Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = cellulose accessibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2027 KiB  
Article
Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal
by Dojin Kim, Dong Han Kim, Jeong Eun Cha, Saerom Park and Sang Hyun Lee
Gels 2025, 11(8), 596; https://doi.org/10.3390/gels11080596 (registering DOI) - 1 Aug 2025
Viewed by 108
Abstract
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for [...] Read more.
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for metal-ion crosslinkers, which typically neutralize anionic sulfate groups in κ-carrageenan, thereby preserving a high density of accessible binding sites. The resulting beads formed robust interpenetrating polymer networks. The initial swelling ratio reached up to 28.3 g/g, and even after drying, the adsorption capacity remained over 50% of the original. The maximum adsorption capacity for crystal violet was 241 mg/g, increasing proportionally with κ-carrageenan content due to the higher surface concentration of anionic sulfate groups. Kinetic and isotherm analyses revealed pseudo-second-order and Langmuir-type monolayer adsorption, respectively, while thermodynamic parameters indicated that the process was spontaneous and exothermic. The beads retained structural integrity and adsorption performance across pH 3–9 and maintained over 90% of their capacity after five reuse cycles. These findings demonstrate that κ-carrageenan/cellulose hydrogel beads prepared via a metal-ion-free strategy offer a sustainable and effective platform for cationic dye removal from wastewater, with potential for heavy metal ion adsorption. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

12 pages, 3641 KiB  
Article
Metallic Lanthanum (III) Hybrid Magnetic Nanocellulose Composites for Enhanced DNA Capture via Rare-Earth Coordination Chemistry
by Jiayao Yang, Jie Fei, Hongpeng Wang and Ye Li
Inorganics 2025, 13(8), 257; https://doi.org/10.3390/inorganics13080257 (registering DOI) - 1 Aug 2025
Viewed by 90
Abstract
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen [...] Read more.
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen (P/N) ligand separation. The hybrid material employs the adaptable coordination geometry and strong affinity for oxygen of La3+ ions to show enhanced DNA-binding capacity via multi-site coordination with phosphate backbones and bases. This study utilized cellulose as a carrier, which was modified through carboxylation and amination processes employing deep eutectic solvents (DES) and polyethyleneimine. Magnetic nanoparticles and La(OH)3 were subsequently incorporated into the cellulose via in situ growth. NNC@Fe3O4@La(OH)3 showed a specific surface area of 36.2 m2·g−1 and a magnetic saturation intensity of 37 emu/g, facilitating the formation of ligands with accessible La3+ active sites, hence creating mesoporous interfaces that allow for fast separation. NNC@Fe3O4@La(OH)3 showed a significant affinity for DNA, with adsorption capacities reaching 243 mg/g, mostly due to the multistage coordination binding of La3+ to the phosphate groups and bases of DNA. Simultaneously, kinetic experiments indicated that the binding process adhered to a pseudo-secondary kinetic model, predominantly dependent on chemisorption. This study developed a unique rare-earth coordination-driven functional hybrid material, which is highly significant for constructing selective separation platforms for P/N-containing ligands. Full article
Show Figures

Graphical abstract

18 pages, 12329 KiB  
Article
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications
by Hanna Melnyk, Olesia Havryliuk, Iryna Zaets, Tetyana Sergeyeva, Ganna Zubova, Valeriia Korovina, Maria Scherbyna, Lilia Savinska, Lyudmila Khirunenko, Evzen Amler, Maria Bardosova, Oleksandr Gorbach, Sergiy Rogalsky and Natalia Kozyrovska
Polymers 2025, 17(15), 2116; https://doi.org/10.3390/polym17152116 - 31 Jul 2025
Viewed by 198
Abstract
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics [...] Read more.
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics the skin matrix. Biological activities of RCA extract in bacterial cellulose (BC) showed no cytotoxicity and skin-sensitizing potential to human cells at concentrations of RCAs similar to those released from BC/RCA dressings (4.0–40.0 µg/mL). A decrease in cell viability and apoptosis was observed in human cancer cells with RCAs. The invisible eye detection of the early color change signal from RCAs in response to pH alteration by bacteria was recorded with a smartphone application. The incorporation of RCAs into BC polymer has altered the morphology of its matrix, resulting in a denser cellulose microfibril network. The complete coincidence of the vibrational modes detected in the absorption spectra of the cellulose/RCA composite with the modes in RCAs most likely indicates that RCAs retain their structure in the BC matrix. Affordable, sensitive halochromic BC/RCA hydrogels can be recommended for online monitoring of microbial contamination, making them accessible to patients. Full article
Show Figures

Graphical abstract

21 pages, 1905 KiB  
Article
Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping
by Gerard Sweeney, Dijia Liu, Taher Hatahet, David S. Jones, Shu Li and Gavin P. Andrews
Pharmaceutics 2025, 17(8), 955; https://doi.org/10.3390/pharmaceutics17080955 - 24 Jul 2025
Viewed by 369
Abstract
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with a particular focus on excipient functionality and robustness against AIDD. Methods: Felodipine sustained-release formulations were prepared via HME using Syncrowax HGLC as a thermally processable wax matrix. Microcrystalline cellulose (MCC) and lactose monohydrate were incorporated as functional fillers and processing aids. The influence of wax content and filler type on mechanical properties, wettability, and drug release behaviour was systematically evaluated. Ethanol susceptibility testing was conducted under simulated co-ingestion conditions (4%, 20%, and 40% v/v ethanol) to assess AIDD risk. Results: MCC-containing tablets demonstrated superior sustained-release characteristics over 24 h, showing better wettability and disintegration. In contrast, tablets formulated with lactose monohydrate remained structurally intact during dissolution, overly restricting drug release. This limitation was effectively addressed through granulation, where reduced particle size significantly improved surface accessibility, with 0.5–1 mm granules achieving a satisfactory release profile. Ethanol susceptibility testing revealed divergent behaviours between the two filler systems. Unexpectedly, MCC-containing tablets showed suppressed drug release in ethanolic media, likely resulting from inhibitory effect of ethanol on filler swelling and disintegration. Conversely, formulations containing lactose monohydrate retained their release performance in up to 20% v/v ethanol, with only high concentrations (40% v/v) compromising matrix drug-retaining functionality and leading to remarkably increased drug release. Conclusions: This study highlights the pivotal role of excipient type and constitutional ratios in engineering wax-based sustained-release formulations. It further contributes to the understanding of AIDD risk through in vitro assessment and offers a rational design strategy for robust, alcohol-resistant oral delivery systems for felodipine. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

18 pages, 3500 KiB  
Article
Cellulose Acetate–PHB Biocomposite from Saccharum officinarum for Ni (II) Adsorption: Equilibrium and Kinetics
by Candelaria Tejada-Tovar, Ángel Villabona-Ortíz, Oscar Toro-Madrid, Rodrigo Ortega-Toro and Humberto Bonilla Mancilla
J. Compos. Sci. 2025, 9(7), 376; https://doi.org/10.3390/jcs9070376 - 18 Jul 2025
Viewed by 538
Abstract
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment [...] Read more.
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment and remediation of water contaminated with heavy metals, such as Ni (II). The biocomposite was prepared by blending cellulose acetate (CA) with the biopolymer PHB using the solvent-casting method. The resulting biocomposite exhibited a point of zero charge (pHpzc) of 5.6. The material was characterised by FTIR, TGA-DSC, and SEM analyses. The results revealed that the interaction between Ni (II) ions and the biocomposite is favoured by the presence of functional groups, such as –OH, C=O, and N–H, which act as active adsorption sites on the material’s surface, enabling efficient interaction with the metal ions. Adsorption kinetics studies revealed that the biocomposite achieved an optimal adsorption capacity of 5.042 mg/g at pH 6 and an initial Ni (II) concentration of 35 mg/L, corresponding to a removal efficiency of 86.44%. Finally, an analysis of the kinetic and isotherm models indicated that the experimental data best fit the pseudo-second-order kinetic model and the Freundlich isotherm. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

11 pages, 2180 KiB  
Article
Impact of Mild Acid and Alkali Treatments on Cotton Fibers with Nonlinear Optical Imaging and SEM Analysis
by Huipeng Gao, Xiaoxiao Li, Rui Li, Chao Wang, Hsiang-Chen Chui and Quan Zhang
Photonics 2025, 12(7), 688; https://doi.org/10.3390/photonics12070688 - 8 Jul 2025
Viewed by 265
Abstract
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the [...] Read more.
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the resulting changes were evaluated using scanning electron microscopy and nonlinear optical imaging techniques. The results indicate that sulfuric acid causes significant fiber degradation, leading to fragmentation and reduced fiber thickness. In contrast, sodium hydroxide treatment results in a roughened, flaky surface while preserving the overall structural integrity, with fibers appearing fluffier and more accessible to enzymatic processes. Untreated cotton fibers maintained a smooth and uniform surface, confirming the chemical specificity of the observed changes. These findings are crucial for optimizing biomass pretreatment methods, demonstrating that dilute chemical treatments primarily affect macrostructural features without significantly disrupting the cellulose microfibrils. The study provides valuable insights for the development of efficient biorefining processes and sustainable bio-based materials, highlighting the importance of selecting appropriate chemical conditions to enhance enzymatic hydrolysis and biomass conversion while maintaining the core structure of cellulose. This research contributes to advancing the understanding of cellulose’s structural resilience under mild chemical pretreatment conditions. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

16 pages, 17025 KiB  
Article
Bisulfite Pretreatment Improves Enzymatic Digestibility of Oil Palm Empty Fruit Bunch and Poplar Through Changing Its Structure and Lignin Distribution
by Liping Tan, Xuezhi Li, Xianqin Lu and Jian Zhao
Int. J. Mol. Sci. 2025, 26(11), 5334; https://doi.org/10.3390/ijms26115334 - 1 Jun 2025
Viewed by 475
Abstract
This paper investigated the changes in anatomy, ultrastructure and lignin distribution of oil palm empty fruit bunch (EFB) by bisulfite pretreatment. It was found that after bisulfite pretreatment, a large number of pores formed in the cell walls, and the removal of part [...] Read more.
This paper investigated the changes in anatomy, ultrastructure and lignin distribution of oil palm empty fruit bunch (EFB) by bisulfite pretreatment. It was found that after bisulfite pretreatment, a large number of pores formed in the cell walls, and the removal of part of the lignin in the cell wall corner, partial middle layer, and other locations made the tissue structure of the EFB looser, which uncovered cellulose and broke the steric hindrance of cellulase access to cellulose in EFB, and also weakened the negative influence of lignin on cellulase. The changes can greatly contribute to the improvement of enzymatic hydrolysis after bisulfite pretreatment, which is consistent with the increased saccharification efficiency of the pretreated EFB. Poplar was also used to compare the differences and similarities between non-wood and wood materials. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

17 pages, 2853 KiB  
Article
Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors
by Jinran Cui, Yexin Dai, Shuo Xu, Pingping Zhang, Zhiyun Wang and Xianhua Liu
Polymers 2025, 17(11), 1544; https://doi.org/10.3390/polym17111544 - 1 Jun 2025
Viewed by 721
Abstract
Hierarchical porous carbon materials hold great potential for energy storage applications due to their high porosity, large specific surface area, and excellent electrical conductivity. Cellulose and sodium alginate are naturally abundant high-molecular-weight biopolymer materials. Utilizing them as precursors for the fabrication of high-performance [...] Read more.
Hierarchical porous carbon materials hold great potential for energy storage applications due to their high porosity, large specific surface area, and excellent electrical conductivity. Cellulose and sodium alginate are naturally abundant high-molecular-weight biopolymer materials. Utilizing them as precursors for the fabrication of high-performance electrochemical carbon materials is highly significant for achieving carbon neutrality goals. In this study, porous carbon aerogels were successfully synthesized using a combination of freeze-drying and a simple carbonization process, with nanocellulose and sodium alginate as precursors. Among the prepared samples, SC-0.03 (sodium alginate: nanocellulose = 0.1:0.03) exhibited the best performance, achieving a specific surface area of 713.7 m2 g−1. This material features an optimized hierarchical pore structure and a substantial intrinsic oxygen doping content, resulting in excellent capacitance performance. Benefiting from these structural advantages and their synergistic effects, the SC-0.03 electrode demonstrated a high specific capacitance of 251.5 F g−1 at a current density of 0.5 A g−1. This study shows that the construction of three-dimensional porous structures by taking advantage of the self-supporting properties of natural polymer materials does not require the introduction of external binders. Due to the nanoscale dimensions and high aspect ratio, nanocellulose enables the formation of a more refined and interconnected hierarchical pore network, enhancing ion accessibility and conductivity. The hierarchical porous carbon aerogel developed in this study, based on a biomass self-reinforcement strategy, not only shows great promise as an advanced energy storage material but also possesses environmentally friendly properties, offering new insights for the development of sustainable energy materials. Full article
(This article belongs to the Special Issue Functional Gel and Their Multipurpose Applications)
Show Figures

Graphical abstract

14 pages, 2559 KiB  
Article
Co-Production of Polysaccharides and Platform Sugars from Wheat Straw Fermented with Irpex lacteus
by Jun Pu, Taoli Huhe, Xiao Ding, Ruling Yuan, Sainan Zhang, Jianjun Ren and Dongze Niu
Sustainability 2025, 17(10), 4581; https://doi.org/10.3390/su17104581 - 16 May 2025
Viewed by 446
Abstract
Sustainable valorization of lignocellulosic biomass, such as wheat straw (WS), into valuable products is key for efficient resource utilization. This study investigated an integrated strategy combining Irpex lacteus fermentation with subsequent alkali extraction to improve WS valorization. Alkali extraction parameters, including sodium hydroxide [...] Read more.
Sustainable valorization of lignocellulosic biomass, such as wheat straw (WS), into valuable products is key for efficient resource utilization. This study investigated an integrated strategy combining Irpex lacteus fermentation with subsequent alkali extraction to improve WS valorization. Alkali extraction parameters, including sodium hydroxide concentration, solid-to-liquid (S:L) ratio, temperature, and time, were optimized based on polysaccharide yield and purity. Optimal conditions were identified as 0.8 mol/L sodium hydroxide, a 1:25 S:L ratio, 90 °C, and 1 h, yielding 6.63% polysaccharides with 52.01% purity. Compared to untreated straw, the combined fermentation and alkali extraction treatment significantly altered the WS residue’s composition and structure, substantially reducing hemicellulose and acid detergent lignin while consequently increasing relative cellulose content. This enhanced cellulose accessibility resulted in a markedly improved glucose yield upon enzymatic hydrolysis, reaching 586 g/kg dry matter for the residue after combined treatment. Demonstrating a strong synergistic effect, this yield represents a 5.42-fold increase compared to untreated WS and a 3.30-fold increase compared to solely fermented straw. Analyses of SEM, FTIR, and XRD confirmed that the integrated treatment effectively disrupted the lignocellulosic structure by removing lignin and hemicellulose. This created a more porous morphology and increased cellulose exposure, which was deemed more critical for hydrolysis than the observed 18.58% increase in the cellulose crystallinity index relative to untreated straw. Thermogravimetric analysis further reflected these structural and compositional changes through altered thermal decomposition profiles. Therefore, integrating polysaccharide extraction with fungal fermentation is a highly effective strategy for improving resource efficiency in WS valorization. This approach enables the efficient co-production of valuable polysaccharides alongside significantly boosted platform sugar yields, offering a promising route towards more economically viable and sustainable WS utilization. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

22 pages, 61157 KiB  
Article
Genome-Wide Association Study to Identify Soybean Lodging Resistance Loci and Candidate Genes
by Zicong Liang, Nianhua Qi, Ruoning Li, Ruijia Gao, Junxia Huang, Wei Zhao, Huijun Zhang, Haiying Wang, Xue Ao, Xingdong Yao and Futi Xie
Int. J. Mol. Sci. 2025, 26(9), 4446; https://doi.org/10.3390/ijms26094446 - 7 May 2025
Viewed by 604
Abstract
High-density planting is crucial for maximizing the genetic potential of soybean cultivars to achieve higher yields. However, increasing the planting density can lead to the risk of plant lodging. Therefore, the identification of gene loci associated with lodging resistance is considered critical for [...] Read more.
High-density planting is crucial for maximizing the genetic potential of soybean cultivars to achieve higher yields. However, increasing the planting density can lead to the risk of plant lodging. Therefore, the identification of gene loci associated with lodging resistance is considered critical for the development of high-yielding, lodging-resistant soybean cultivars. In this study, 338 natural soybean accessions from the similar latitude were used to identify candidate genes associated with lodging resistance. Based on 9,400,987 SNPs, the soybean population was classified into three subpopulations. Genome-wide association analysis revealed that under planting densities of 300,000 and 150,000 plants/ha, a total of 20 significant SNPs were repeatedly detected under both planting densities, distributed across 14 chromosomes of soybeans. A hotspot region was identified on chromosome 19, from which seven candidate genes were detected. Based on haplotype and gene expression analyses, Glyma.19g212800 (SUS3) and Glyma.19g212700 (GH9B13) were found to be associated with significant phenotypic variations and were identified as candidate genes. RNA-seq analysis showed that DEGs were primarily enriched in the starch and sucrose metabolism pathways. The differential expression of Glyma.19g212800 among soybean haplotypes was further validated by qRT-PCR. By participating in sucrose decomposition and polysaccharide metabolism processes, it regulated cellulose content, thereby affecting the soybean plant lodging. This study facilitated the dissection of genetic networks underlying lodging traits in soybean, which benefits the genetic improvement of high-yield soybean with dense planting. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 2683 KiB  
Article
Fe or Ni Catalytic Hydrothermal Depolymerization with Ethanol for Efficient Anaerobic Digestion of Corn Stover
by Xitong Wang, Hairong Yuan and Xiujin Li
Catalysts 2025, 15(5), 429; https://doi.org/10.3390/catal15050429 - 28 Apr 2025
Viewed by 512
Abstract
This study investigated the enhancement of anaerobic digestion (AD) performance of corn stover (CS) through Fe/Ni catalytic hydrothermal depolymerization with ethanol. The CS depolymerization process was conducted using Fe/C, Ni/C, Fe/CNT and Ni/CNT catalysts in combination with ethanol or water/ethanol solvents. The results [...] Read more.
This study investigated the enhancement of anaerobic digestion (AD) performance of corn stover (CS) through Fe/Ni catalytic hydrothermal depolymerization with ethanol. The CS depolymerization process was conducted using Fe/C, Ni/C, Fe/CNT and Ni/CNT catalysts in combination with ethanol or water/ethanol solvents. The results revealed that the depolymerization with catalyst-ethanol (DC-E) effectively disrupted the physical encapsulation of cellulose by lignin. It also showed that the Ni/CNT catalyst in ethanol significantly promoted β-O-4 bond cleavage in lignin, achieving a lignin conversion rate of 48.5% and 2.7 g/L total phenol concentration (TPC). The water/ethanol (9:1) system effectively degraded hemicellulose (53.6% conversion) while retaining over 90% cellulose for AD. Structural analysis revealed that DC disrupted cellulose hydrogen bonds, reducing crystallinity index (CrI decreased from 38.4% to 32.6%) and increasing cellulose accessibility to 909 mg/g (2.6 times higher than untreated CS). The efficient depolymerization of CS obviously improved the biodegradability of cellulose and hemicellulose, contributing to the increase of biomethane production. Biomethane yield (BY) of E-Ni/CNT was 18.1% and 27.6% higher than that of E-HP and the control group, respectively. These findings indicated that ethanol-promoted catalytic depolymerization of CS can enhance the performance of AD. Full article
Show Figures

Graphical abstract

17 pages, 2203 KiB  
Article
Phosphoric Acid-Assisted Enzymatic Production of Water-Soluble Cellulosic Oligomers
by Chiou-Yeong Saw, David Agus Setiawan Wibisono and Chi-Fai Chau
Processes 2025, 13(4), 1245; https://doi.org/10.3390/pr13041245 - 20 Apr 2025
Viewed by 416
Abstract
Water-soluble cellulosic oligomers (WCOs) are increasingly recognized for their prebiotic benefits, but their efficient enzymatic production is hindered by the high crystallinity of cellulose, which limits enzyme accessibility. This study introduced an efficient and scalable strategy combining phosphoric acid pretreatment with enzymatic hydrolysis [...] Read more.
Water-soluble cellulosic oligomers (WCOs) are increasingly recognized for their prebiotic benefits, but their efficient enzymatic production is hindered by the high crystallinity of cellulose, which limits enzyme accessibility. This study introduced an efficient and scalable strategy combining phosphoric acid pretreatment with enzymatic hydrolysis to produce high-purity WCOs. Microcrystalline cellulose treated with 85 wt% phosphoric acid at 10 °C exhibited significantly reduced crystallinity and crystallite size, improving its susceptibility to enzymatic degradation. Subsequent hydrolysis of the hydrated regenerated cellulose (HRC85-10) using Celluclast® at pH 7.0 for 1 h resulted in a WCO selectivity of 93.5%, with cellobiose and cellotriose identified as major oligomeric products via electrospray ionization mass spectrometry. Maintaining cellulose in a hydrated form significantly improved both the yield and selectivity of WCOs. In vivo studies further confirmed the prebiotic potential, with a significant increase in fecal Lactobacillus spp. and Bifidobacterium spp. (p < 0.05) following WCO supplementation. These findings demonstrated a practical and effective approach for producing functional WCOs for use in dietary and gut health applications. Full article
Show Figures

Figure 1

30 pages, 13959 KiB  
Article
A Comparison Between High- and Low-Performing Lambs and Their Impact on the Meat Quality and Development Level Using a Multi-Omics Analysis of Rumen Microbe–Muscle–Liver Interactions
by Haibo Wang, Jinshun Zhan, Shengguo Zhao, Haoyun Jiang, Haobin Jia, Yue Pan, Xiaojun Zhong and Junhong Huo
Microorganisms 2025, 13(4), 943; https://doi.org/10.3390/microorganisms13040943 - 19 Apr 2025
Viewed by 701
Abstract
Through an integrated multi-omics analysis of rumen microbial communities, muscle transcriptomes, metabolic profiles, and liver metabolic profiles, this study systematically compared high- and low-performing lambs to elucidate their divergent effects on meat quality attributes and growth development. A total of 100 male lambs [...] Read more.
Through an integrated multi-omics analysis of rumen microbial communities, muscle transcriptomes, metabolic profiles, and liver metabolic profiles, this study systematically compared high- and low-performing lambs to elucidate their divergent effects on meat quality attributes and growth development. A total of 100 male lambs with similar birth weight (3.07 ± 0.06 kg) were selected within 72 h. All test lambs were synchronized weaning at 45 days of age and uniformly fed the same diet (total mixed ration) in the same pen until 180 days of age, with ad libitum access to food and water throughout this period. Subsequently, the eight lambs with the highest (HADG) and lowest (LADG) average daily gains were slaughtered for performance evaluation and multi-omics analysis. This study found that HADG lambs increased body weight, muscle fiber diameter, eye muscle area, improved amino acid (histidine, arginine, valine, isoleucine, essential amino acid/total amino acid, and essential amino acid/nonessential amino acid), and fatty acid (linoleic acid, behenic acid, and arachidonic acid) composition enhanced rumen enzymes (pepsase, lipase, xylanase, amylase, and carboxymethyl cellulose) and promoted efficient fermentation (p < 0.05). Analysis of microbial populations indicated a notable increase in Prevotella levels within the rumen of HADG lambs. Furthermore, the rumen markers Schwartzia and Streptococcus exhibited significant correlations with differential meat quality traits. Analysis of the muscle transcriptome indicated a significant correlation between the turquoise module and host phenotypes, particularly body weight. Additionally, muscle metabolism is primarily concentrated within the black module; however, it exhibits a significant correlation with the host body phenotype in the yellow module (p < 0.05). Moreover, liver metabolites, rumen microbes, host phenotype, and muscle transcripts were significantly correlated (p < 0.05). In conclusion, the interactions among rumen microbes, muscle, and liver in lambs promote rumen fermentation, which in turn regulate muscle transcriptional activity and modify metabolic profiles in both the liver and muscle. Moreover, PCK1, SPP1, FGF7, NR4A1, DUSP5, GADD45B, etc., can be candidate genes for muscle growth and development. This finding provides a theoretical basis for further exploiting the production potential of Hu lambs. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

22 pages, 3920 KiB  
Article
Steam Explosion Enhances the Powder Property, Instant Solubility, and Diffusivity of Superfine Ground Tea Powder
by Xin Zhuang, Yue Chen, Shuiqing Wang, Kai Zhong, Wenjie Sui, Chao Ma and Maoyu Wu
Foods 2025, 14(8), 1345; https://doi.org/10.3390/foods14081345 - 14 Apr 2025
Viewed by 494
Abstract
Low-grade tea, often underutilized due to its coarse texture and limited bioavailability, represents a significant resource waste. This study systematically investigated the synergistic effects of steam explosion (SE) and superfine grinding on enhancing the structural deconstruction, powder property, instant solubility, and diffusivity of [...] Read more.
Low-grade tea, often underutilized due to its coarse texture and limited bioavailability, represents a significant resource waste. This study systematically investigated the synergistic effects of steam explosion (SE) and superfine grinding on enhancing the structural deconstruction, powder property, instant solubility, and diffusivity of low-grade. SE treatment induced critical physicochemical modifications, including hemicellulose degradation, lignin recondensation, and cellulose crystalline reorganization, which significantly weakened the lignocellulosic matrix. Subsequent superfine grinding via ball milling achieved ultrafine particles, with median diameter D50 = 10.4 ± 0.17 μm, and almost completely destroyed the cell wall by 99.9%. Extraction kinetics revealed that SE-ball milling synergistically accelerated the diffusion behavior of bioactive compounds, reducing equilibrium time by 2~4 times and increasing maximum yields of polysaccharides, polyphenols, caffeine, and water-soluble solids by 9~25% compared to untreated samples. Homogenization combined with 0.08 mg/mL CMC-Na further improved the suspension stability of tea powder and reduced its centrifugal sedimentation to 9.85%. These findings demonstrate a scalable strategy to transform low-grade tea into high-value ingredients with enhanced accessibility and solubility of bioactive compounds, offering promising applications in instant beverages, fortified foods, and nutraceuticals. Full article
Show Figures

Figure 1

16 pages, 3746 KiB  
Article
Synthesis, Characterization, and Investigation of the Properties of a New Promising Poly(Azomethine) Organic Semiconductor Material
by Jihane Ismaili, Chouki Zerrouki, Najla Fourati, Stephanie Leroy-Lhez, Daniel Montplaisir, Nicolas Villandier and Rachida Zerrouki
Materials 2025, 18(7), 1658; https://doi.org/10.3390/ma18071658 - 4 Apr 2025
Viewed by 656
Abstract
A new poly(azomethine) with improved solubility was successfully prepared by the polycondensation of terephthalaldehyde and 2,2-Bis[4-(4-aminophenoxy)phenyl]-hexafluoropropane (4-BDAF) under green chemistry conditions. This new polymer containing hexafluoroisopropylidene was compared with a polymer containing isopropylidenediphenyl to study the influence of the presence of fluorine atoms [...] Read more.
A new poly(azomethine) with improved solubility was successfully prepared by the polycondensation of terephthalaldehyde and 2,2-Bis[4-(4-aminophenoxy)phenyl]-hexafluoropropane (4-BDAF) under green chemistry conditions. This new polymer containing hexafluoroisopropylidene was compared with a polymer containing isopropylidenediphenyl to study the influence of the presence of fluorine atoms on the properties of the polymer. Both were characterized by nuclear magnetic resonance (NMR), their molecular weight was measured by gel permeation chromatography (GPC), and their morphology was studied by X-ray diffraction (XRD). The two polymers obtained were soluble in most polar aprotic solvents and even in less polar solvents, which are practical and easily accessible solvents. Their thermal properties were determined by a thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These two new polymers showed high resistance to thermal decomposition up to 490 °C, with a glass transition temperature (Tg) of 180 °C. The photophysical properties were studied by UV/Visible absorption. The polymers were doped and then deposited on cellulose filaments, an approach that made it possible to produce self-supporting conductive composites thanks to their mechanical properties. The topography of the resulting materials was characterized at submicron scales before estimating their electronic conductivity and gap energy by diffuse reflection spectroscopy. Full article
Show Figures

Graphical abstract

Back to TopTop