al. Genetic and physiological insights into satiation variability predict responses to obesity treatment. Cell Metab. 2025, 37, 1655–1666.e5. [Google Scholar] [CrossRef] [PubMed]
- Oswal, A.; Yeo, G.S.H. The leptin melanocortin pathway and the control of body weight: Lessons from human and murine genetics. Obes. Rev. 2007, 8, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Fitch, A.K.; Malhotra, S.; Conroy, R. Differentiating monogenic and syndromic obesities from polygenic obesity: Assessment, diagnosis, and management. Obes. Pillars 2024, 11, 100110, Erratum in Obes. Pillars 2024, 12, 100135. [Google Scholar] [CrossRef]
- Catania, A. Neuroprotective actions of melanocortins: A therapeutic opportunity. Trends Neurosci. 2008, 31, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Dores, R.M.; Baron, A.J. Evolution of POMC: Origin, phylogeny, posttranslational processing, and the melanocortins. Ann. N.Y. Acad. Sci. 2011, 1220, 34–48. [Google Scholar] [CrossRef]
- Ho, G.; MacKenzie, R.G. Functional Characterization of Mutations in Melanocortin-4 Receptor Associated with Human Obesity. J. Biol. Chem. 1999, 274, 35816–35822. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Avena, N.M.; Baier, L.; Brantley, P.; Bray, G.A.; Burnett, L.C.; Butler, M.G.; Driscoll, D.J.; Egli, D.; Elmquist, J.; et al. Hyperphagia: Current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity 2014, 22 (Suppl. S1), S1–S17. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Zhang, Q.; Riddle, R.C.; Yang, Q.; Rosen, C.R.; Guttridge, D.C.; Dirckx, N.; Faugere, M.-C.; Farber, C.R.; Clemens, T.L. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc. Natl. Acad. Sci. USA 2019, 116, 17980–17989. [Google Scholar] [CrossRef]
- Armamento-Villareal, R.; Wingkun, N.; Aguirre, L.E.; Kulkarny, V.; Napoli, N.; Colleluori, G.; Qualls, C.; Villareal, D.T. The FTO gene is associated with a paradoxically favorable cardiometabolic risk profile in frail, obese older adults. Pharmacogenet. Genomics 2016, 26, 154–160. [Google Scholar] [CrossRef]
- Olszewski, P.K.; Fredriksson, R.; Olszewska, A.M.; Stephansson, O.; Alsiö, J.; Radomska, K.J.; Levine, A.S.; Schiöth, H.B. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 2009, 10, 129. [Google Scholar] [CrossRef]
- Morris, D.L.; Rui, L. Recent advances in understanding leptin signaling and leptin resistance. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1247–E1259. [Google Scholar] [CrossRef]
- Signore, A.P.; Zhang, F.; Weng, Z.; Gao, Y.; Chen, J. Leptin neuroprotection in the CNS: Mechanisms and therapeutic potentials. J. Neurochem. 2008, 106, 1977–1990. [Google Scholar] [CrossRef] [PubMed]
- Daghestani, M.; Purohit, R.; Daghestani, M.; Daghistani, M.; Warsy, A. Molecular dynamic (MD) studies on Gln233Arg (rs1137101) polymorphism of leptin receptor gene and associated variations in the anthropometric and metabolic profiles of Saudi women. PLoS ONE 2019, 14, e0211381. [Google Scholar] [CrossRef] [PubMed]
- Millington, G.W.M. Proopiomelanocortin (POMC): The cutaneous roles of its melanocortin products and receptors. Clin. Exp. Dermatol. 2006, 31, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Imangaliyeva, A.; Sikhayeva, N.; Bolatov, A.; Utupov, T.; Romanova, A.; Akhmetollayev, I.; Zholdybayeva, E. Genetic Insights into Severe Obesity: A Case Study of MC4R Variant Identification and Clinical Implications. Genes 2025, 16, 508. [Google Scholar] [CrossRef]
- Yanik, T.; Durhan, S.T. Pro-Opiomelanocortin and Melanocortin Receptor 3 and 4 Mutations in Genetic Obesity. Biomolecules 2025, 15, 209. [Google Scholar] [CrossRef]
- Rui, L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J. Diabetes 2014, 5, 511. [Google Scholar] [CrossRef]
- Feris, F.; McRae, A.; Kellogg, T.A.; McKenzie, T.; Ghanem, O.; Acosta, A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2023, 19, 37–49. [Google Scholar] [CrossRef]
- Metzger, P.J.; Zhang, A.; Carlson, B.A.; Sun, H.; Cui, Z.; Li, Y.; Jahnke, M.T.; Layton, D.R.; Gupta, M.B.; Liu, N.; et al. A human obesity-associated MC4R mutation with defective Gq/11α signaling leads to hyperphagia in mice. J. Clin. Investig. 2024, 134, e165418. [Google Scholar] [CrossRef]
- De Luis, D.A.; Aller, R.; Conde, R.; Izaola, O.; Pacheco, D.; Sagrado, M.G.; Primo, D. Effects of RS9939609 Gene Variant in FTO Gene on Weight Loss and Cardiovascular Risk Factors After Biliopancreatic Diversion Surgery. J. Gastrointest. Surg. 2012, 16, 1194–1198. [Google Scholar] [CrossRef] [PubMed]
- Balasar, Ö.; Çakır, T.; Erkal, Ö.; Aslaner, A.; Çekiç, B.; Uyar, M.; Bülbüller, N.; Oruç, M.T. The effect of rs9939609 FTO gene polymorphism on weight loss after laparoscopic sleeve gastrectomy. Surg. Endosc. 2016, 30, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Perez-Luque, E.; Daza-Hernandez, E.S.; Figueroa-Vega, N.; Cardona-Alvarado, M.I.; Muñoz-Montes, N.; Martinez-Cordero, C. Interaction Effects of FTO and MC4R Polymorphisms on Total Body Weight Loss, Post-Surgery Weight, and Post-Body Mass Index after Bariatric Surgery. Genes 2024, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.K.; Resende, C.M.M.; Durso, D.F.; Rodrigues, L.A.A.; Silva, J.L.P.; Reis, R.C.; Pereira, S.S.; Ferreira, D.C.; Franco, G.R.; Alvarez-Leite, J. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutrition 2015, 31, 1344–1350. [Google Scholar] [CrossRef]
- De Luis, D.A.; Aller, R.; Sagrado, M.G.; Izaola, O.; Terroba, M.C.; Cuellar, L.; Conde, R.; Martin, T. Influence of Lys656asn Polymorphism of Leptin Receptor Gene on Surgical Results of Biliopancreatic Diversion. J. Gastrointest. Surg. 2010, 14, 899–903. [Google Scholar] [CrossRef]
- Kops, N.L.; Vivan, M.A.; Horvath, J.D.C.; De Castro, M.L.D.; Friedman, R. FABP2, LEPR223, LEP656, and FTO Polymorphisms: Effect on Weight Loss 2 Years After Bariatric Surgery. Obes. Surg. 2018, 28, 2705–2711. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Tu, Y.; Wang, C.; Di, J.; Yu, H.; Zhang, P.; Bao, Y.; Jia, W.; Yang, J.; et al. Monogenic Obesity Mutations Lead to Less Weight Loss After Bariatric Surgery: A 6-Year Follow-Up Study. Obes. Surg. 2019, 29, 1169–1173. [Google Scholar] [CrossRef]
- Cooiman, M.I.; Kleinendorst, L.; Aarts, E.O.; Janssen, I.M.C.; Van Amstel, H.K.P.; Blakemore, A.I.; Hazebroek, E.J.; Meijers-Heijboer, H.J.; Van Der Zwaag, B.; Berends, F.J.; et al. Genetic Obesity and Bariatric Surgery Outcome in 1014 Patients with Morbid Obesity. Obes. Surg. 2020, 30, 470–477. [Google Scholar] [CrossRef]
- Mirshahi, U.L.; Still, C.D.; Masker, K.K.; Gerhard, G.S.; Carey, D.J.; Mirshahi, T. The MC4R(I251L) Allele Is Associated with Better Metabolic Status and More Weight Loss after Gastric Bypass Surgery. J. Clin. Endocrinol. Metab. 2011, 96, E2088–E2096. [Google Scholar] [CrossRef]
- Potoczna, N.; Branson, R.; Kral, J.G.; Piec, G.; Steffen, R.; Ricklin, T.; Hoehe, M.R.; Lentes, K.-U.; Horber, F.F. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J. Gastrointest. Surg. 2004, 8, 971–982. [Google Scholar] [CrossRef]
- Salazar-Valencia, I.G.; Villamil-Ramírez, H.; Barajas-Olmos, F.; Guevara-Cruz, M.; Macias-Kauffer, L.R.; García-Ortiz, H.; Hernández-Vergara, O.; Díaz De Sandy-Galán, D.A.; León-Mimila, P.; Centeno-Cruz, F.; et al. Effect of the Melanocortin 4-Receptor Ile269Asn Mutation on Weight Loss Response to Dietary, Phentermine and Bariatric Surgery Interventions. Genes 2022, 13, 2267. [Google Scholar] [CrossRef]
- Novais, P.F.S.; Crisp, A.H.; Leandro-Merhi, V.A.; Cintra, R.M.G.; Rasera, I.; Oliveira, M.R.M.D. Genetic polymorphisms are not associated with energy intake 1 year after Roux-en-Y gastric bypass in women. J. Hum. Nutr. Diet. 2022, 35, 739–747. [Google Scholar] [CrossRef]
- Resende, C.M.M.; Durso, D.F.; Borges, K.B.G.; Pereira, R.M.; Rodrigues, G.K.D.; Rodrigues, K.F.; Silva, J.L.P.; Rodrigues, E.C.; Franco, G.R.; Alvarez-Leite, J.I. The polymorphism rs17782313 near MC4R gene is related with anthropometric changes in women submitted to bariatric surgery over 60 months. Clin. Nutr. 2018, 37, 1286–1292. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, Q.; Huang, S.; Fu, Z.; Ye, J.; Liu, R.; Lin, S.; Guan, W.; Yang, N.; Li, J.Z.; et al. Functional Characterization of MC4R Variants in Chinese Morbid Obese Patients and Weight Loss after Bariatric Surgery. Adv. Biol. 2023, 7, e202300007. [Google Scholar] [CrossRef]
- Novais, P.F.S.; Crisp, A.H.; Leandro-Merhi, V.A.; Verlengia, R.; Rasera, I.; De Oliveira, M.R.M. Lack of association between 11 gene polymorphisms on weight loss 1 year after Roux-en-y gastric bypass surgery in woman. J. Hum. Nutr. Diet. 2022, 35, 731–738. [Google Scholar] [CrossRef]
- Seal, N.; Weaver, M.; Best, L.G. Correlates of the FTO gene variant (rs9939609) and growth of American Indian infants. Genet. Test. Mol. Biomark. 2011, 15, 633–638. [Google Scholar] [CrossRef]
- Uyar, A.; Erdoğan, S. Epigenetic Regulation of Adipose Tissue: Insights into Metabolic Functions and Dysfunction. Turk. Med. Stud. J. 2025, 12, 2–10. [Google Scholar] [CrossRef]
- Baldini, G.; Phelan, K.D. The melanocortin pathway and control of appetite-progress and therapeutic implications. J. Endocrinol. 2019, 241, R1–R33. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B.; Lambert, E.A.; Lambert, G.W. Neuroendocrine adaptations to bariatric surgery. Mol. Cell. Endocrinol. 2015, 418, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, T.E.; Morton, J.M. Metabolic surgery: Action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 727–740. [Google Scholar] [CrossRef]
- Yeo, G.S.H.; Chao, D.H.M.; Siegert, A.-M.; Koerperich, Z.M.; Ericson, M.D.; Simonds, S.E.; Larson, C.M.; Luquet, S.; Clarke, I.; Sharma, S.; et al. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol. Metab. 2021, 48, 101206. [Google Scholar] [CrossRef]
- Gao, W.; Liu, J.-L.; Lu, X.; Yang, Q. Epigenetic regulation of energy metabolism in obesity. J. Mol. Cell Biol. 2021, 13, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Fansa, S.; Ghusn, W.; Anazco, D.; Tama, E.; Hurtado, M.D.; Acosta, A. S1651 Association of Leptin-Melanocortin Pathway Genetic Variants and Obesity-Related Phenotypic Traits. Am. J. Gastroenterol. 2023, 118, S1236–S1237. [Google Scholar] [CrossRef]
- Fansa, S.; Acosta, A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes. Metab. 2024, 26, 46–63. [Google Scholar] [CrossRef]
- Poitou, C.; Puder, L.; Dubern, B.; Krabusch, P.; Genser, L.; Wiegand, S.; Verkindt, H.; Köhn, A.; Von Schwartzenberg, R.J.; Flück, C.; et al. Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surg. Obes. Relat. Dis. 2021, 17, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Tonin, G.; Eržen, S.; Mlinarič, Z.; Eržen, D.J.; Horvat, S.; Kunej, T.; Klen, J. The Genetic Blueprint of Obesity: From Pathogenesis to Novel Therapies. Obes. Rev. 2025, e13978. [Google Scholar] [CrossRef]
- Heyder, N.; Kleinau, G.; Szczepek, M.; Kwiatkowski, D.; Speck, D.; Soletto, L.; Cerdá-Reverter, J.M.; Krude, H.; Kühnen, P.; Biebermann, H.; et al. Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Front. Endocrinol. 2019, 10, 515. [Google Scholar] [CrossRef]
- Paisdzior, S.; Dimitriou, I.M.; Schöpe, P.C.; Annibale, P.; Scheerer, P.; Krude, H.; Lohse, M.J.; Biebermann, H.; Kühnen, P. Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. Int. J. Mol. Sci. 2020, 21, 1224. [Google Scholar] [CrossRef]
- Maculewicz, E.; Leońska-Duniec, A.; Mastalerz, A.; Szarska, E.; Garbacz, A.; Lepionka, T.; Łakomy, R.; Anyżewska, A.; Bertrandt, J. The Influence of FTO, FABP2, LEP, LEPR, and MC4R Genes on Obesity Parameters in Physically Active Caucasian Men. Int. J. Environ. Res. Public Health 2022, 19, 6030. [Google Scholar] [CrossRef]
- Chermon, D.; Birk, R. Predisposition of the Common MC4R rs17782313 Female Carriers to Elevated Obesity and Interaction with Eating Habits. Genes 2023, 14, 1996. [Google Scholar] [CrossRef]
- Kunnathodi, F.; Arafat, A.A.; Alhazzani, W.; Mustafa, M.; Azmi, S.; Ahmad, I.; Selan, J.S.; Anvarbatcha, R.; Alotaibi, H.F. Unraveling the Genetic Architecture of Obesity: A Path to Personalized Medicine. Diagnostics 2025, 15, 1482. [Google Scholar] [CrossRef]
- Cordeira, J.; Rios, M. Weighing in the Role of BDNF in the Central Control of Eating Behavior. Mol. Neurobiol. 2011, 44, 441–448. [Google Scholar] [CrossRef]
- Reid, B.M.; Aubuchon-Endsley, N.L.; Tyrka, A.R.; Marsit, C.J.; Stroud, L.R. Placenta DNA methylation levels of the promoter region of the leptin receptor gene are associated with infant cortisol. Psychoneuroendocrinology 2023, 153, 106119. [Google Scholar] [CrossRef] [PubMed]
- Zafirovska, M.; Zafirovski, A.; Režen, T.; Pintar, T. The Outcome of Metabolic and Bariatric Surgery in Morbidly Obese Patients with Different Genetic Variants Associated with Obesity: A Systematic Review. Nutrients 2024, 16, 2510. [Google Scholar] [CrossRef] [PubMed]
- Hamamah, S.; Hajnal, A.; Covasa, M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024, 16, 1071. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jing, C.; Guo, Y.; Shang, Z.; Zhang, B.; Zhou, X.; Zhang, J.; Lian, G.; Tian, F.; Li, L.; et al. The central signaling pathways related to metabolism-regulating hormones of the gut-brain axis: A review. J. Transl. Med. 2025, 23, 648. [Google Scholar] [CrossRef]
- Pagel-Langenickel, I.; Bao, J.; Joseph, J.J.; Schwartz, D.R.; Mantell, B.S.; Xu, X.; Raghavachari, N.; Sack, M.N. PGC-1α Integrates Insulin Signaling, Mitochondrial Regulation, and Bioenergetic Function in Skeletal Muscle. J. Biol. Chem. 2008, 283, 22464–22472. [Google Scholar] [CrossRef]
- Chedid, V.; Vijayvargiya, P.; Carlson, P.; Van Malderen, K.; Acosta, A.; Zinsmeister, A.; Camilleri, M. Allelic variant in the glucagon-like peptide 1 receptor gene associated with greater effect of liraglutide and exenatide on gastric emptying: A pilot pharmacogenetics study. Neurogastroenterol. Motil. 2018, 30, e13313. [Google Scholar] [CrossRef]
- Pereira, S.S.; Guimarães, M.; Monteiro, M.P. Towards precision medicine in bariatric surgery prescription. Rev. Endocr. Metab. Disord. 2023, 24, 961–977. [Google Scholar] [CrossRef]
- Nicoletti, C.; Cortes-Oliveira, C.; Pinhel, M.; Nonino, C. Bariatric Surgery and Precision Nutrition. Nutrients 2017, 9, 974. [Google Scholar] [CrossRef]
- Flores-Dorantes, M.T.; Díaz-López, Y.E.; Gutiérrez-Aguilar, R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front. Neurosci. 2020, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Grimm, E.R.; Steinle, N.I. Genetics of eating behavior: Established and emerging concepts. Nutr. Rev. 2011, 69, 52–60. [Google Scholar] [CrossRef]
- Van Der Meer, R.; Mohamed, S.A.; Monpellier, V.M.; Liem, R.S.L.; Hazebroek, E.J.; Franks, P.W.; Frayling, T.M.; Janssen, I.M.C.; Serlie, M.J. Genetic variants associated with weight loss and metabolic outcomes after bariatric surgery: A systematic review. Obes. Rev. 2023, 24, e13626. [Google Scholar] [CrossRef]
- Montanez, C.A.C.; Fergus, P.; Hussain, A.; Al-Jumeily, D.; Abdulaimma, B.; Hind, J.; Radi, N. Machine learning approaches for the prediction of obesity using publicly available genetic profiles. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: New York, NY, USA, 2017; pp. 2743–2750. Available online: https://ieeexplore.ieee.org/document/7966194/ (accessed on 31 July 2025).
- Zha, X.; Gao, Z.; Li, M.; Xia, X.; Mao, Z.; Wang, S. Insight into the regulatory mechanism of m6A modification: From MAFLD to hepatocellular carcinoma. Biomed. Pharmacother. 2024, 177, 116966. [Google Scholar] [CrossRef] [PubMed]
- Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernández-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol. 2017, 28, 273–280. [Google Scholar] [CrossRef]
- Proia, P.; Rossi, C.; Alioto, A.; Amato, A.; Polizzotto, C.; Pagliaro, A.; Kuliś, S.; Baldassano, S. MiRNAs Expression Modulates Osteogenesis in Response to Exercise and Nutrition. Genes 2023, 14, 1667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Database | Search String | Date of Search | Filters Applied |
|---|---|---|---|
| PubMed | (“Roux-en-Y gastric bypass” OR “RYGB” OR “bariatric surgery”) AND (“genetic variant” OR “polymorphism” OR “SNP” OR “FTO” OR “MC4R” OR “LEPR” OR “SH2B1” OR “POMC” OR “PCSK1” OR “SIM1”) AND (“weight loss” OR “BMI” OR “%EWL” OR “%TBWL” OR “weight regain”) | April 2025 | Humans, English, Full-text, All years |
| Scopus | TITLE-ABS-KEY((“Roux-en-Y gastric bypass” OR “RYGB” OR “bariatric surgery”) AND (“genetic variant” OR “SNP” OR “FTO” OR “MC4R” OR “LEPR”) AND (“weight loss” OR “BMI” OR “%EWL” OR “%TBWL” OR “weight regain”)) | April 2025 | English, Peer-reviewed, All years |
| Web of Science | TS = (“Roux-en-Y gastric bypass” OR “RYGB” OR “bariatric surgery”) AND TS = (“genetic variant” OR “SNP” OR “FTO” OR “MC4R” OR “LEPR”) AND TS = (“weight loss” OR “BMI” OR “%EWL” OR “%TBWL” OR “weight regain”) | April 2025 | English, Original articles, All years |
| Study | SEL1: Representativeness | SEL2: Non-Exposed Selection | SEL3: Exposure Ascertainment | SEL4: Outcome Not Present at Start | COMP1: Confounder Adjustment | COMP2: Additional Adjustment | OUT1: Outcome Assessment | OUT2: Follow-Up Duration | OUT3: Adequacy of Follow-Up | Total NOS Score | Risk of Bias |
|---|---|---|---|---|---|---|---|---|---|---|---|
| De Luis et al., 2012, [42] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Balasar et al., 2015, [43] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Bandstein et al., 2015, [13] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Perez-Luque et al., 2024, [44] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Rodrigues et al., 2015, [45] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Campos et al., 2022, [17] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| De Luis et al., 2010, [46] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Kops et al., 2018, [47] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Li et al., 2019, [48] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Cooiman et al., 2020, [49] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Valette et al., 2012, [5] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Aslan et al., 2011, [7] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Mirshahi et al., 2011, [50] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Moore et al., 2014, [20] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 7 | Low |
| Potoczna et al., 2004, [51] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Salazar-Valencia et al., 2022, [52] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Novais et al., 2021, [53] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Resende et al., 2017, [54] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Novais et al., 2022, [53] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 7 | Low |
| Gong et al., 2023, [55] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 | Low |
| Year | Author | Type of Study | Inclusion Criteria | Exclusion Criteria | Female Sample Size | Gene Investigated | Polymorphism Investigated | Genotypes Investigated | Follow-Up | Bariatric Surgery Performed | Results |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2012 | De Luis et al. [42] | Case–control study | BMI > 40 BPD operation performed | Loss to follow-up | 87 | FTO | rs9939609 | TT: wild type AT/AA: mutant type | 3, 9 and 12 months | BPD | Higher initial weight loss at 3 months in carriers of TT variant (wild type) of FTO gene At 9 and 12 months after BPD the weight loss was similar in both genotypes(TT, AT, AA) |
| 2015 | Balasar et al. [43] | Case–control study | BMI ≥ 40 LSG operation performed | Loss to follow-up | 54 | FTO | rs9939609 | TT: wild type AT/AA: mutant type | 6 months | LSG | Percent of excess weight loss at 6 months of follow-up was similar in both wild type (TT) and mutant (AT, AA) groups rs9939609 FTO gene polymorphism is not a useful genetic test in predicting the weight loss |
| 2015 | Bandstein et al. [13] | Case–control study | BMI ≥ 40 RYGB performed | Loss to follow-up | 151 | FTO | rs9939609 | TT: wild type AT/AA:mutant type | 2 years | RYGB | Patients who were vitamin D-deficient prior to surgery exhibited a ~14% higher RYGB surgery induced weight loss when they carried two copies of the A-allele compared to vitamin D-deficient patients who were homozygous for the FTO T-allele |
| 2024 | Perez-Luque et al. [44] | Retrospective analysis | BMI ≥ 40 RYGB performed | Loss to follow-up Informed consent not obtained | 78 | MC4R FTO | MC4R: rs17782313 FTO: rs9939609, rs9930506, and rs1421085 | rs9939609: TT, TA and AA rs9930506: AA, AG and GG rs1421085: TT, TC and CC | 4 to 8 years | RYGB | No association was found between the MC4R polymorphism and total body weight loss, post-surgery weight, and BMI after bariatric surgery. |
| 2015 | Rodrigues et al. [45] | Case–control study | BMI ≥ 40 RYGB performed | Loss to follow-up Inconclusive genotyping Informed consent not obtained | 124 | FTO | rs9939609 | TT: wild type AT/AA: mutant type | 5 years | RYGB | FTO AA or AT genotypes does not influence weight until 2 years after surgery Weight loss was lower in FTO group starting 2 years after surgery Weight regain was higher and earlier in FTO group |
| 2022 | Campos et al. [17] | Case–control study | >18 years old RYGB performed Genomic DNA available for analysis Patients carriers of a heterozygous variant in the leptin-melanocortin pathway | Less than 6 months from RYBG A bariatric reintervention or revisional procedure Use of an antiobesity medication after RYBG Pregnancy after RYBG | 118 | MC4R FTO POMC LEPR | MC4R: p.Leu325Phe, p.Gln156 LEPR: p.Cys954Phe, p.Arg612His, p.Val144Leu, p.Tyr747Asp, p.Ser950Thr, p.Arg514Gly, p.Val344Ile, p.Val984Ala, p.Pro401Leu. POMC: p.Pro194Ala, p.Phe144Leu, p.Cys5Tyr, p.His143Gln, p.Arg48Gln, p.Arg236Gly, p.Thr39Met, p.Pro132Ala, p.Tyr221Cys | N/A | 1, 3, 6, 12, and 18 months and then yearly from year 2 to 15 | RYGB | Patients carriers of a heterozygous variant in the leptin-melanocortin pathway have a lower weight loss and a higher weight regain after RYGB |
| 2010 | De Luis et al. [46] | Case–control study | BMI > 40 BPD operation performed | Loss to follow-up | 32 | LEPR | rs1805094 | Lys656Asn and Asn656Asn: mutant group Lys656Lys: wild-type group | 3, 9, 12 months | BPD | Weight loss was higher in mutant group than wild-type group after bariatric surgery |
| 2018 | Kops et al. [47] | Prospective cohort study | BMI > 40 RYGB operation performed | <18 years old Presence of current suicide risk Hospitalization for psychiatric reasons or intellectual disability or dementia. Pregnant or lactating women during the 5 years postop period | 92 | FTO LEPR | FTO: rs9939609 LEPR: rs1137101 | FTO: AA, TA, TT LEPR: AA, AG, GG | 3, 6, 12, 24 months | RYGB | No effect on weight loss or clinical outcomes after bariatric surgery in FTO gene polymorphism varriers. The AA genotype of the rs1137101 polymorhism seems to be associated with a higher weight loss |
| 2018 | Li et al. [48] | Case–control study | 15–55 years old BMI > 28 LSG operation performed | Loss to follow-up Informed consent not obtained | 6 | POMC LEP/LEPR MC4R | LEP/LEPR: H118L, A1033T, Q463X MC4R: C277X, V166I, c.1350delA, V166I | N/A | 3, 6, 12, 18, and 24 months and then yearly until year 5 | LSG | At 18 months, mutation carriers demonstrated a lower maximum weight loss value Mutation carriers demonstrated difficulties in maintaining their weight loss |
| 2019 | Cooiman et al. [49] | Case–control study | 18–65 years old Indication for bariatric surgery (BMI > 50, childhood onset obesity and/or indication for revisional surgery) | Loss to follow-up Informed consent not obtained | Not reported | POMC MC4R | Not reported | N/A | 12 and 24 months | Primary Gastric Bypass or RYGB | Carriers of mutations in MC4R and POMC did not demonstrate different total body weight loss after RYGB compared to non-carriers Carriers of MC4R mutations showed significantly lower total body weight loss after sleeve gastrectomy compared to non-carriers During the 2-year follow-up period |
| 2012 | Valette et al. [5] | Case-control study | BMI > 28 RYGB or AGB was performed | Informed consent not obtained | 123 | MC4R | V103L I251L rs17782313 | N/A | 3, 6 and 12 months | RYGB or AGB | Weight loss at 3, 6 and 12 months did not differ between carriers and non-carriers irrespective of the MC4R mutation |
| 2011 | Aslan et al. [7] | Case–control study | BMI > 40 BMI > 35 and <40 accompanied by obesity-related comorbidities RYGB was performed | Informed consent not obtained | 7 | MC4R | Cys271Phe Gln307stop Arg236Cys | N/A | 1,3, 6, 9, and 12 months | RYGB | Weight loss after RYBG is independent of the presence of MC4R mutations |
| 2011 | Mirshahi et al. [50] | Case–control study | BMI > 40 RYGB was performed | Pregnancy after surgery | 1146 | MC4R | rs52820871 rs2229616 | N/A | Up to 48 months | RYGB | Carriers of I251L mutation demonstrated better weight loss after surgical interventions |
| 2014 | Moore et al. [20] | Case–control study | BMI > 40 RYGB was performed | Informed consent not obtained | 1146 | MC4R | V95I I137T L250Q | N/A | Up to 84 months | RYGB | Carriers of V95I, I137T and L250Q mutation demonstrated worse weight loss after surgical interventions |
| 2004 | Potoczna et al. [51] | Case–control study | BMI > 35 >18 years old, <70 years old Laparoscopic gastric banding was performed | Informed consent not obtained Alcohol or substance abuse | 233 | POMC LEP/LEPR MC4R | POMC: C4512T Cys6Cys 0.007, C7662T, C7965T, C4335G, A7429G, C7726T, C7774G, A8021G, A8042G, C8086G, C8246T LEPR: T88641C, G88642A, G88917A, T88928C, C95778T, T95869C, T96008C, T96135C, A96215G, A97118G, G97244A MC4R: rs199862517, rs13447329, rs13447332, rs2229616, rs52820871, NM_005912.3c.544T>C, NM_005912.3c.991A>G, NM_005912.3c.1419A>G | N/A | 36 months | Laparoscopic gastric banding | Carriers of MC4R mutations demonstrated less weight loss compared to non-carriers |
| 2022 | Salazar-Valencia et al. [52] | Case–control study | BMI > 35 >18 years old RYGB was performed | Informed consent not obtained | 206 | MC4R | Ile269Asn | N/A | 6 months | RYGB | Carriers of the MC4R polymorphism demonstrated similar weight loss with the non-carriers |
| 2021 | Novais et al. [53] | Case–control study | 18–50 years old BMI ≥ 40 or ≥35 kg with associated comorbidities RYGB performed | Alcohol or substance abuse Genetic syndromes associated with obesity Cushing’s syndrome Hypothyroidism renal or liver failure neoplasia HIV infection Postmenopausal oestrogen replacement therapy Corticosteroids use | 95 | LEP/LEPR FTO | LEP/LEPR: rs7799039, rs1137101 FTO: rs9939609 | N/A | 12 months | RYGB | Carriers of mutated variants did not demonstrate statistically significant differences in energy intake 1 year postop compared to non-carriers |
| 2017 | Resende et al. [54] | Retrospective cohort | >18 years old RYGB performed | Informed consent not obtained Metabolic or inflammatory diseases or dietary habits alterations postop | 141 | MC4R | rs17782313 | CT + CC: carriers TT: non-carriers | 6, 9, 12, 18, 24, 36, 48 and 60 months | RYGB | Carriers of rs17782313 MC4R polymorphism demonstrated an increased risk not to reach BMI < 30, tending to maintain a BMI > 35 |
| 2022 | Novais et al. [56] | Case–control study | 18–50 years old BMI ≥ 40 or ≥35 kg with associated comorbidities RYGB performed | Alcohol or substance abuse Genetic syndromes associated with obesity Cushing’s syndrome Hypothyroidism renal or liver failure neoplasia HIV infection Postmenopausal oestrogen replacement therapy Corticosteroids use | 351 | LEP/LEPR FTO | LEP/LEPR: rs7799039, rs1137101 FTO: rs9939609 | N/A | RYGB | Carriers of mutated variants did not demonstrate excessive weight loss 1 year compared to non-carriers | |
| 2023 | Gong et al. [55] | Retrospective cohort | >18 years old BMI ≥ 45 Bariatric surgery performed | Informed consent not obtained | Not reported | MC4R | Y35C T53I V103I R165W G233S C277X | N/A | 1, 3, 6, 12, 18, and 24 months and yearly thereafter | RYGB or sleeve gastrectomy | Carriers of R165W and G233S variants demonstrated increased excess weight loss postsurgery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Sapantzoglou, I.; Koulakmanidis, A.-M.; Athanasiou, D.; Mavrogianni, D.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papadimas, G.; Papapanagiotou, I.; et al. Impact of Bariatric Surgery on the Expression of Fertility-Related Genes in Obese Women: A Systematic Review of LEP, LEPR, MC4R, FTO, and POMC. Int. J. Mol. Sci. 2025, 26, 10333. https://doi.org/10.3390/ijms262110333
Voros C, Sapantzoglou I, Koulakmanidis A-M, Athanasiou D, Mavrogianni D, Bananis K, Athanasiou A, Athanasiou A, Papadimas G, Papapanagiotou I, et al. Impact of Bariatric Surgery on the Expression of Fertility-Related Genes in Obese Women: A Systematic Review of LEP, LEPR, MC4R, FTO, and POMC. International Journal of Molecular Sciences. 2025; 26(21):10333. https://doi.org/10.3390/ijms262110333
Chicago/Turabian StyleVoros, Charalampos, Ioakeim Sapantzoglou, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Despoina Mavrogianni, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Ioannis Papapanagiotou, and et al. 2025. "Impact of Bariatric Surgery on the Expression of Fertility-Related Genes in Obese Women: A Systematic Review of LEP, LEPR, MC4R, FTO, and POMC" International Journal of Molecular Sciences 26, no. 21: 10333. https://doi.org/10.3390/ijms262110333
APA StyleVoros, C., Sapantzoglou, I., Koulakmanidis, A.-M., Athanasiou, D., Mavrogianni, D., Bananis, K., Athanasiou, A., Athanasiou, A., Papadimas, G., Papapanagiotou, I., Vaitsis, D., Tsimpoukelis, C., Daskalaki, M. A., Topalis, V., Theodora, M., Thomakos, N., Chatzinikolaou, F., Antsaklis, P., Loutradis, D., ... Daskalakis, G. (2025). Impact of Bariatric Surgery on the Expression of Fertility-Related Genes in Obese Women: A Systematic Review of LEP, LEPR, MC4R, FTO, and POMC. International Journal of Molecular Sciences, 26(21), 10333. https://doi.org/10.3390/ijms262110333

