Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (750)

Search Parameters:
Keywords = changes in ecological environmental quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Viewed by 184
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

22 pages, 2461 KiB  
Article
Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir
by Fangze Zi, Tianjian Song, Wenxia Cai, Jiaxuan Liu, Yanwu Ma, Xuyuan Lin, Xinhong Zhao, Bolin Hu, Daoquan Ren, Yong Song and Shengao Chen
Biology 2025, 14(8), 914; https://doi.org/10.3390/biology14080914 - 22 Jul 2025
Viewed by 240
Abstract
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental [...] Read more.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

18 pages, 2680 KiB  
Article
Spatio-Temporal Evolution, Factors, and Enhancement Paths of Ecological Civilization Construction Effectiveness: Empirical Evidence Based on 48 Cities in the Yellow River Basin of China
by Haifa Jia, Pengyu Liang, Xiang Chen, Jianxun Zhang, Wanmei Zhao and Shaowen Ma
Land 2025, 14(7), 1499; https://doi.org/10.3390/land14071499 - 19 Jul 2025
Viewed by 273
Abstract
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to [...] Read more.
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to assess the effectiveness of ecological civilization construction. This study employs the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Back-Propagation (BP) neural network methods to evaluate the level of ecological civilization construction in the Yellow River Basin from 2010 to 2022, to analyze its indicator weights, and to explore the spatio-temporal evolution characteristics of each city. The results demonstrate the following: (1) Although the ecological civilization construction level of cities in the Yellow River Basin shows a steady improvement, significant regional development disparities persist. (2) The upper reaches are primarily constrained by ecological fragility and economic underdevelopment. The middle reaches exhibit significant internal divergence, with provincial capitals leading yet demonstrating limited spillover effects on neighboring areas. The lower reaches face intense anthropogenic pressures, necessitating greater economic–ecological coordination. (3) Among the dimensions considered, Territorial Space and Eco-environmental Protection emerged as the two most influential dimensions contributing to performance differences. According to the ecological civilization construction performance and changing characteristics of the 48 cities, this study proposes differentiated optimization measures and coordinated development pathways to advance the implementation of the national strategy for ecological protection and high-quality development in the Yellow River Basin. Full article
Show Figures

Figure 1

19 pages, 4056 KiB  
Article
Ecological and Geochemical Characteristics of the Content of Heavy Metals in Steppe Ecosystems of the Akmola Region, Kazakhstan
by Gataulina Gulzira, Mendybaev Yerbolat, Aikenova Nuriya, Berdenov Zharas, Ataeva Gulshat, Saginov Kairat, Dukenbayeva Assiya, Beketova Aidana and Almurzaeva Saltanat
Sustainability 2025, 17(14), 6576; https://doi.org/10.3390/su17146576 - 18 Jul 2025
Viewed by 240
Abstract
Soil quality assessment plays a critical role in promoting sustainable land management, particularly in fragile steppe ecosystems. This study provides a comprehensive geoecological evaluation of heavy metal contamination (Pb, Cd, Zn, Cu, Co, Ni, Fe, and Mn) in soils across five districts of [...] Read more.
Soil quality assessment plays a critical role in promoting sustainable land management, particularly in fragile steppe ecosystems. This study provides a comprehensive geoecological evaluation of heavy metal contamination (Pb, Cd, Zn, Cu, Co, Ni, Fe, and Mn) in soils across five districts of the Akmola region, Kazakhstan. The assessment incorporates multiple integrated pollution indices, including the geochemical pollution index (Igeo), pollution coefficient (CF), ecological risk index (Er), pollution load index (PLI), and integrated pollution index (Zc). Spatial analysis combined with multivariate statistical techniques (PCA and clustering analysis) was used to identify pollutant distribution patterns and differentiate areas by risk levels. The findings reveal generally low to moderate contamination, with cadmium (Cd) posing the highest environmental risk due to its elevated toxic response coefficient, despite its low concentration. The study also explores the connection between current soil conditions and historical land-use changes, particularly those associated with the Virgin Lands Campaign of the mid-20th century. The highest PLI values were recorded in the Yesil and Atbasar districts (7.88 and 7.54, respectively), likely driven by intensive agricultural activity and lithological factors. PCA and cluster analysis revealed distinct spatial groupings, reflecting heterogeneity in both the sources and distribution of soil pollutants. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

22 pages, 2531 KiB  
Article
Canopy Cover Drives Odonata Diversity and Conservation Prioritization in the Protected Wetland Complex of Thermaikos Gulf (Greece)
by Dimitris Kaltsas, Lydia Alvanou, Ioannis Ekklisiarchos, Dimitrios I. Raptis and Dimitrios N. Avtzis
Forests 2025, 16(7), 1181; https://doi.org/10.3390/f16071181 - 17 Jul 2025
Viewed by 204
Abstract
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and [...] Read more.
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and separately for the two suborders (Zygoptera, Anisoptera) in relation to geographic and ecological parameters at the riparian zone of four rivers and one canal within the Axios Delta National Park and the Natura 2000 SAC GR1220002 in northern Greece, using the line transect technique. In total, 6252 individuals belonging to 28 species were identified. The compositional and diversity patterns were significantly different between agricultural and natural sites. Odonata assemblages at croplands were comparatively poorer, dominated by a few, widely distributed, taxonomically proximal species, tolerant to environmental changes, as a result of modifications and consequent alterations of abiotic conditions at croplands, which also led to higher local contribution to β-diversity and species turnover. The absence of several percher, endophytic, and threatened species from agricultural sites led to significantly lower diversity, as a result of environmental filtering due to ecophysiological restrictions. Taxonomic and functional diversity, uniqueness, and Dragonfly Biotic Index (DBI) were significantly higher in riparian forests, due to the sensitivity of damselflies to dehydration, and the avoidance of habitat loss and extreme temperatures by dragonflies, which prefer natural shelters near the ecotone. The newly introduced Conservation Value Index (CVI) revealed 21 conservation hotspots of Odonata (14 at canopy cover sites), widely distributed within the borders of NATURA 2000 SAC GR1220002. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

17 pages, 1939 KiB  
Article
Comprehensive Assessment of Water Quality of China’s Largest Freshwater Lake Under the Impact of Extreme Floods and Droughts
by Zhiyu Mao, Junxiang Cheng, Ligang Xu, Mingliang Jiang and Hailin You
Hydrology 2025, 12(7), 192; https://doi.org/10.3390/hydrology12070192 - 14 Jul 2025
Viewed by 543
Abstract
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This [...] Read more.
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This study evaluated the water quality of Poyang Lake in a recent 10-year span by the water quality index (WQI), trophic level index (TLI) and a newly constructed comprehensive evaluation index, and it analyzed the trend of water quality change under extreme events. Meanwhile, the main factors affecting the water quality of Poyang Lake were analyzed by partial least squares (PLS), a multivariate statistical method that accounts for multicollinearity. The results indicate that: (1) The water quality of Poyang Lake in summer and autumn is slightly worse than that in spring and winter. Each water quality index reflects the distinct states of the water environment in Poyang Lake. (2) Each water quality evaluation index responds differently to influencing factors. (3) Extreme flood and drought events have markedly different impacts on the water environment of Poyang Lake, exhibiting significant spatial heterogeneity. Domestic sewage discharge and total water resources have a relatively great impact on the water environment of Poyang Lake. The results of this study provide important insights for water quality management and policy formulation in Poyang Lake, supporting sustainable regional development. Full article
Show Figures

Figure 1

16 pages, 2685 KiB  
Article
Spatial–Seasonal Shifts in Phytoplankton and Zooplankton Community Structure Within a Subtropical Plateau Lake: Interplay with Environmental Drivers During Rainy and Dry Seasons
by Chengjie Yin, Li Gong, Jiaojiao Yang, Yalan Yang and Longgen Guo
Fishes 2025, 10(7), 343; https://doi.org/10.3390/fishes10070343 - 11 Jul 2025
Viewed by 238
Abstract
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the [...] Read more.
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the alterations in the phytoplankton and zooplankton community structure across different geographical regions (southern, central, and northern) and seasonal periods (rainy and dry) in Erhai lake, located in a subtropical plateau in China. The results indicated that the average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), pH, and conductivity are significantly higher during the rainy season in comparison to the dry season. Furthermore, during the rainy season, there were significant differences in the concentrations of TN, TP, and Chla among the three designated water areas. Notable differences were also observed in the distribution of Microcystis, the density of Cladocera and copepods, and the biomass of copepods across the three regions during this season. Conversely, in the dry season, only the biomass of Cladocera exhibited significant variation among the three water areas. The redundancy analysis (RDA) and variance partitioning analysis demonstrated that the distribution of plankton groups (Cyanophyta, Cryptophyta, and Cladocera) is significantly associated with TN, Secchi depth (SD), and Chla during the rainy season, whereas it is significantly correlated with TP and SD during the dry season. These findings underscore the critical influence of environmental factors, shaped by rainfall patterns, in driving these ecological changes. In the context of the early stages of eutrophication in Lake Erhai, it is essential to ascertain the spatial distribution of water quality parameters, as well as phytoplankton and zooplankton density and biomass, during both the rainy and dry seasons. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

28 pages, 4718 KiB  
Article
Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)
by Yuliia Trach, Tetiana Tkachenko, Maryna Kravchenko, Viktor Mileikovskyi, Oksana Tsos, Mariia Boiaryn, Olha Biedunkova, Roman Trach and Ihor Statnyk
Environments 2025, 12(7), 235; https://doi.org/10.3390/environments12070235 - 10 Jul 2025
Viewed by 555
Abstract
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study [...] Read more.
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study is to analyse the species composition, distribution, and density of macrophytes in the Vyzhyvka River (Ukraine) in a seasonal aspect (2023–2024) under constant physical and chemical characteristics of water. To assess the seasonal dynamics of water quality, changes in indicators in three representative areas were analysed. The MIR method of environmental indexation of watercourses was used to assess the ecological state of the river. The water quality in the Vyzhyvka River at all test sites corresponds to the second class of the “good” category with the trophic status of “mesotrophic”. This is confirmed by the identified species diversity, which includes 64 species of higher aquatic and riparian plants. Among the various morphological types of macrophytes, submerged rooted forms account for only 10.56% of the total species composition. To ensure a functional balance between submerged and other forms of macrophytes, a scientifically based approach is proposed, which involves the use of mineral raw materials of local origin, in particular, mining and quarrying wastes rich in silicon, calcium and other mineral components. The results obtained are of practical value for water management, environmental protection, and ecological reclamation and can be used to develop effective measures to restore river ecosystems. Full article
Show Figures

Figure 1

25 pages, 867 KiB  
Article
Remote Sensing Reveals Multi-Dimensional Functional Changes in Fish Assemblages Under Eutrophication and Hydrological Stress
by Anastasiia Zymaroieva, Dmytro Bondarev, Olga Kunakh, Jens-Christian Svenning and Oleksander Zhukov
Fishes 2025, 10(7), 338; https://doi.org/10.3390/fishes10070338 - 9 Jul 2025
Viewed by 353
Abstract
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) [...] Read more.
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) from 1997 to 2015. By employing a combination of extensive ichthyological field surveys and satellite-derived environmental indices (including NDVI, chlorophyll-a, turbidity, and spectral proxies for algal blooms), we assessed the impacts of eutrophication, hydrological alterations, and climate warming on functional structure. Our results reveal three key responses in fish functional diversity: (1) a decline in functional specialization and imbalance, indicating the loss of unique ecological roles and increased redundancy; (2) a rise in functional divergence, reflecting a shift toward species with outlying trait combinations; and (3) a complex pattern in functional richness, with trends varying by site and trait structure. These shifts are linked to increasing eutrophication and warming, particularly in floodplain areas. Remote sensing effectively captured spatial variation in eutrophication-related water quality and proved to be a powerful tool for linking environmental change to fish community dynamics, not least in inaccessible areas. Full article
Show Figures

Figure 1

32 pages, 3854 KiB  
Review
Danube River: Hydrological Features and Risk Assessment with a Focus on Navigation and Monitoring Frameworks
by Victor-Ionut Popa, Eugen Rusu, Ana-Maria Chirosca and Maxim Arseni
Earth 2025, 6(3), 70; https://doi.org/10.3390/earth6030070 - 2 Jul 2025
Viewed by 709
Abstract
Danube River represents a critical axis of ecological and economic importance for the countries along its course. From this perspective, this paper aims to assess the most significant characteristics of the river and of its main tributaries, as well as its impact on [...] Read more.
Danube River represents a critical axis of ecological and economic importance for the countries along its course. From this perspective, this paper aims to assess the most significant characteristics of the river and of its main tributaries, as well as its impact on the environmental sustainability and socio-economic development. Navigation and the economic contribution of the Danube River are the key issues of this work, emphasizing its importance as an international transport artery that facilitates trade and tourism, and develops the energy industry through hydropower plants. The study includes an analysis of the volume of goods transported from 2019 to 2023, as well as an analysis of the goods traffic in the busiest port on the Danube. Furthermore, climate change affects the hydrological regime of the Danube, as well as the ecosystems, economy, and energy security of the riparian countries. Main impacts include changes in the hydrological regime, increased frequency of droughts and floods, reduced water quality, deterioration of biodiversity, and disruption of the economic activities dependent on the river, such as navigation, agriculture, and hydropower production. Thus, hydrological risks and challenges are investigated, focusing on the extreme events of the last two decades and the awareness of their repercussions. In this context, the national and international institutions responsible for monitoring and managing the Danube are presented, and their role in promoting a sustainable river policy is explored. Methods and technologies are shown to be essential tools for monitoring and prediction studies. The Danube includes an extensive network of hydrometric stations that help to prevent and manage the most significant risks. Finally, a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis of the development of the hydrological studies was conducted, highlighting the potential of the river. Full article
Show Figures

Figure 1

27 pages, 18002 KiB  
Article
Quantifying Ecological Dynamics and Anthropogenic Dominance in Drylands: A Hybrid Modeling Framework Integrating MRSEI and SHAP-Based Explainable Machine Learning in Northwest China
by Beilei Zhang, Xin Yang, Mingqun Wang, Liangkai Cheng and Lina Hao
Remote Sens. 2025, 17(13), 2266; https://doi.org/10.3390/rs17132266 - 2 Jul 2025
Viewed by 327
Abstract
Arid and semi-arid regions serve as crucial ecological barriers in China, making the spatiotemporal evolution of their ecological environmental quality (EEQ) scientifically significant. This study developed a Modified Remote Sensing Ecological Index (MRSEI) by innovatively integrating the Comprehensive Salinity Indicator (CSI) into the [...] Read more.
Arid and semi-arid regions serve as crucial ecological barriers in China, making the spatiotemporal evolution of their ecological environmental quality (EEQ) scientifically significant. This study developed a Modified Remote Sensing Ecological Index (MRSEI) by innovatively integrating the Comprehensive Salinity Indicator (CSI) into the Remote Sensing Ecological Index (RSEI) and applied it to systematically evaluate the spatiotemporal evolution of EEQ (2014–2023) in Yinchuan City, a typical arid region of northwest China along the upper Yellow River. The study revealed the spatiotemporal evolution patterns through the Theil–Sen (T-S) estimator and Mann–Kendall (M-K) test, and adopted the Light Gradient Boosting Machine (LightGBM) combined with the Shapley Additive Explanation (SHAP) to quantify the contributions of ten natural and anthropogenic driving factors. The results suggest that (1) the MRSEI outperformed the RSEI, showing 0.41% higher entropy and 5.63% greater contrast, better characterizing the arid region’s heterogeneity. (2) The EEQ showed marked spatial heterogeneity. High-quality areas are concentrated in the Helan Mountains and the integrated urban/rural development demonstration zone, while the core functional zone of the provincial capital, the Helan Mountains ecological corridor, and the eastern eco-economic pilot zone showed lower EEQ. (3) A total of 87.92% of the area (7609.23 km2) remained stable with no significant changes. Notably, degraded areas (934.52 km2, 10.80%) exceeded improved zones (111.04 km2, 1.28%), demonstrating an overall ecological deterioration trend. (4) This study applied LightGBM with SHAP to analyze the driving factors of EEQ. The results demonstrated that Land Use/Land Cover (LULC) was the predominant driver, contributing 41.52%, followed by the Digital Elevation Model (DEM, 18.26%) and Net Primary Productivity (NPP, 12.63%). This study offers a novel framework for arid ecological monitoring, supporting evidence-based conservation and sustainable development in the Yellow River Basin. Full article
Show Figures

Graphical abstract

22 pages, 1525 KiB  
Article
Effects of Land Use and Water Level Fluctuations on Phytoplankton in Mediterranean Reservoirs in Cyprus
by Polina Polykarpou, Natassa Stefanidou, Matina Katsiapi, Maria Moustaka-Gouni, Savvas Genitsaris, Gerald Dörflinger, Athena Economou-Amilli and Dionysios E. Raitsos
Diversity 2025, 17(7), 457; https://doi.org/10.3390/d17070457 - 28 Jun 2025
Viewed by 353
Abstract
Land use composition, water level fluctuations (WLFs), and biogeographical factors are recognized as key drivers of phytoplankton dynamics in reservoir ecosystems. This two-year study presents the first assessment of the combined effects of catchment land use, WLFs, and geographical distance on phytoplankton biomass [...] Read more.
Land use composition, water level fluctuations (WLFs), and biogeographical factors are recognized as key drivers of phytoplankton dynamics in reservoir ecosystems. This two-year study presents the first assessment of the combined effects of catchment land use, WLFs, and geographical distance on phytoplankton biomass and community composition across twelve Mediterranean reservoirs in Cyprus, which serve primarily for drinking water supply and irrigation. The results show that higher phytoplankton biomass was recorded in reservoirs whose catchments had >30% coverage by developed land (urban and agricultural), suggesting that increased anthropogenic pressures may lead to nutrient enrichment and elevated productivity. However, despite elevated biomass, no consistent spatial patterns were observed in phytoplankton community composition. The geographical distance between reservoirs had only a minor effect on species distribution, implying that other factors—such as water residence time or hydrological variability—play a more prominent role in shaping community structure. Phytoplankton biomass maxima were most often recorded during periods of elevated water levels and were typically dominated by Chlorophyta, Dinoflagellata, Bacillariophyta, and Charophyta. The pronounced temporal variability in species composition across all reservoirs points to a highly dynamic system, where environmental fluctuations strongly influence community assembly. This study provides the first comprehensive data on phytoplankton in Cyprus reservoirs, highlighting the importance of land use and hydrological regulation for water quality management in similar settings. Importantly, this baseline dataset can support the implementation of the Water Framework Directive (WFD) by contributing to the definition of ecological status classes, establishing reference conditions, and guiding future monitoring and assessment efforts. Expanding such datasets through coordinated, basin-wide monitoring initiatives is essential to improve our understanding of phytoplankton dynamics and their role in ecosystem functioning under the pressures of climate change and intensified land use in this Mediterranean “hot spot”. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

32 pages, 18860 KiB  
Article
Spatiotemporal Variations in Human Activity Intensity Along the Qinghai–Tibet Railway and Analysis of Its Decoupling Process from Ecological Environment Quality Changes
by Fengli Zou, Qingwu Hu, Lei Liao, Yuqi Liu, Haidong Li and Xujie Zhang
Remote Sens. 2025, 17(13), 2215; https://doi.org/10.3390/rs17132215 - 27 Jun 2025
Viewed by 258
Abstract
Scientifically and accurately assessing the interaction between changes in human activity intensity and the surrounding ecological environment along the Qinghai–Tibet Railway is of great significance for the optimized construction of the railway and the restoration of the regional ecological environment. Based on different [...] Read more.
Scientifically and accurately assessing the interaction between changes in human activity intensity and the surrounding ecological environment along the Qinghai–Tibet Railway is of great significance for the optimized construction of the railway and the restoration of the regional ecological environment. Based on different spatial distribution scales and construction phases of the Qinghai–Tibet Railway, this study integrates multi-source remote sensing data to construct a long-term spatiotemporal dataset of human activity intensity in the region. Drawing on analytical methods from production theory, a coupling theoretical framework based on remote sensing ecological models is proposed to quantitatively reveal the coupling relationships between the ecological environment and human activities across varying spatiotemporal scales along the Qinghai–Tibet Railway. The study finds that (1) the spatiotemporal distribution of human activity intensity along the Qinghai–Tibet Railway demonstrates clear patterns, with expansion primarily radiating from transportation corridors and their intersections, and marked spatial heterogeneity across different segments. Overall, human activity intensity increased slowly between 1990 and 2002, followed by a significant rise during the construction and opening of the Golmud–Lhasa section (2001–2007). From 2013 to 2020, the growth rate began to slow. Within a 0–30 km buffer zone centered on railway station locations (with a 15 km radius), the growth rate of human activity intensity generally decreased with increasing distance from the railway. In the 30–60 km buffer zone, this trend tended to stabilize. (2) The coupling process between ecological quality and human activity intensity across different spatiotemporal scales along the railway exhibits considerable spatial and temporal heterogeneity and complexity. The decoupling relationship is dominated by strong and weak decoupling patterns, with strong decoupling being the most prevalent. Weak decoupling is mainly distributed along the sides of the railway. Overall, in most areas along the railway, ecological quality has shown a certain degree of improvement alongside increasing human activity intensity; however, the rate of ecological improvement is generally lower than the rate of increase in human activity intensity. In some areas adjacent to the railway, intensified human activities have led to a decline in ecological quality, though the resulting ecological pressure remains relatively low. Full article
Show Figures

Figure 1

24 pages, 8390 KiB  
Article
Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed
by Fernanda Helena Oliveira da Silva, Fernando Bezerra Lopes, Bruno Gabriel Monteiro da Costa Bezerra, Noely Silva Viana, Isabel Cristina da Silva Araújo, Nayara Rochelli de Sousa Luna, Michele Cunha Pontes, Raí Rebouças Cavalcante, Francisco Thiago de Alburquerque Aragão and Eunice Maia de Andrade
Environments 2025, 12(7), 220; https://doi.org/10.3390/environments12070220 - 27 Jun 2025
Viewed by 514
Abstract
Water is scarce in semi-arid regions due to environmental limitations; this situation is aggravated by changes in land use and land cover (LULC). In this respect, the basic ecological functions of Permanent Preservation Areas (PPAs) help to maintain water resources. The aim of [...] Read more.
Water is scarce in semi-arid regions due to environmental limitations; this situation is aggravated by changes in land use and land cover (LULC). In this respect, the basic ecological functions of Permanent Preservation Areas (PPAs) help to maintain water resources. The aim of this study was to evaluate the relationship between the LULC and water quality in PPAs in a semi-arid watershed, from 2009 to 2016. The following limnological data were analyzed: chlorophyll-a, transparency, total nitrogen and total phosphorus. The changes in LULC were obtained by classifying images from Landsat 5, 7 and 8 into three types: Open Dry Tropical Forest (ODTF), Dense Dry Tropical Forest (DDTF) and Exposed Soil (ES). Spearman correlation and principal component analysis were applied to evaluate the relationships between the parameters. There was a significant positive correlation between DDTF and the best limnological conditions. However, ES showed a significant negative relationship with transparency and a positive relationship with chlorophyll-a, indicating a greater input of sediments and nutrients into the water. The PCA corroborated the results of the correlation. It is therefore essential to prioritize the preservation and restoration of the vegetation in these sensitive areas to ensure the sustainability of water resources. Future studies should assess the impact of specific human activities, such as agriculture, deforestation and livestock farming, on water quality in the PPAs. Full article
Show Figures

Figure 1

Back to TopTop