Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (866)

Search Parameters:
Keywords = cellulosic membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3377 KB  
Article
Enhancing Osmotic Power Generation and Water Conservation with High-Performance Thin-Film Nanocomposite Membranes for the Mining Industry
by Sara Pakdaman and Catherine N. Mulligan
Water 2026, 18(2), 248; https://doi.org/10.3390/w18020248 - 17 Jan 2026
Viewed by 179
Abstract
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) [...] Read more.
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) membrane containing functionalized multi-walled carbon nanotubes (fMWCNTs) within a polyacrylonitrile (PAN) support layer, followed by polydopamine (PDA) surface modification, was investigated under a PRO operation using pretreated gold mining wastewater as the feed solution. Unlike most previous studies that rely on synthetic feeds, this work evaluates the membrane performance under a PRO operation using a real mining wastewater stream. The membrane with fMWCNTs and PDA exhibited a maximum power density of 25.22 W/m2 at 12 bar, representing performance improvements of 23% and 68% compared with the pristine thin-film composite (TFC) and commercial cellulose triacetate (CTA) membranes, respectively. A high water flux of 75.6 L·m−2·h−1 was also obtained, attributed to enhanced membrane hydrophilicity and reduced internal concentration polarization. The optimized membrane, containing 0.3 wt% fMWCNTs in the support layer and a PDA coating on the active layer, produced a synergistic enhancement in the PRO performance, resulting in a lower reverse salt flux and an improved flux–selectivity trade-off. Furthermore, the ultrafiltration (UF) and nanofiltration (NF) pretreatment effectively reduced the hardness and ionic content, enabling a stable PRO operation with real mining wastewater over a longer period of time. Overall, this study demonstrates the feasibility of achieving both reusable water and enhanced osmotic power generation using modified TFN membranes under realistic mining wastewater conditions. Full article
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 - 10 Jan 2026
Viewed by 314
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

24 pages, 4055 KB  
Article
Cadmium Removal from Synthetic Waste-Water Using TiO2-Modified Polymeric Membrane Through Electrochemical Separation System
by Simona Căprărescu, Roxana Gabriela Zgârian, Grațiela Teodora Tihan, Alexandru Mihai Grumezescu, Eugenia Eftimie Totu, Daniel Costinel Petre and Cristina Modrogan
Polymers 2026, 18(2), 150; https://doi.org/10.3390/polym18020150 - 6 Jan 2026
Viewed by 259
Abstract
In this paper, a new polymeric membrane including polymers (cellulose acetate, polyethylene glycol 400), copolymer poly(4-vinylpyridine)-block-polystyrene, and TiO2 nanoparticles were synthesized by the phase inversion method. In order to investigate the presence and the influence of the TiO2 nanoparticles on the [...] Read more.
In this paper, a new polymeric membrane including polymers (cellulose acetate, polyethylene glycol 400), copolymer poly(4-vinylpyridine)-block-polystyrene, and TiO2 nanoparticles were synthesized by the phase inversion method. In order to investigate the presence and the influence of the TiO2 nanoparticles on the membrane matrix, a polymeric membrane without TiO2 nanoparticles was prepared by the same preparation method. The structure of the polymeric membranes was characterized by several techniques, such as Fourier transform infrared spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and impedance spectroscopy. Also, the water contact angle, water retention, and porosity were determined. The results showed that the TiO2 nanoparticles were incorporated into the pores and onto the surface of the polymeric membrane, which resulted in a more uniform structure. In addition, these polymeric membranes were tested for the removal of cadmium ions from synthetic waste-water using a laboratory-scale electrochemical separation system with a custom-built setup. The results showed that the polymeric membrane with TiO2 nanoparticles showed a high cadmium ions removal rate (95.53%), compared to the polymeric membrane without TiO2 nanoparticles (85.29%), after a 1.5 h electrochemical separation test. The final results indicated that the polymeric membranes prepared with TiO2 nanoparticles had excellent thermal stability and exhibited the best ionic conductivity. The electrochemical separation system proved that the obtained polymeric membranes effectively remove cadmium from the synthetic waste-water. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Figure 1

21 pages, 19614 KB  
Article
Hydrothermal–Membrane Valorization of Coffee Pulp for Xylooligosaccharide Production
by James Villar, Iris Paola Roncal Huaman, Delicia L. Bazán, Ruly Teran Hilares and Rita de Cássia Lacerda Brambilla Rodrigues
Processes 2026, 14(1), 153; https://doi.org/10.3390/pr14010153 - 2 Jan 2026
Viewed by 494
Abstract
Wet coffee pulp residues (WCPRs) are typically underutilized, and their accumulation increases alongside coffee production, generating significant environmental impacts. This study proposes a sustainable valorization approach through hydrothermal treatment followed by membrane filtration for the production of xylooligosaccharides (XOSs). Extractive-free WCPR contained 35.4% [...] Read more.
Wet coffee pulp residues (WCPRs) are typically underutilized, and their accumulation increases alongside coffee production, generating significant environmental impacts. This study proposes a sustainable valorization approach through hydrothermal treatment followed by membrane filtration for the production of xylooligosaccharides (XOSs). Extractive-free WCPR contained 35.4% structural carbohydrates (20.4% cellulose and 15.0% hemicellulose) and 27.0% lignin. Hydrothermal treatments (180 °C, 3 °C min−1, 15–60 min) were performed with and without citric acid as an organic catalyst. The acid-assisted treatment (T4) enhanced hemicellulose depolymerization and xylose release (16 g·kg−1 dry biomass), whereas milder, non-acidic conditions (T3) promoted the selective formation and recovery of short-chain XOS, reaching cumulative biomass-normalized yields of up to 14 g·kg−1 of xylobiose (X2) and 9 g·kg−1 of xylotriose (X3). Subsequent membrane processing (UF–DF–NF) enabled progressive purification and enrichment of XOS fractions. Diafiltration was identified as the main step governing XOS enrichment, whereas nanofiltration primarily refined separation by directing monomeric sugars to the permeate rather than substantially increasing XOS yields. Additionally, Multiple Factor Analysis (MFA) integrated process and compositional variables, explaining 79.6% of the total variance. Dimension 1 represented process intensity and xylose transport, while Dimension 2 reflected molecular-weight-driven XOS fractionation. The acid-assisted process (T4) exhibited a distinct multivariate signature, characterized by enhanced carbohydrate mobilization and improved XOS recovery with reduced dependence on dilution. Overall, coupling hydrothermal pretreatment with membrane fractionation proved to be an efficient, and environmentally friendly strategy for coffee by-product valorization, consistent with hemicellulose-first biorefinery models and the principles of the circular bioeconomy. Full article
(This article belongs to the Special Issue Advances in Green Extraction and Separation Processes)
Show Figures

Graphical abstract

22 pages, 740 KB  
Article
Influence of Diet on the Bioaccessibility of Zn from Dietary Supplements: Findings from an In Vitro Digestion Model and Analytical Determinations
by Joanna Tokarczyk, Agnieszka Jaworowska, Dawid Kowalczyk, Monika Kasprzak, Paweł Jagielski and Wojciech Koch
Nutrients 2026, 18(1), 94; https://doi.org/10.3390/nu18010094 - 27 Dec 2025
Viewed by 689
Abstract
Background: Zn is an essential mineral nutrient for human health. Its deficiency may result not only from insufficient intake but also from impaired absorption. Dietary components released from the food matrix during digestion can interact in ways that either enhance or inhibit mineral [...] Read more.
Background: Zn is an essential mineral nutrient for human health. Its deficiency may result not only from insufficient intake but also from impaired absorption. Dietary components released from the food matrix during digestion can interact in ways that either enhance or inhibit mineral bioavailability. Objectives: The primary aim of this study was to evaluate the bioaccessibility of Zn from dietary supplements, particularly in the context of diet type, chemical form, and pharmaceutical formulation effects. Methods: The experiment was conducted using an in vitro gastrointestinal digestion model with cellulose dialysis membranes. Zn content after digestion was determined using flame atomic absorption spectrometry (F-AAS). The method employed had been previously developed and validated for use in determining the bioaccessibility of mineral nutrients. Results: The bioaccessibility of Zn from the standard, basic, and high-fiber diets was 19.43, 16.18, and 8.12%, respectively. In the presence of a standard diet, the bioaccessibility of Zn from dietary supplements was within the range 1.77–36.09%, in the presence of a basic diet, 1.05–35.86%; and in the presence of a high-fiber diet, 1.37–35.94%. The highest values were observed for zinc picolinate, whereas the lowest were determined for zinc oxide. Conclusions: A high-fiber diet significantly reduced Zn bioaccessibility. Bioaccessibility is also strongly dependent on the chemical form of zinc. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

13 pages, 2171 KB  
Article
Bridging the Knowledge Gap in Harmaline’s Pharmacological Properties: A Focus on Thermodynamics and Kinetics
by Tatyana Volkova, Olga Simonova and German Perlovich
Pharmaceutics 2026, 18(1), 35; https://doi.org/10.3390/pharmaceutics18010035 - 26 Dec 2025
Viewed by 359
Abstract
Background/Objectives: Advancing information on the key physicochemical properties of biologically active substances enables the development of formulations with reduced dosing, lower toxicity, and minimal adverse effects. This work addresses the knowledge gap concerning the pharmacologically relevant properties of harmaline (HML), with a [...] Read more.
Background/Objectives: Advancing information on the key physicochemical properties of biologically active substances enables the development of formulations with reduced dosing, lower toxicity, and minimal adverse effects. This work addresses the knowledge gap concerning the pharmacologically relevant properties of harmaline (HML), with a focus on thermodynamic and kinetic aspects. New data were obtained on the compound’s solubility and distribution coefficients across a wide temperature range. Specifically, solubility was measured in aqueous buffers (pH 2.0 and 7.4), 1-octanol (OctOH), n-hexane (Hex), and isopropyl myristate (IPM), while distribution coefficients were determined in OctOH/pH 7.4, Hex/pH 7.4, and IPM/pH 7.4 systems. Methods: Three membranes—regenerated cellulose (RC), PermeaPad (PP) and polydimethylsiloxane-polycarbonate (PDS)—were used as barriers in permeability studies using a Franz diffusion cell. Results: At 310.15 K, the molar solubility of HML in the solvents decreased in the following order: OctOH > pH 2.0 > pH 7.4 > IPM > Hex. The distribution coefficient of HML showed a strong dependence on the nature of the organic phase, correlating with its solubility in the respective solvents. The OctOH/pH 7.4 distribution coefficient ranged from 0.973 at 293.15 K to 1.345 at 313.15 K, falling within the optimal range for potential drug bioavailability. The transfer of HML into OctOH (from either pH 7.4 or hexane) is thermodynamically spontaneous, whereas its transfer into Hex is unfavorable. Conclusions: Based on its permeability across the PP barrier, HML was classified as highly permeable. The distribution and permeation profiles of HML showed similar trends over 5 h in both the OctOH/pH 7.4–PP and IPM/pH 7.4–PDS systems. These systems were therefore proposed as suitable models for studying HML transport in vitro. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

16 pages, 2948 KB  
Article
Visualizing the Effect of Process Pause on Virus Entrapment During Constant Flux Virus Filtration
by Wenbo Xu, Xianghong Qian, Hironobu Shirataki, Daniel Straus and Sumith Ranil Wickramasinghe
Membranes 2026, 16(1), 6; https://doi.org/10.3390/membranes16010006 - 26 Dec 2025
Viewed by 524
Abstract
Virus filtration is an essential unit operation used to validate clearance of adventitious virus during the manufacture of biopharmaceutical products such as monoclonal antibodies. Obtaining at least a 10,000-fold reduction in virus particles in the permeate is challenging as monoclonal antibodies are about [...] Read more.
Virus filtration is an essential unit operation used to validate clearance of adventitious virus during the manufacture of biopharmaceutical products such as monoclonal antibodies. Obtaining at least a 10,000-fold reduction in virus particles in the permeate is challenging as monoclonal antibodies are about half the size of the virus particles. Minute virus of mice, FDA-recommended model adventitious virus, was labeled with a fluorescent dye. Laser scanning confocal microscopy was used to determine the location of virus entrapment within the virus filtration membrane. Three different hollow fiber membranes made of regenerated cellulose and polyvinylidene fluoride were tested. Feed streams consisted of MVM spiked in buffer and MVM spiked in 5 g L−1 bovine serum albumin known to contain aggregates similar in size to the MVM. After filtering the feed, a buffer flush was used, with and without 30 min pause before the buffer flush. For all virus filters, a 30 min process pause led to broadening and movement of the virus entrapment zone deeper into the membrane. The presence of aggregates led to greater broadening of the entrapment zone. Both effects could lead to reduced virus clearance. Visualization of virus entrapment helps improve understanding of the behavior of virus filtration membranes. Full article
Show Figures

Figure 1

23 pages, 5357 KB  
Article
Cellulose-Encapsulated Magnetite Nanoparticles for Spiking of Tumor Cells Positive for the Membrane-Bound Hsp70
by Anastasia Dmitrieva, Vyacheslav Ryzhov, Yaroslav Marchenko, Vladimir Deriglazov, Boris Nikolaev, Lyudmila Yakovleva, Oleg Smirnov, Vasiliy Matveev, Natalia Yudintceva, Anastasiia Spitsyna, Elena Varfolomeeva, Stephanie E. Combs, Andrey L. Konevega and Maxim Shevtsov
Int. J. Mol. Sci. 2026, 27(1), 150; https://doi.org/10.3390/ijms27010150 - 23 Dec 2025
Viewed by 239
Abstract
The development of highly sensitive approaches for detecting tumor cells in biological samples remains a critical challenge in laboratory and clinical oncology. In this study, we investigated the structural and magnetic properties of iron oxide nanoparticles incorporated into cellulose microspheres of two size [...] Read more.
The development of highly sensitive approaches for detecting tumor cells in biological samples remains a critical challenge in laboratory and clinical oncology. In this study, we investigated the structural and magnetic properties of iron oxide nanoparticles incorporated into cellulose microspheres of two size ranges (~100 and ~700 μm) and evaluated their potential for targeted tumor cell isolation. In the smaller microspheres, magnetite-based magnetic nanoparticles (MNPs) were synthesized in situ via co-precipitation, whereas pre-synthesized MNPs were embedded into the larger microspheres. The geometrical characteristics of the resulting magnetic cellulose microspheres (MSCMNs) were assessed by confocal microscopy. Transmission electron microscopy and X-ray diffraction analyses revealed an average magnetic core size of approximately 17 nm. Magnetic properties of the MNPs within MSCMNs were characterized using a highly sensitive nonlinear magnetic response technique, and their dynamic parameters were derived using a formalism based on the stochastic Hilbert–Landau–Lifshitz equation. To evaluate their applicability in cancer diagnostics and treatment monitoring, the MSCMNs were functionalized with a TKD peptide that selectively binds membrane-associated Hsp70 (mHsp70), yielding TKD@MSCMNs. Magnetic separation enabled the isolation of tumor cells from biological fluids. The specificity of TKD-mediated binding was confirmed using Flamma648-labeled Hsp70 and compared with control alloferone-conjugated microspheres (All@MSCMNs). The ability of TKD@MSCMNs to selectively extract mHsp70-positive tumor cells was validated using C6 glioma cells and mHsp70-negative FetMSCs controls. Following co-incubation, the extraction efficiency for C6 cells was 28 ± 14%, significantly higher than that for FetMSC (7 ± 7%, p < 0.05). These findings highlight the potential of TKD-functionalized magnetic cellulose microspheres as a sensitive platform for tumor cell detection and isolation. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 4151 KB  
Article
Strawberry Fruit Softening Driven by Cell Wall Metabolism, Gene Expression, Enzyme Activity, and Phytohormone Dynamics
by Hongyan Lu, Qiling Yu and Mengyan Li
Horticulturae 2025, 11(12), 1533; https://doi.org/10.3390/horticulturae11121533 - 18 Dec 2025
Viewed by 602
Abstract
Texture is a critical quality attribute of strawberry fruit, and phytohormones play a pivotal role in fruit softening, which mainly results from cell wall metabolism, which is governed by genes and enzymes. To gain further insights into strawberry (Fragaria × ananassa, [...] Read more.
Texture is a critical quality attribute of strawberry fruit, and phytohormones play a pivotal role in fruit softening, which mainly results from cell wall metabolism, which is governed by genes and enzymes. To gain further insights into strawberry (Fragaria × ananassa, Duch. cv.  Akihime ) softening, our study investigated changes across five stages in fruits in their firmness, soluble solids content (SSC), cell microstructure, cell wall materials, activities of cell wall-modifying enzymes, gene expression, endogenous phytohormone levels, and their correlation. During strawberry ripening, firmness decreased, while SSC, intercellular space, and separation of the cell wall from the plasma membrane increased. Meanwhile, the contents of ionic pectin (ISP) and cellulose (CE), pectin methylesterase (PME) activity, FaPME expression, and the levels of zeatin (Z) and strigolactone (SL) decreased, showing a positive correlation with firmness. In contrast, the activities of pectate lyase (PL) and cellulase (Cx), the expression of FaPL and FaCx, and the contents of gibberellin A4 (GA4), GA9, and abscisic acid (ABA) increased during ripening, and these were negatively correlated with firmness. These results suggest that Z and SL are associated with the maintenance of cell wall integrity and firmness, whereas increases in GA4, GA9, and ABA are linked to enhanced cell wall disassembly and fruit softening. Full article
Show Figures

Figure 1

10 pages, 1154 KB  
Proceeding Paper
Biopolymers as Sustainable Materials for Membranes in Microbial Fuel Cells: A Bibliometric Analysis
by Segundo Jonathan Rojas-Flores, Magaly De La Cruz-Noriega, Renny Nazario-Naveda, Santiago M. Benites and Daniel Delfin-Narciso
Mater. Proc. 2025, 27(1), 3; https://doi.org/10.3390/materproc2025027003 - 11 Dec 2025
Viewed by 425
Abstract
Microbial fuel cells (MFCs) offer a sustainable solution for energy generation and wastewater treatment, yet their scalability is hindered by reliance on expensive and non-renewable synthetic membranes. This study addresses the critical need for eco-friendly alternatives by conducting a bibliometric analysis of biopolymers [...] Read more.
Microbial fuel cells (MFCs) offer a sustainable solution for energy generation and wastewater treatment, yet their scalability is hindered by reliance on expensive and non-renewable synthetic membranes. This study addresses the critical need for eco-friendly alternatives by conducting a bibliometric analysis of biopolymers used in MFC membrane development. Using data from Scopus and Web of Science (2012–2025), we applied quantitative and network-based methods to evaluate publication trends, collaboration patterns, and thematic evolution. The analysis identified chitosan, alginate, and cellulose as the most studied biopolymers due to their favorable proton conductivity, biodegradability, and potential for waste-derived production. Key findings include a surge in research output post-2018, strong interdisciplinary collaboration across materials science and microbiology, and emerging interest in nanomaterial integration and 3D printing for membrane enhancement. Despite promising advances, challenges persist with regard to the mechanical stability and standardization of fabrication methods. This study provides a strategic overview of the field, highlighting scientific progress and guiding future research toward scalable, high-performance biopolymer membranes for MFCs applications. Full article
Show Figures

Figure 1

17 pages, 2426 KB  
Article
Photodynamic Microbial Defense of Cotton Fabric with 4-Amino-1,8-naphthalimide-Labeled PAMAM Dendrimer
by Desislava Staneva, Daniela Atanasova and Ivo Grabchev
Materials 2025, 18(24), 5570; https://doi.org/10.3390/ma18245570 - 11 Dec 2025
Viewed by 458
Abstract
The article describes the interaction between 4-amino-1,8-naphthalic anhydride and the terminal amine groups of the first-generation poly(amidoamine) (PAMAM) dendrimer. Cotton fabric was treated with the newly obtained photoactive dendrimer (DA) to achieve its antimicrobial photodynamic inactivation. The photodynamic inactivation method is an innovative [...] Read more.
The article describes the interaction between 4-amino-1,8-naphthalic anhydride and the terminal amine groups of the first-generation poly(amidoamine) (PAMAM) dendrimer. Cotton fabric was treated with the newly obtained photoactive dendrimer (DA) to achieve its antimicrobial photodynamic inactivation. The photodynamic inactivation method is an innovative approach in which, upon irradiation with visible light, photosensitizers generate highly reactive oxygen species, specifically singlet oxygen (1O2), which destroys microbial cells. In the dark, the DA dendrimer strongly inhibits the development of the model bacteria Bacillus cereus (a Gram-positive bacterium) and Pseudomonas aeruginosa (a Gram-negative bacterium) in solution. Upon irradiation with visible light, the inhibition is significantly enhanced, achieving almost complete inactivation of B. cereus and 94% of P. aeruginosa. Cotton fabric was treated with the DA dendrimer at two concentrations (0.15% and 0.30% weight of fabric). It was found that the dendrimer molecules are adherent to the cellulose fiber surfaces and do not leach in washing. Treatment of the fabric with DA partially increases its hydrophobicity, which prevents the adhesion of some bacteria. In the dark, the treated fabric shows weak antibacterial activity because the dendrimer DA molecules are attached to the textile surface, and inactivation depends solely on the microorganism’s surface contact. However, upon irradiation, a significant increase in the fabric’s antimicrobial activity is observed, as the fixed dendrimer participates in the release of singlet oxygen, which effectively attacks microorganism cell membranes and components. For the fabric with the higher concentration (DA30), 94% inactivation of B. cereus and 89% inactivation of P. aeruginosa were achieved. Thus, a synergistic effect between photodynamic activity and increased hydrophobicity was achieved, making the modified cotton fabric an example of a high-tech textile with permanent, renewable disinfection. Full article
(This article belongs to the Special Issue Advances in Textile Materials for Biomedical Applications)
Show Figures

Graphical abstract

33 pages, 1097 KB  
Review
Novel Alginate-, Cellulose- and Starch-Based Membrane Materials for the Separation of Synthetic Dyes and Metal Ions from Aqueous Solutions and Suspensions—A Review
by Małgorzata A. Kaczorowska
Materials 2025, 18(24), 5495; https://doi.org/10.3390/ma18245495 - 6 Dec 2025
Viewed by 601
Abstract
Pollution of water resources with hazardous substances of anthropogenic origin (e.g., synthetic dyes, heavy metal ions) is currently one of the most important environmental issues, and the development of not only effective and economical but also eco-friendly methods of removing these substances from [...] Read more.
Pollution of water resources with hazardous substances of anthropogenic origin (e.g., synthetic dyes, heavy metal ions) is currently one of the most important environmental issues, and the development of not only effective and economical but also eco-friendly methods of removing these substances from aqueous solutions is one of the greatest challenges. Among the various separation methods, techniques based on the utilization of different types of polymer membranes have gained increasing interest due to their usually high efficiency, the materials’ stability and reusability, and the possibility of using “green” components for their formation. Recent research efforts have been concentrated, inter alia, on the application of natural polysaccharide polymers (e.g., cellulose, alginates, starch, cyclodextrins) and their derivatives to produce well-performing membranes. Appropriately composed polysaccharide-based membranes under optimal process conditions enable effective separation of dyes, salts, and metal ions (e.g., often with a rejection rates of >95% for dyes and metal ions and <7% for salts). This review concerns the latest developments in the formation and utilization of novel polysaccharide-based membranes for the separation of synthetic dyes and metal ions from aqueous solutions and suspensions, with emphasis on their most important advantages, limitations, and potential impact on the environment and sustainability. Full article
Show Figures

Figure 1

16 pages, 5350 KB  
Article
Mechanism of Interfacial Slippage in the Micro-Triangle and Composite Fiber Membrane Characteristics in Rotary-Force Spinning
by Jianwei Ma, Meng Zhang, Shuo Zhao, Zhiming Zhang, Zhen Chen and Qiaoling Ji
Polymers 2025, 17(23), 3235; https://doi.org/10.3390/polym17233235 - 4 Dec 2025
Viewed by 362
Abstract
Composite fiber membranes fabricated via rotational-force spinning have become widely applied in biomedicine, energy, and environmental fields owing to their excellent properties. Improving their functional performance and fabrication quality has therefore become a key research focus. Rotational-force spinning is a simple and efficient [...] Read more.
Composite fiber membranes fabricated via rotational-force spinning have become widely applied in biomedicine, energy, and environmental fields owing to their excellent properties. Improving their functional performance and fabrication quality has therefore become a key research focus. Rotational-force spinning is a simple and efficient technique in which high-speed motor rotation ejects polymer solutions from a nozzle to form fibers. However, the influence of polymer flow behavior within the nozzle on fiber formation remains insufficiently understood. In this study, the flow characteristics within the micro-triangle and the liquid–liquid slip phenomenon were investigated using a core–shell spinning device. Numerical simulations were conducted to analyze velocity differences between two polymer solutions under varying motor speeds and polyoxyethylene (PEO) concentrations. The results demonstrate that increasing PEO concentration and motor speed decreases slip velocity, thereby stabilizing the flow. Complementary experiments were performed using PEO and hydroxyethyl cellulose (HEC) solutions under controlled conditions. Mechanical testing, scanning electron microscopy (SEM), and thermogravimetric analysis (TG) were employed to assess the mechanical performance, thermal stability, morphology, and fiber diameter distribution of the composite membranes. Overall, the findings highlight the critical role of liquid–liquid slip in fiber formation and provide valuable insights for the controlled fabrication of high-quality composite fibers, offering a foundation for future research. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 3341 KB  
Article
Facile Synthesis of Cellulose Whisker from Cotton Linter as Filler for the Polymer Electrolyte Membrane (PEM) of Fuel Cells
by Ronaldo P. Parreño, Reynaldo A. Badua, Jowin L. Rama and Apollo Victor O. Bawagan
J. Compos. Sci. 2025, 9(12), 670; https://doi.org/10.3390/jcs9120670 - 3 Dec 2025
Viewed by 499
Abstract
Hybrid membranes are promising alternatives for various applications, combining a continuous polymer phase with a dispersed filler phase to achieve synergistic functional benefits. The ideal fillers should possess well-defined structures and unique properties for multi-functionality, as well as being sourced from renewable, biodegradable [...] Read more.
Hybrid membranes are promising alternatives for various applications, combining a continuous polymer phase with a dispersed filler phase to achieve synergistic functional benefits. The ideal fillers should possess well-defined structures and unique properties for multi-functionality, as well as being sourced from renewable, biodegradable materials for sustainability purposes. This study explored the potential of using cellulose-based renewable materials as fillers for hybrid polymer electrolyte membranes (PEMs) in fuel cells. Cellulose whiskers (CWs), known for their high crystallinity and elastic modulus, were effectively synthesized via optimized sequential alkali treatment and acid hydrolysis. Subsequent functionalization with citric acid was performed to enhance their reinforcing properties and overall performance. Initial characterization using ATR-FTIR and XRD confirmed the CWs’ structural composition, high crystallinity, and the presence of reactive groups (sulfate and hydroxyl). The functionalization process introduced new carbonyl groups (C=O), which was verified by ATR-FTIR, while maintaining high hydrophilicity. Morphological analysis revealed that the crosslinked CWs created a denser and more compact microstructure within the membrane, leading to a significant enhancement in mechanical strength. The modifications to the cellulose whiskers not only improved structural integrity but also boosted the membrane’s ion exchange capacity (IEC) and proton conductivity compared to membranes with unmodified CWs. Initial experiments demonstrated CWs’ compatibility as a filler in a polysulfone (PSU) matrix, forming hybrid membranes suitable for fuel cell applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

20 pages, 3139 KB  
Article
Nonspecific Binding of a Putative S-Layer Protein to Plant Cell Wall Polysaccharides—Implication for Growth Competence of Lactobacillus brevis in the Gut Microbiota
by Zhenzhen Hao, Wenjing Zhang, Jianzhong Ge, Daoxin Yang, Kairui Guo, Yuan Wang, Huiying Luo, Huoqing Huang and Xiaoyun Su
Int. J. Mol. Sci. 2025, 26(23), 11612; https://doi.org/10.3390/ijms262311612 - 30 Nov 2025
Viewed by 1991
Abstract
Plant cell wall polysaccharides (PCWPs) serve as an abundant but recalcitrant carbon source for many microbes living in the gut of humans and animals. An adhesion to PCWPs is common in gut bacteria and can even be observed in the lactobacilli, which are [...] Read more.
Plant cell wall polysaccharides (PCWPs) serve as an abundant but recalcitrant carbon source for many microbes living in the gut of humans and animals. An adhesion to PCWPs is common in gut bacteria and can even be observed in the lactobacilli, which are supposed to promote the growth competence of these non-PCWP degraders because of the facilitated acquisition of newly released oligosaccharides. Nevertheless, the binding of molecules of lactobacilli to PCWPs and the underlying mechanisms remain largely unknown. By analyzing the transcriptome of Lactobacillus brevis grown in xylan supplemented with a xylanase, a gene was identified to encode a putative S-layer PCWP-binding protein (Lb1145). Lb1145 was predicted to have four domains, among which domains 1 and 2 were responsible for binding PCWPs. The binding was nonspecific, since structurally distinct PCWPs, e.g., cellulose, xylan, mannan, and chitin, and even lignin, were all bound by Lb1145. Both of the two N-terminal domains have a high pI, and we demonstrated that a non-enzymatic glycosylation-like process plays an important role in binding. Compared with another L. brevis surface protein, i.e., the WxL protein Lb630, Lb1145 displayed a binding preference for the phloem sieve tube in the wheat stem section. Moreover, Lb1145 could bind ten strains within the Lactobacillus, Enterococcus, Pediococcus, and Bacillus genera among the seventeen selected gut bacterial species. An analysis of the reported S-layer proteins from the Gram-positive bacteria (lactobacilli and bifidobacteria) and outer membrane proteins from the Gram-negative (Bacteroides fragilis and Prevotella intermedia) indicated that bacterial cell surface proteins with high pI values are not rare. The high pI-based and non-enzymatic glycosylation-like process-mediated binding represents a new paradigm and may be popular in gut bacterial surface proteins binding to PCWPs, with important physiological implications in growth competition in the gut microbiota. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop