Biopolymers as Sustainable Materials for Membranes in Microbial Fuel Cells: A Bibliometric Analysis †
Abstract
1. Introduction
2. Methodology
3. Results and Analysis
Challenges and Future Research Areas in Biopolymers for MFC Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Duan, C.; Duan, W.; Sun, F.; Cui, H.; Zhang, S.; Chen, X. Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): A review. J. Clean. Prod. 2021, 301, 126951. [Google Scholar] [CrossRef]
- James, A. Ceramic-microbial fuel cell (C-MFC) for waste water treatment: A mini review. Environ. Res. 2022, 210, 112963. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Jin, D.; Wu, P. Anammox-coupled microbial fuel cell (Anammox-MFC) for wastewater treatment: A critical review. J. Water Process Eng. 2025, 71, 107285. [Google Scholar] [CrossRef]
- Ahanchi, M.; Jafary, T.; Yeneneh, A.M.; Rupani, P.F.; Shafizadeh, A.; Shahbeik, H.; Pan, J.; Tabatabaei, M.; Aghbashlo, M. Review on waste biomass valorization and power management systems for microbial fuel cell application. J. Clean. Prod. 2022, 380, 134994. [Google Scholar] [CrossRef]
- Li, A.; Ma, B.; Hua, S.; Ping, R.; Ding, L.; Tian, B.; Zhang, X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr. Polym. 2024, 333, 121952. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Sivakumar, M.; McLauchlan, C.; Ansari, A.; Vishwanathan, A.S. A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. J. Environ. Chem. Eng. 2021, 9, 105011. [Google Scholar] [CrossRef]
- Afrin, A.; Swamy, P.C.A. Symphony of light: AIE and MFC in carbazole-based cyanostilbenes. J. Mater. Chem. C 2024, 12, 1923–1944. [Google Scholar] [CrossRef]
- Ida, T.K.; Mandal, B. Microbial fuel cell design, application and performance: A review. Mater. Today Proc. 2023, 76, 88–94. [Google Scholar]
- Kurniawan, T.A.; Othman, M.H.D.; Liang, X.; Ayub, M.; Goh, H.H.; Kusworo, T.D.; Mohyuddin, A.; Chew, K.W. Microbial fuel cells (MFC): A potential game-changer in renewable energy development. Sustainability 2022, 14, 16847. [Google Scholar] [CrossRef]
- Naseer, M.N.; Zaidi, A.A.; Khan, H.; Kumar, S.; bin Owais, M.T.; Jaafar, J.; Suhaimin, N.S.; Wahab, Y.A.; Dutta, K.; Asif, M.; et al. Mapping the field of microbial fuel cell: A quantitative literature review (1970–2020). Energy Rep. 2021, 7, 4126–4138. [Google Scholar] [CrossRef]
- Reyes, C.; Fivaz, E.; Sajó, Z.; Schneider, A.; Siqueira, G.; Ribera, J.; Poulin, A.; Schwarze, F.W.; Nyström, G. 3D printed cellulose-based fungal battery. ACS Sustain. Chem. Eng. 2024, 12, 16001–16011. [Google Scholar] [CrossRef]
- Alalawy, A.I.; Zidan, N.S.; Sakran, M.; Hazazi, A.Y.; Salama, E.S.; Alotaibi, M.A. Enhancing bioelectricity generation in seaweed-derived microbial fuel cells using modified anodes with Fe2O3@ AuNPs/PANI nanocomposites. Biomass Bioenergy 2024, 182, 107104. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Patwardhan, S.B.; Tripathi, S.; Mathuriya, A.S.; Gupta, P.K.; Lal, R.B.; Tusher, T.R. Application of microbial fuel cell (MFC) for pharmaceutical wastewater treatment: An overview and future perspectives. Sustainability 2022, 14, 8379. [Google Scholar] [CrossRef]
- Palanisamy, G.; Thangarasu, S.; Dharman, R.K.; Patil, C.S.; Negi, T.P.P.S.; Kurkuri, M.D.; Pai, R.K.; Oh, T.H. The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: A comprehensive review. J. Energy Chem. 2023, 80, 402–431. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Kumar, M.; George, R.J.; PS, A. Bibliometric analysis for medical research. Indian J. Psychol. Med. 2023, 45, 277–282. [Google Scholar]
- Ülker, P.; Ülker, M.; Karamustafa, K. Bibliometric analysis of bibliometric studies in the field of tourism and hospitality. J. Hosp. Tour. Insights 2023, 6, 797–818. [Google Scholar] [CrossRef]
- Lim, W.M.; Kumar, S. Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Glob. Bus. Organ. Excell. 2024, 43, 17–26. [Google Scholar] [CrossRef]
- Ali, A.A.; Al-Othman, A.; Tawalbeh, M. Exploring natural polymers for the development of proton exchange membranes in fuel cells. Process Saf. Environ. Prot. 2024, 189, 1379–1401. [Google Scholar] [CrossRef]
- Nigiz, F.U.; Akel, M. Increased hydrogen transport in microbial fuel cells by using copper based metal organic frameworks doped membrane. Int. J. Hydrogen Energy 2024, 75, 262–270. [Google Scholar] [CrossRef]
- Tiwari, A.; Yadav, N.; Jadhav, D.A.; Sandhwar, V.K.; Saxena, S.; Anghan, K.; Suransh, J. Low-cost earthen membrane: Inclusion of wood ash to improve performance of microbial fuel cell. Environ. Eng. Res. 2024, 30, 240298. [Google Scholar] [CrossRef]
- Pusphanathan, K.; Mohd Zaini Makhtar, M.; Shukor, H.; Mohd Sabri, M.N.I.; Abdul Rasik, N.A.; Shamsuddin, N.A.; Siddiqui, M.R.; Kapoor, R.T.; Rafatullah, M. Effectiveness of Direct Sulfonated Polysulfone in Dual Chamber Microbial Fuel Cells Based Dewatered Sludge for Power Generation. Int. J. Environ. Res. 2024, 18, 100. [Google Scholar] [CrossRef]
- Sabina-Delgado, A.; Kamaraj, S.K.; Hernández-Montoya, V.; Valdés-Valadez, J.O.; Prieto-Muñoz, R.; Cervantes, F.J.; Montes-Morán, M.Á. Optimization of the microbial fuel cells operation for wastewater treatment by using cylindrical ceramic membranes. Int. J. Hydrogen Energy 2024, 72, 400–411. [Google Scholar] [CrossRef]
- Zadeh, P.G.; Rezania, S.; Fattahi, M.; Dang, P.; Vasseghian, Y.; Aminabhavi, T.M. Recent advances in microbial fuel cell technology for energy generation from wastewater sources. Process Saf. Environ. Prot. 2024, 189, 425–439. [Google Scholar] [CrossRef]
- Surti, P.V.; Kailasa, S.K.; Mungray, A.K. Development of a Novel Composite Polymer Electrolyte Membrane for Application as a Separator in a Dual Chamber Microbial Fuel Cell. Ind. Eng. Chem. Res. 2024, 63, 5182–5194. [Google Scholar] [CrossRef]
- Özyörü, Z.İ.; Nigiz, F.U. Electricity production from dairy wastewater using phosphotungstic acid-Poly (vinylidene fluoride) Membrane supported microbial fuel cell. Int. J. Hydrogen Energy 2025, 142, 842–851. [Google Scholar] [CrossRef]
- Satpathy, S.S.; Ojha, P.C.; Ojha, R.; Dash, J.; Pradhan, D. Recent Modifications of Anode Materials and Performance Evaluation of Microbial Fuel Cells: A Brief Review. J. Energy Eng. 2025, 151, 03125001. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, D.; Ma, H.; Zhang, T.; Chen, Y.; Akbar, N.; Pu, S. Progress in enhancing the remediation performance of microbial fuel cells for contaminated groundwater. J. Environ. Sci. 2024, 145, 28–49. [Google Scholar] [CrossRef]
- Ishaq, A.; Said, M.I.M.; Azman, S.B.; Dandajeh, A.A.; Lemar, G.S.; Jagun, Z.T. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: A review. Environ. Sci. Pollut. Res. 2024, 31, 41683–41733. [Google Scholar] [CrossRef]
- Srivastava, R.; Gaurav, K. Doped polymethyl methacrylate (PMMA) as proton exchange membrane for microbial fuel cell. J. Polym. Eng. 2024, 44, 299–306. [Google Scholar] [CrossRef]
- Sheth, P.; Patil, D.; Kandasubramanian, B.; Mayilswamy, N. Advancements in chitosan membranes for promising secondary batteries. Polym. Bull. 2024, 81, 15319–15348. [Google Scholar] [CrossRef]
- Atkar, A.; Sridhar, S.; Deshmukh, S.; Dinker, A.; Kishor, K.; Bajad, G. Synthesis and characterization of sulfonated chitosan (SCS)/sulfonated polyvinyl alcohol (SPVA) blend membrane for microbial fuel cell application. Mater. Sci. Eng. B 2024, 299, 116942. [Google Scholar] [CrossRef]
- Bijimol, B.I.; Elias, L.; Sreelekshmy, B.R.; Shibli, S.M.A. Effective Exploitation of Sugarcane Byproducts and Industrial Effluents for Strategic Energy Applications: A Review on Recent Developments and Approaches with Special Reference to Microbial Fuel Cells. ACS Appl. Bio Mater. 2025, 8, 3657–3690. [Google Scholar] [CrossRef] [PubMed]
- Janakiraman, V.; Sowmya, S.; Thenmozhi, M. Biopolymer based membrane technology for environmental applications. Phys. Sci. Rev. 2024, 9, 2051–2076. [Google Scholar] [CrossRef]
- Solomon, J.; Ganesh, N.; Sundaram, C.M.; Ravichandran, S.; Dharmalingam, S. Sulphonated graphene oxide as functionalized filler for polymer electrolyte membrane with enhanced anti-biofouling in microbial fuel cells. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134675. [Google Scholar] [CrossRef]
- Yang, Y.W.; Li, M.J.; Hung, T.C. The study on coupled CO2 fixation and power generation in microalgae-microbial fuel cells embedded with oxygen-consuming biofilms. Fuel 2024, 367, 131410. [Google Scholar] [CrossRef]
- Kumar, R.; Mooste, M.; Ahmed, Z.; Zekker, I.; Käärik, M.; Marandi, M.; Leis, J.; Kikas, A.; Otsus, M.; Treshchalov, A.; et al. Catalyzing oxygen reduction by morphologically engineered ZIF-derived carbon composite catalysts in dual-chamber microbial fuel cells. J. Environ. Chem. Eng. 2024, 12, 112242. [Google Scholar] [CrossRef]
- Bahena-Ramírez, J.; López-Díaz, J.A.; García-Mesino, R.L.; Rojano, F.; Pedram, S.; Hernández-Flores, G. Organic agar-based membranes synthesis amended with eggshell to acid mine drainage treatment by bioelectrochemical systems. Int. J. Hydrogen Energy 2025, 141, 1339–1348. [Google Scholar] [CrossRef]



| Criteria | |
|---|---|
| TS | (“biopolymers” OR “biopolymer” OR “bio-based polymer” OR “natural polymer”) AND (“microbial fuel cell” OR “MFC” OR “biofuel cell” OR “microbial energy”) AND (“sustainability” OR “renewable” OR “environmental” OR “green”) OR (“electricity” OR “power” OR “energy” OR “current”) OR (“microorganism” OR “bacteria” OR “microbe” OR “fungi”) OR (“performance” OR “efficiency” OR “output” OR “production”). |
| Languages | English |
| Document types | Article |
| Period | 2012–2025 |
| Database | Scopus |
| Total documents | 128 |
| N | Author | NP | H-Index | G-Index | M-Index | Country | Institution | Tc | Mcp% |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Lee c-h | 5 | 4 | 5 | 0.400 | South Korea | Seoul national university | 83 | 15 |
| 2 | Palanisamy g | 4 | 4 | 4 | 0.571 | India | Indian institute of technology | 491 | 30 |
| 3 | Popuri sr | 5 | 4 | 5 | 0.400 | India | University of Delhi | 83 | 18 |
| 4 | Thangarasu s | 3 | 3 | 3 | 1.000 | Malaysia | University of Malaya | 49 | 35 |
| 5 | Dias mc | 3 | 3 | 3 | 0.600 | Portugal | University of Lisbon | 54 | 22 |
| Biomaterial Type | Modification Technique | Integration Method | Reported Electrochemical Performance |
|---|---|---|---|
| Chitosan | Crosslinking with glutaraldehyde; doping with carbon nanotubes | Casting onto graphite substrate | Power density (up to 120 mW/m2); improved biofilm adhesion |
| Cellulose acetate | Surface functionalization with polyaniline | Electrospinning + thermal treatment | ↑ Conductivity; stable voltage output over 30 days |
| Alginate | Blending with graphene oxide; ionic crosslinking | Freeze-drying into porous scaffolds | ↑ Surface area; enhanced electron transfer |
| Silk fibroin | Enzymatic crosslinking; incorporation of silver nanoparticles | Compression molding | Antimicrobial activity; moderate power output (~80 mW/m2) |
| Lignin-based films | Thermal carbonization; activation with KOH | Drop-casting on carbon cloth | Capacitance; improved charge transfer resistance |
| Starch composites | Blending with PEDOT:PSS; plasticization | Film casting + electrodeposition | Biocompatibility; moderate conductivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Flores, S.J.; La Cruz-Noriega, M.D.; Nazario-Naveda, R.; Benites, S.M.; Delfin-Narciso, D. Biopolymers as Sustainable Materials for Membranes in Microbial Fuel Cells: A Bibliometric Analysis. Mater. Proc. 2025, 27, 3. https://doi.org/10.3390/materproc2025027003
Rojas-Flores SJ, La Cruz-Noriega MD, Nazario-Naveda R, Benites SM, Delfin-Narciso D. Biopolymers as Sustainable Materials for Membranes in Microbial Fuel Cells: A Bibliometric Analysis. Materials Proceedings. 2025; 27(1):3. https://doi.org/10.3390/materproc2025027003
Chicago/Turabian StyleRojas-Flores, Segundo Jonathan, Magaly De La Cruz-Noriega, Renny Nazario-Naveda, Santiago M. Benites, and Daniel Delfin-Narciso. 2025. "Biopolymers as Sustainable Materials for Membranes in Microbial Fuel Cells: A Bibliometric Analysis" Materials Proceedings 27, no. 1: 3. https://doi.org/10.3390/materproc2025027003
APA StyleRojas-Flores, S. J., La Cruz-Noriega, M. D., Nazario-Naveda, R., Benites, S. M., & Delfin-Narciso, D. (2025). Biopolymers as Sustainable Materials for Membranes in Microbial Fuel Cells: A Bibliometric Analysis. Materials Proceedings, 27(1), 3. https://doi.org/10.3390/materproc2025027003