Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed
Abstract
1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Water Quality
2.2.2. Land Use and Land Cover
2.3. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Analysis of the Water Quality
3.2. Use and Occupation of All Permanent Preservation Areas
3.3. Analysis of the Correlation Between Water Quality and Land Use in All PPAs
3.4. LCLU in Riparian Forests of the General Sampaio Reservoir
3.5. Correlation Between Water Quality and Land Use in Zones of Riparian Forests
3.6. Multivariate Analysis of the Evaluated Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PPAs | Permanent Preservation Areas |
Chl-a | Chlorophyll-a |
TN | Total nitrogen |
TP | Total phosphorus |
Trans | Transparency |
COGERH | Water resources management company |
MASSA | Research and Extension Group on Water and Soil Management in the Semi-Arid Region of the Federal University of Ceará (UFC) |
UFC | Federal University of Ceará |
OF | Open Forest |
DF | Dense Forest |
ES | Exposed Soil |
PCA | Principal component analysis |
DTF | Dry Tropical Forest |
WGSR | Watershed of the General Sampaio Reservoir |
BSh’w’ | A type of hot semi-arid climate according to the Köppen classification |
FUNCEME | Ceará Foundation for Meteorology and Water Resources |
UTM | Universal Transverse Mercator coordinate system |
WGS 84 | World Geodetic System 1984 |
DEM | Digital Elevation Model |
ArcGIS | A geographic information system software |
SRTM | Shuttle Radar Topography Mission DEM |
SPSS | A statistical software |
LAQA | Environmental Chemistry Laboratory (of UFC) |
APHA | American Public Health Association |
AWWA | American Water Works Association |
WEF | Water Environment Federation |
SMWW | Standard Methods for Examination of Water and Wastewater |
USGS | United States Geological Survey 1 |
TM | Thematic Mapper sensor (on Landsat 5) |
ETM+ | Enhanced Thematic Mapper Plus sensor (on Landsat 7) |
OLI | Operational Land Imager sensor (on Landsat 8) |
ENVI | Environment for Visualizing Images software |
DN | Digital numbers |
FLAASH | Fast Line-of-sight Atmospheric Analysis of Hypercubes algorithm |
MODTRAN | Moderate Resolution Atmospheric Transmission Model |
ppm | Parts per million |
MAXVER | Maximum likelihood method (for land-use classification) |
SD | Standard deviation |
CONAMA | National Environment Council (of Brazil) |
References
- Sarzaeim, O.B.H.; Mehdipour, E.F.; Loáiciga, H.A. Climate change outlook for water resources management in a semiarid river basin: The effect of the environmental water demand. Environ. Earth Sci. 2017, 76, 1–8. [Google Scholar] [CrossRef]
- Hamlat, A.; Guidoum, A.; Koulala, I. Status and trends of water quality in the Tafna catchment: A comparative study using water quality indices. J. Water Reuse Desalination 2017, 7, 228–245. [Google Scholar] [CrossRef]
- Savage, C.; Leavitt, P.R.; Elmgren, R. Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnol. Oceanogr. 2010, 55, 1033–1046. [Google Scholar] [CrossRef]
- Mahessar, A.A.; Qureshi, A.L.; Ursani, H.; Tunio, I.; Kandhro, B.; Memon, S.A. Environmental Concerns for Water Consumption from Polluted Water Bodies in Watershed Area of Sindh Province. J. Pollut. Eff. Control. 2017, 5, 204. [Google Scholar]
- Noriega, C.; Araujo, M.; Varona, H.L.; Costa, M.; Calzada, A.; Medeiros, C.; Silva, A.; Portela, L.; Bezerra, D.; Jeronimo, R.; et al. Long-Term Trend of Nitrogen and Phosphorus Transport In 12 Tropical Coastal Watersheds in Northeast Brazil. Quimica Nova 2023, 46, 616–626. [Google Scholar] [CrossRef]
- Andrade, Á.D.S.; Ribeiro, S.D.C.A.; Pereira, B.W.D.F.; Bezerra, P.E.S.; Brandão, V.V.P. Hidrográfica do rio Marapanim, nordeste do Pará Conflito de uso do solo em Áreas de Preservação Permanente da Bacia. Rev. Ciência E Natureza 2021, 43, e20. [Google Scholar] [CrossRef]
- Sangüesa, C.; Pizarro, R.; Ibañez, A.; Pino, J.; Rivera, D.; García-Chevesich, P.; Ingram, B. Spatial and Temporal Analysis of Rainfall Concentration Using the Gini Index and PCI. Water 2018, 10, 112. [Google Scholar] [CrossRef]
- Guerreiro, M.J.S.; Andrade, E.M.; Abreu, I.; Lajinha, T. Long-term variation of precipitation indices in Ceará State, Northeast Brazil. Int. J. Climatol. 2013, 33, 2929–2939. [Google Scholar] [CrossRef]
- de Andrade, E.M.; Sena, M.G.T.; da Silva, A.G.R.; Pereira, F.J.S.; Lopes, F.B. Uncertainties of the rainfall regime in a tropical semi-arid region: The case of the State of Ceará. Rev. Bras. Agroambiente 2016, 10, 88–95. [Google Scholar] [CrossRef]
- Souza, M.S.; Campos, K.C.; Braga, F.L.P.; Lopes, F.B. Determinantes do regime pluviométrico no Semiárido Cearense (1990–2019). Rev. Bras. Climatologia 2024, 34, 533–556. [Google Scholar] [CrossRef]
- Souza, B.I.; Artigas, R.C.; Lima, E.R.V. Caatinga e desertificação. Mercat. Fortaleza 2015, 14, 131–150. [Google Scholar]
- Knipper, K.; Hogue, T.; Scott, R.; Franz, K. Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region. Remote Sens. 2017, 9, 184. [Google Scholar] [CrossRef]
- Maia, A.R.S.; Lopes, F.B.; de Andrade, E.M. Influence of Climatic Seasonality on a Survey of Land Use and Cover in the Semi-arid Region. J. Agric. Sci. 2018, 10, 311. [Google Scholar] [CrossRef]
- Lopes, F.B.; Andrade, E.M.; Meireles, A.C.M.; Becker, H.; Batista, A.A. Assessment of the water quality in a large reservoir in semiarid region of Brazil. Revista Bras. Eng. Agrícola Ambient. 2014, 18, 437–445. [Google Scholar] [CrossRef]
- Praxedes, C.; Lopes, F.; Andrade, E.; Silva, T.; Becker, H. Evaluation of nitrogen and phosphorus in surface reservoirs of the semi-arid region of Brazil using mass balance. Rev. Ciência Agronômica 2023, 54, e20228421. [Google Scholar] [CrossRef]
- Lima, A.; Rodal, M.; Castro, C.; Antonino, A.; Melo, A.; Gonçalves-Souza, T.; Sampaio, E. Phenology of high- and low-density wood deciduous species responds differently to water supply in tropical semiarid regions. J. Arid. Environ. 2021, 193, 104594. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ho, C.-C.; Hoang, H.-S. Determining quality of water in reservoir using machine learning. Ecol. Inform. 2018, 44, 57–75. [Google Scholar] [CrossRef]
- Lima, F.J.D.O.; Lopes, F.B.; Andrade, E.M.; Rocha, F.C.; Meireles, A.C.M. Spatio-Temporal Dynamics of Toxic Cyanobacteria in an Artificial Lake in the Brazilian Semi-Arid Region. Rev. Caatinga 2022, 35, 423–435. [Google Scholar] [CrossRef]
- Cavalcante, H.; Cruz, P.S.; Viana, L.G.; de Lucena-Silva, D.; de Lucena Barbosa, J.E. Influence of the use and the land cover of the catchment in the water quality of the semiarid tropical reservoirs. J. Hyperspectr. Remote Sens. 2018, 7, 389–398. [Google Scholar] [CrossRef]
- Pereira, E.C.B.; Lopes, F.B.; de Almeida, A.M.M.; de Andrade, E.M.; Lopes, J.F.B. Sedimentos e Nutrientes Aportados a Um Reservatório de Pequeno Porte No Semiárido Tropical. Rev. Cienc. Agron. 2021, 52, e20196717. [Google Scholar] [CrossRef]
- Chaves, L.C.G.; Lopes, F.B.; Maia, A.R.S.; Meireles, A.C.M.; de Andrade, E.M. Water quality and anthropogenic impact in the watersheds of service reservoirs in the Brazilian semi-arid region. Rev. Cienc. Agron. 2019, 50, 223–233. [Google Scholar] [CrossRef]
- Duarte, M.R.N.; Pereira, T.M.; Lima, P.d.F.; Pereira, E.C.B.; Lopes, F.B.; Rezende, C.F. Limnological dynamics in artificial reservoir and intermittent river in the semiarid region depending on land use and occupation. Rev. Cienc. Agron. 2021, 52, 1–10. [Google Scholar] [CrossRef]
- Lima, F.J.d.O.; Lopes, F.B.; Cid, D.A.C.; Neto, I.E.L.; Rocha, R.V.; Estácio, A.B.S.; Araújo, I.C.d.S.; Luna, N.R.d.S.; Pontes, M.C.; de Souza, A.C.T.; et al. Determination of the Total Phosphorus Decay Coefficient Based on Hydrological Models in an Artificial Reservoir in the Brazilian Semi-Arid Region. Hydrology 2025, 12, 36. [Google Scholar] [CrossRef]
- Coelho, R.C.R.P.; Buffon, I.; Guerra, T. Influência do uso e ocupação do solo na qualidade da água: Um método para avaliar a importância da zona ripária. Ambiente Água 2011, 6, 104–117. [Google Scholar] [CrossRef]
- Cocco, J.; dos Santos Galvanin, E.A.; Ribeiro, H.V.; de Lima Nascimento, D. Land Use/Land Cover Analysis in the Permanent Preservation Areas at the Springs of the Sub-Basin from Mato Grosso State–Brazil. Ciência Nat. 2016, 38, 1411–1418. [Google Scholar] [CrossRef]
- Wong, W.W.; Pottage, J.; Warry, F.Y.; Reich, P.; Roberts, K.L.; Grace, M.R.; Cook, P.L.M. Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods. Biogeosciences 2018, 15, 3953–3965. [Google Scholar] [CrossRef]
- Campagnolo, K.; da Silveira, G.L.; Miola, A.C.; da Silva, R.L.L. Área de Preservação Permanente de um rio e análise da legislação de proteção da vegetação nativa. Ciênc. Florest. 2017, 27, 831–842. [Google Scholar] [CrossRef]
- Lopes, F.B.; de Andrade, E.M.; Teixeira, A.D.S.; Caitano, R.F.; Chaves, L.C.G. Uso de geoprocessamento na estimativa da perda de solo em microbacia hidrográfica do semiárido brasileiro. Rev. Bras. Agroambiente 2011, 5, 88–96. [Google Scholar] [CrossRef]
- Pontes, N.S.C.; Noronha, S.; Silva, F.H.O.; Amaral, J.B.C.; Lopes, F.B. Estimating concentrations of chlorophyll-a and suspended sediments in a continental aquatic ecosystem using remote sensing. Rev. Bras. Agroambiente 2020, 14, 1–13. [Google Scholar]
- Lopes, F.B.; Barbosa, C.C.F.; Novo, E.M.L.d.M.; de Carvalho, L.A.S.; de Andrade, E.M.; Teixeira, A.d.S. Modeling the concentration of chlorophyll-a in a continental aquatic ecosystem of the Brazilian seminar based on remote sensing. Rev. Cienc. Agron. 2021, 52, 1–12. [Google Scholar] [CrossRef]
- Hoff, R.; Pauletto, H.; Alberti, R.; Farias, A.R. Sustainable Viticulture: Geotechnologies for Update Permanent Preservation Areas in the Serra Gaúcha Wine Region, Brazil. Am. J. Environ. Eng. 2016, 6, 167–174. [Google Scholar]
- Hansen, C.H.; Burian, S.J.; Dennison, P.E.; Williams, G.P. Spatiotemporal Variability of Lake Water Quality in the Context of Remote Sensing Models. Remote Sens. 2017, 9, 409. [Google Scholar] [CrossRef]
- Lopes, F.B.; Barbosa, C.C.F.; Novo, E.; Andrade, E.M.; Chaves, L.C.G. Modelagem da qualidade das águas a partir de sensoriamento remoto hiperespectral. Rev. Bras. Eng. Agríc. Ambient. 2014, 18, 13–19. [Google Scholar] [CrossRef]
- da Silva, D.E.P.R. On climate variability in Northeast of Brazil. J. Arid Environ. 2004, 58, 574–596. [Google Scholar] [CrossRef]
- Campos, D.A.; De Andrade, E.M. Seasonal trend of climate variables in an area of the Caatinga phytogeographic domain. Rev. Bras. Agroambiente 2021, 15, 1–18. [Google Scholar] [CrossRef]
- de Jesus, J.B.; de Oliveira, D.G.; Araújo, W.S.; da Cruz, L.S.; Kuplich, T.M. Influence of anthropization on the floristic composition and phytosociology of the Caatinga susceptible to desertification in the state of Sergipe, Brazil. Trop. Ecol. 2022, 63, 398–408. [Google Scholar] [CrossRef]
- dos Santos, R.H.S.; Lima, J.R.d.S.; de Oliveira, C.L.; Souza, R.M.S.; Antonino, A.C.D.; de Souza, E.S. Variação sazonal e interanual da umidade do solo e da evapotranspiração em Caating. Rev. Bras. Geogr. Física 2023, 16, 2390–2409. [Google Scholar] [CrossRef]
- Barboza, E.N.; Caiana, C.R.A.; Neto, F.d.C.B. Análise da precipitação pluviométrica na Região do Centro-Sul Cearense: Um estudo do período (1980–2009). Res. Soc. Dev. 2020, 9, e18963304. [Google Scholar] [CrossRef]
- Júnior, M.P.D.; Marangon, L.C.; Gonçalves, M.d.P.M.; Feliciano, A.L.P. Phytosociological analysis and ecological indicators in two areas of Caatinga with different historics of use in the hills of Paraíba. Cienc. Florest. 2022, 32, 1439–1459. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA/AWWA/WEF: Washington, DC, USA, 2005. [Google Scholar]
- Yuan, J.; Niu, Z. Evaluation of atmospheric correction using FLAASH. In Proceedings of the International Workshop on Earth Observation and Remote Sensing Applications, Beijing, China, 30 June–2 July 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Jia, L.; Limin, W.; Lingbo, Y.; Fei, T.; Jie, S.; Fugang, Y.; Changhong, F. GF-1 satellite image atmospheric correction based on 6S model and its effect. Trans. Chin. Soc. Agric. Eng. 2015, 31, 159–168. [Google Scholar]
- Vale, J.R.B.; Costa, J.A.; dos Santos, J.F.; da Silva, E.L.S.; Favacho, A.T. Análise comparativa de métodos de classificação supervisionada aplicada ao mapeamento da cobertura do solo no município de Medicilândia, Pará. InterEspaço 2018, 4, 26–44. [Google Scholar] [CrossRef]
- Oliveira, G.C.; Filho Fernandes, E.I. Metodologia para delimitação de APP’s em topos de morros segundo o novo Código Florestal brasileiro utilizando sistemas de informação geográfica. In Proceedings of the Anais XVI Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Foz do Iguaçu, Brazil, 13–18 April 2013. [Google Scholar]
- de Mendonça, J.C.; Lopes, F.B.; de Andrade, E.M.; Praxedes, C.F.; Lima, F.J.d.O.; da Silva, F.H.O. Qualitative vulnerability of the waters of a surface reservoir subjected to drought in a tropical semi-arid region1. Rev. Cienc. Agron. 2023, 54, e20207803. [Google Scholar] [CrossRef]
- da Silva, D.B.; Bellotto, V.R.; Barbosa, J.D.S.B.; Lima, T.B. Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil. Water 2021, 13, 3314. [Google Scholar] [CrossRef]
- Coelho, C.; Heim, B.; Foerster, S.; Brosinsky, A.; De Araújo, J.C. In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region. Water 2017, 9, 913. [Google Scholar] [CrossRef]
- Aranha, T.R.B.T.; Martinez, J.-M.; Souza, E.P.; Barros, M.U.G.; Martins, E.S.P.R. Remote Analysis of the Chlorophyll-a Concentration Using Sentinel-2 MSI Images in a Semiarid Environment in Northeastern Brazil. Water 2022, 14, 451. [Google Scholar] [CrossRef]
- Ventura, D.L.T.; Martinez, J.-M.; De Attayde, J.L.; Martins, E.S.P.R.; Brandini, N.; Moreira, L.S. Long-term series of chlorophyll-a concentration in Brazilian semiarid lakes from MODIS imagery. Water 2022, 14, 400. [Google Scholar] [CrossRef]
- Rocha, F.C.; Andrade, E.M.; Lopes, F.B. Water quality index calculated from biological, physical and chemical attributes. Environ. Monit. Assess. 2015, 187, 4163. [Google Scholar] [CrossRef] [PubMed]
- Busse, L.B.; Simpson, J.C.; Cooper, S.D. Relationships among nutrients, algae, and land use in urbanized southern California streams. Can. J. Fish. Aquat. Sci. 2006, 63, 2621–2638. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Wang, P.; Shuai, J.; Tao, F.; Shi, P. River discharge, land use change, and surface water quality in the Xiangjiang River, China. Hydrol. Process. 2013, 28, 4130–4140. [Google Scholar] [CrossRef]
- Guidotti, V.; Ferraz, S.F.d.B.; Pinto, L.F.G.; Sparovek, G.; Taniwaki, R.H.; Garcia, L.G.; Brancalion, P.H. Changes in Brazil’s Forest Code can erode the potential of riparian buffers to supply watershed services. Land Use Policy 2020, 94, 104511. [Google Scholar] [CrossRef]
- ElKadiri, R.; Momm, H.G.; Bingner, R.L.; Moore, K. Spatial Optimization of Conservation Practices for Sediment Load Reduction in Ungauged Agricultural Watersheds. Soil Syst. 2023, 7, 4. [Google Scholar] [CrossRef]
- Pontes Filho, J.D.; Souza Filho, F.d.A.; Martins, E.S.P.R.; Studart, T.M.d.C. Copula-Based Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water 2020, 12, 834. [Google Scholar] [CrossRef]
- Silva, M.A.O.; dos Santos Liporace, F. Detecção automática de nuvem e sombra de nuvem em imagens de sensoriamento remoto. Bol. Ciênc. Geod. 2016, 22, 369–388. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantificação de clorofila-a em lagos típicos em toda a China usando imagens Sentinel-2 MSI com algoritmo de aprendizado de máquina. Sci. Total Environ. 2021, 778, 146271. [Google Scholar]
- de Andrade, E.M.; Ferreira, K.C.D.; Lopes, F.B.; Araújo, I.C.d.S.; da Silva, A.G.R. Balance of nitrogen and phosphorus in a reservoir in the tropical semiarid region. Rev. Cienc. Agron. 2020, 51, e20196800. [Google Scholar] [CrossRef]
- Huang, Y.; Lou, C.; Luo, L.; Wang, X. Insight into the effects of magnesium and phosphorus on the mixotrophic growth of Chlorella vulgaris under stably controlled nutrient conditions. Sci. Total Environ. 2021, 752, 141747. [Google Scholar] [CrossRef] [PubMed]
- Menezes, J.P.C.; Bittencourt, R.P.; Farias, M.S.; Bello, I.P.; Fia, R.; Oliveira, L.F.C. Relação entre padrões de uso e ocupação do solo e qualidade da água em uma bacia hidrográfica urbana. Eng. Sanit. Ambient. 2016, 21, 519–534. [Google Scholar] [CrossRef]
- Yin, J.; Liu, H.; Chen, X. Dynamic Change in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir and Its Influence on Water Quality. Sustainability 2018, 10, 1025. [Google Scholar] [CrossRef]
- Butt, M.J.; Mahmood, R.; Waqas, A. Deposição de sedimentos devido à erosão do solo na região da bacia hidrográfica da Barragem de Mangla. Environ. Monit. Assess. 2011, 181, 419–429. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, X.; Zhang, W.; Wu, X.; Zhang, J.; Han, F. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events. Environ. Pollut. 2016, 215, 10–17. [Google Scholar] [CrossRef]
- Ribeiro, T.G.; Boaventura, G.R.; da Cunha, L.S.; Pimenta, S.M. Estudo da qualidade das águas por meio da correlação de parâmetros físico-químicos, bacia hidrográfica do Ribeirão Anicuns. Geochim. Bras. 2016, 30, 84–94. [Google Scholar]
- Marengo, J.A.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A.; Camargo, H.; Riveros, M.P.; Pabló, A.D. Two Contrasting Severe Seasonal Extremes in Tropical South America in 2012: Flood in Amazonia and Drought in Northeast Brazil. J. Clim. 2013, 26, 9137–9154. [Google Scholar] [CrossRef]
- Domingues, A.L.; Nissinen-Lipp, K.H.; Mirandas, L.S.; Burioli, G.A. Delimitação da área de preservação permanente da Lagoa dos Gateados, na planície costeira do Rio Grande do Sul (RS), utilizando séries de imagens de satélite e dados hidrológicos históricos. Rev. Bras. Geogr. Fís. 2015, 8, 776–792. [Google Scholar] [CrossRef]
- Reis, R.B.; Cardoso, P.; Cruz, C.B.M.; Vicens, R.S.M. Mapeamento e caracterização das Áreas de Preservação Permanente (APP’s) na Área de Proteção Ambiental do Rio São João/Mico Leão Dourado. In Proceedings of the Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brazil, 25–30 April 2009. [Google Scholar]
- Schäffer, W.B. Permanent Preservation Areas and Conservation Units vs. Risk Areas: What Does One Have to Do with the Other? 2nd ed.; Ministry of the Environment (Brazil), Secretariat of Biodiversity and Forests, and Secretariat of Water Resources and Urban Environment: Brasília, Brazil, 2013; Biodiversity Series, No. 41; ISBN 9788577381555. [Google Scholar]
- Campagnolo, K.; Kobiyama, M.; Fagundes, M.R.; De Menezes, D.; Iroumé, A.; Michel, G.P.; Rodrigues, M.F. Influence of large wood dynamics on flow and channel morphology in a forest stream. Geomorphology 2024, 459, 109268. [Google Scholar] [CrossRef]
- Ramos, L.; Negreiros, D.; Goulart, F.F.; Figueiredo, J.C.; Gomes, K.; Siqueira, W.T.; Justino, T.S.P.; Maia, R.O. Dissimilar forests along the Rio Doce watershed call for multiple restoration references to avoid biotic homogenization. Sci. Total Environ. 2024, 930, 172720. [Google Scholar] [CrossRef] [PubMed]
- Tsujii, K.P.; Ribeiro, A.C.C.; Carneiro, A.; Neto Silva, C.M.; Gonçalves, B.B. Uso e ocupação das áreas de preservação permanentes no sudoeste Goiano. Rev. Geogr. 2014, 31, 55–64. [Google Scholar]
- Neves, C.B.; Castro, S.S.; Santos, N.; Borges, R.O. Análise das relações entre solos, relevo e a legislação ambiental para a delimitação das Áreas de Preservação Permanente: O exemplo da alta bacia do ribeirão João Leite, Estado de Goiás. Rev. Bras. Geomorfol. 2009, 10. [Google Scholar] [CrossRef]
- Salemi, L.F.; Groppo, J.D.; Trevisan, R.; Moraes, J.M.; Lima, W.P.; Martinelli, L.A. Aspectos hidrológicos da recuperação florestal de Áreas de Preservação Permanente ao longo dos corpos da água. Rev. Inst. Florestal 2011, 23, 69–80. [Google Scholar] [CrossRef]
- Freitas, F.R.S.; Righetto, A.M.; Attayde, J.L. Cargas de Fósforo Total e Material em Suspensão em um Reservatório do Semi-Árido Brasileiro. Oecologia Aust. 2011, 15, 655–665. [Google Scholar] [CrossRef]
- Freitas, M.A.S.R.; Andrade, E.M.; Weber, O.B.; Palácio, H.A.Q.; Ferreira, T.O. Cargas de sedimentos e perdas de nutrientes em agroecossistemas do semiárido brasileiro. Nutr. Cycl. Agroecosyst. 2013, 96, 203–213. [Google Scholar] [CrossRef]
- Wang, H.; Holden, J.; Spera, K.; Xu, X.; Wang, Z.; Luan, J.; Xu, X.; Zhang, Z. Phosphorus fluxes at the sediment–water interface in subtropical wetlands subjected to experimental warming: A microcosm study. Chemosphere 2013, 90, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Tye, A.M.; Rushton, J.; Vane, C.H. Distribution and speciation of phosphorus in foreshore sediments of the Thames estuary, UK. Mar. Pollut. Bull. 2018, 127, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.S.; Neto, I.E.L.; Clemente, A.; Oliveira, S.; Pestana, C.J.; de Melo, M.A.; Capelo-Neto, J. Modelagem da troca de fósforo entre sedimentos de fundo e água em regiões tropicais reservatórios semiáridos. Chemosphere 2020, 246, 125686. [Google Scholar] [CrossRef]
Period | Water Quality Data | Reservoir Volume (%) | Images | Reservoir Volume (%) | |
---|---|---|---|---|---|
2009 | Rainy | January | 34.9 | June | 100 |
Dry | August | 99.3 | August | 99.3 | |
2010 | Rainy | May | 78.2 | June | 75.8 |
Dry | November | 58.3 | October | 61.4 | |
2011 | Rainy | May | 61.7 | April | 58.5 |
Dry | August | 58.2 | August | 58.2 | |
2012 | Rainy | July | 37.8 | May | 39.8 |
Dry | August | 32.9 | June | 35.2 | |
2013 | Rainy | May | 19.8 | May | 19.8 |
Dry | August | 16.2 | September | 13.9 | |
2014 | Rainy | May | 5.1 | June | 4.6 |
Dry | October | 3.6 | September | 3.99 | |
2015 | Rainy | April | 3.9 | January | 2.8 |
Dry | September | 3.1 | October | 2.8 | |
2016 | Rainy | April | 3.0 | June | 2.8 |
Dry | September | 2.3 | August | 2.6 |
Width of the Drainage Channel | Width of the PPA Along Each Margin |
---|---|
up to 10 m | 30 m |
from 10 to 50 m | 50 m |
from 50 to 200 m | 100 m |
from 200 to 600 m | 200 m |
greater than 600 m | 500 m |
Sequential Functions | |||||
---|---|---|---|---|---|
1. Focal statistics | 2. Fill | 3. Minus | 4. Flow direction | 5. Basin | 6. Raster to polygon |
7. Feature to line | 8. Zonalstatistics | 9. Raster calculator | 10. Reclassify | 11. Raster to point | 12. Add surface information |
13. Zonal statistics | 14. Raster calculator | 15. Reclassify | 16. Raster to point | 17. Add surface information | 18. Generate near table |
19. Join field | 20. Join field | 21. Add field | 22. Calculate field | 23. Spatial join | 24. Polygon to raster |
25. Raster calculator | 26. Reclassify | 27. Raster to polygon | 28. Zonal statistics | 29. Raster calculator | 30. Zonal statistics |
31. Reclassify | 32. Times | 33. Raster calculator | 34. Zonal statistics | 35. Raster calculator | 36. Times |
Cl-a | Trans | TN | TP | |
---|---|---|---|---|
ES | 0.553 * | −0.574 * | 0.371 | 0.335 |
Open DTF | −0.426 * | 0.212 | −0.385 | −0.386 |
Dense DTF | −0.244 | 0.210 | −0.071 | −0.274 |
Strip of Riparian Forest (m) | Class | Transparency | Phosphorus | Nitrogen | Chlorophyll-a |
---|---|---|---|---|---|
30 | Exposed soil | −0.724 ** | 0.245 | 0.538 * | 0.609 ** |
Open DTF | 0.068 | 0.145 | −0.232 | −0.385 | |
Dense DTF | 0.252 | −0.312 | −0.206 | −0.079 | |
100 | Exposed soil | −0.129 | −0.097 | 0.144 | 0.065 |
Open DTF | −0.229 | −0.066 | −0.82 | −0.009 | |
Dense DTF | 0.458 * | −0.521 * | −0.487 * | −0.321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, F.H.O.d.; Lopes, F.B.; Bezerra, B.G.M.d.C.; Viana, N.S.; Araújo, I.C.d.S.; Luna, N.R.d.S.; Pontes, M.C.; Cavalcante, R.R.; Aragão, F.T.d.A.; Andrade, E.M.d. Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed. Environments 2025, 12, 220. https://doi.org/10.3390/environments12070220
Silva FHOd, Lopes FB, Bezerra BGMdC, Viana NS, Araújo ICdS, Luna NRdS, Pontes MC, Cavalcante RR, Aragão FTdA, Andrade EMd. Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed. Environments. 2025; 12(7):220. https://doi.org/10.3390/environments12070220
Chicago/Turabian StyleSilva, Fernanda Helena Oliveira da, Fernando Bezerra Lopes, Bruno Gabriel Monteiro da Costa Bezerra, Noely Silva Viana, Isabel Cristina da Silva Araújo, Nayara Rochelli de Sousa Luna, Michele Cunha Pontes, Raí Rebouças Cavalcante, Francisco Thiago de Alburquerque Aragão, and Eunice Maia de Andrade. 2025. "Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed" Environments 12, no. 7: 220. https://doi.org/10.3390/environments12070220
APA StyleSilva, F. H. O. d., Lopes, F. B., Bezerra, B. G. M. d. C., Viana, N. S., Araújo, I. C. d. S., Luna, N. R. d. S., Pontes, M. C., Cavalcante, R. R., Aragão, F. T. d. A., & Andrade, E. M. d. (2025). Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed. Environments, 12(7), 220. https://doi.org/10.3390/environments12070220