Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = cellular solidification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8984 KB  
Article
Unraveling Anomalous Eutectic Formation in Ni-Sn Alloys During Directional Solidification with Transition Variable Speed
by Yongqing Cao, Huanhuan Cheng, Lianmei Song, Lei Wei, Lei Shi, Jiakang Li, Lixiao Jia, Miaoling Li and Derong Zhu
Materials 2025, 18(21), 4933; https://doi.org/10.3390/ma18214933 - 28 Oct 2025
Viewed by 192
Abstract
This study investigates eutectic morphology transitions in Ni-Sn alloys using Bridgman directional solidification with a transition variable speed coupled with cellular automaton (CA) simulations. Steady-state solidification (0.1–2000 μm/s) produced only regular lamellar/rod-like eutectics, while velocity jumps triggered anomalous eutectic formation. As the drawing [...] Read more.
This study investigates eutectic morphology transitions in Ni-Sn alloys using Bridgman directional solidification with a transition variable speed coupled with cellular automaton (CA) simulations. Steady-state solidification (0.1–2000 μm/s) produced only regular lamellar/rod-like eutectics, while velocity jumps triggered anomalous eutectic formation. As the drawing speed increased, the lamellar spacing decreased from ~3 μm to 0.4 μm, while the microhardness increased from ~426 HV to 500 HV. The experiments on Ni-Sn alloys revealed that anomalous eutectic morphologies form specifically at velocity transition interfaces (0.1–1000 μm/s), consistent with CA simulations showing destabilization of the lamellae, epitaxial growth of the Ni3Sn phase, and decoupled nucleation of the α-Ni phase for the formation. The work defines a processing window for anomalous eutectic formation and provides mechanistic insights bridging undercooling and directional solidification regimes. Full article
Show Figures

Figure 1

16 pages, 5686 KB  
Article
Study on Erosion Wear Resistance of 18Ni300 Maraging Steel Remanufactured by Underwater Laser Direct Metal Deposition
by Zhandong Wang, Linzhong Wu, Shibin Wang and Chunke Wang
Materials 2025, 18(19), 4583; https://doi.org/10.3390/ma18194583 - 2 Oct 2025
Viewed by 436
Abstract
Erosion wear is a major cause of surface degradation in metallic materials exposed to harsh marine environments. In this study, the erosion wear resistance of the 18Ni300 maraging steel repaired by underwater direct metal deposition (UDMD) is investigated. Results show that UDMD is [...] Read more.
Erosion wear is a major cause of surface degradation in metallic materials exposed to harsh marine environments. In this study, the erosion wear resistance of the 18Ni300 maraging steel repaired by underwater direct metal deposition (UDMD) is investigated. Results show that UDMD is successfully applied to repair the 18Ni300 samples in underwater environment. Full groove filling and sound metallurgical bonding without cracks are achieved, demonstrating its potential for underwater structural repair. Microstructural analyses reveal good forming quality with fine cellular structures and dense lath martensite in the deposited layer, attributed to rapid solidification under water cooling. Compared to in-air DMD, the UDMD sample exhibits higher surface microhardness due to increased dislocation density and microstructural refinement. Erosion wear behavior is evaluated at 30° and 90° impingement angles, showing that wear mechanisms shift from micro-cutting and plowing at 30° to indentation, crack propagation, and spallation at 90°. The UDMD samples demonstrate superior erosion wear resistance with lower mass loss, particularly at 30°, benefiting from surface work hardening and microstructural advantages. Progressive surface hardening occurs during erosion due to severe plastic deformation, reducing wear rates over time. The combination of refined microstructure, high dislocation density, and enhanced work hardening capability makes UDMD-repaired steel highly resistant to erosive degradation. These findings confirm that UDMD is a promising technique for repairing marine steel structures, offering enhanced durability and long-term performance in harsh offshore environments. Full article
Show Figures

Figure 1

19 pages, 4380 KB  
Article
Optimization of Casting Process Parameters for Solidification Structures in Complex Superalloy Castings
by Shaoli Han, Heli Luo, Shangping Li and Guangwei Han
Materials 2025, 18(17), 4205; https://doi.org/10.3390/ma18174205 - 8 Sep 2025
Viewed by 753
Abstract
This study aimed to optimize the grain structure of complex thin-walled nickel-based superalloy castings by investigating the influence of key casting parameters using both cellular automaton–finite element (CAFE) simulations and experimental validation. The main problem addressed was the inhomogeneous grain morphology arising from [...] Read more.
This study aimed to optimize the grain structure of complex thin-walled nickel-based superalloy castings by investigating the influence of key casting parameters using both cellular automaton–finite element (CAFE) simulations and experimental validation. The main problem addressed was the inhomogeneous grain morphology arising from complex mold geometries and uneven thermal conditions during investment casting. The solidification process was simulated using the ProCAST software, incorporating the CAFE method to model temperature fields and grain growth dynamics. The results revealed that the molten metal flow pattern during mold filling significantly affected the local temperature field and subsequent grain formation. Specifically, simultaneous bidirectional filling minimized thermal gradients and suppressed coarse columnar grain formation, promoting finer, more uniform equiaxed grains. Lowering the pouring temperature (to 1430 °C) in combination with reduced shell temperature (600–800 °C) enhanced nucleation and improved grain uniformity in thin-walled regions. Higher cooling rates also refined the grain structure by increasing undercooling and limiting grain growth. Experimental castings confirmed these simulation outcomes, demonstrating that the proposed optimization strategies can significantly improve grain homogeneity in critical structural areas. These findings provide a practical approach for controlling microstructure in large, intricate superalloy components through targeted process parameter tuning. Full article
Show Figures

Figure 1

17 pages, 7068 KB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 769
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

22 pages, 16125 KB  
Article
Toward an Efficient and Robust Process–Structure Prediction Framework for Filigree L-PBF 316L Stainless Steel Structures
by Yu Qiao, Marius Grad and Aida Nonn
Metals 2025, 15(7), 812; https://doi.org/10.3390/met15070812 - 20 Jul 2025
Viewed by 1036
Abstract
Additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), provides unmatched design flexibility for creating intricate steel structures with minimal post-processing. However, adopting L-PBF for high-performance applications is difficult due to the challenge of predicting microstructure evolution. This is because the process is [...] Read more.
Additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), provides unmatched design flexibility for creating intricate steel structures with minimal post-processing. However, adopting L-PBF for high-performance applications is difficult due to the challenge of predicting microstructure evolution. This is because the process is sensitive to many parameters and has a complex thermal history. Thin-walled geometries present an added challenge because their dimensions often approach the scale of individual grains. Thus, microstructure becomes a critical factor in the overall integrity of the component. This study focuses on applying cellular automata (CA) modeling to establish robust and efficient process–structure relationships in L-PBF of 316L stainless steel. The CA framework simulates solidification-driven grain evolution and texture development across various processing conditions. Model predictions are evaluated against experimental electron backscatter diffraction (EBSD) data, with additional quantitative comparisons based on texture and morphology metrics. The results demonstrate that CA simulations calibrated with relevant process parameters can effectively reproduce key microstructural features, including grain size distributions, aspect ratios, and texture components, observed in thin-walled L-PBF structures. This work highlights the strengths and limitations of CA-based modeling and supports its role in reliably designing and optimizing complex L-PBF components. Full article
Show Figures

Graphical abstract

16 pages, 4905 KB  
Article
Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing
by Nikolay V. Letyagin, Torgom K. Akopyan, Pavel A. Palkin, Stanislav O. Cherkasov, Anastasiya S. Fortuna, Alexandr B. Lyukhter and Ruslan Yu. Barkov
J. Manuf. Mater. Process. 2025, 9(7), 242; https://doi.org/10.3390/jmmp9070242 - 17 Jul 2025
Viewed by 1259
Abstract
In this study, prospects of designing new Al–Ca–Cu–Mn (Zr) alloys for additive manufacturing (AM) were evaluated for the example of laser remelting of thin-sheet rolled products. The new as-cast alloys have a hypereutectic structure containing Al27Ca3Cu7 primary crystals [...] Read more.
In this study, prospects of designing new Al–Ca–Cu–Mn (Zr) alloys for additive manufacturing (AM) were evaluated for the example of laser remelting of thin-sheet rolled products. The new as-cast alloys have a hypereutectic structure containing Al27Ca3Cu7 primary crystals and ultrafine eutectic particles of (Al,Cu)4Ca and Al27Ca3Cu7 phases in equilibrium with the aluminum solid solution. The solid solutions are additionally strengthened by alloying with Mn and micro additions of Zr, which contribute to the formation of coarsening-resistant phases without compromising the manufacturability of the alloys. Laser remelting, which simulates AM-typical solidification conditions, promotes the formation of a pseudoeutectic cellular structure without the occurrence of undesirable primary Al27Ca3Cu7. The size of the dendritic cells and eutectic particles is 10 times smaller (for solidification rates of ~200 K/s) than that of the as-cast state. This structure provides for a higher hardness of the laser-remelted alloy (96 HV) as compared to the as-cast alloy (85 HV). Data for the alloy after 350–400 °C long-term annealing for up to 100 h show that the hardness of the Al–Ca–Cu–Mn–Zr alloys declines relatively slowly by ~7.5% as compared to the Zr-free alloy, whose hardness decreases by ~22%. Thus, one can consider these alloys as a promising candidate for AM processes that require high thermal stability. Full article
(This article belongs to the Special Issue Laser Surface Modification: Advances and Applications)
Show Figures

Graphical abstract

21 pages, 3738 KB  
Article
Morphologic Pattern Differences in Reconstructive Tissue Repair of Bone Defects Mediated by Bioactive Ceramics and Hydrogels: A Microscopic Follow-Up Evaluation of Re-Ossification
by Róbert Boda, Viktória Hegedűs, Sándor Manó, Andrea Keczánné-Üveges, Balázs Dezső and Csaba Hegedűs
Gels 2025, 11(7), 529; https://doi.org/10.3390/gels11070529 - 9 Jul 2025
Viewed by 646
Abstract
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated [...] Read more.
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated by silica aerogels and methacrylate hydrogels over a 6-month period, which is the widely accepted time course for complete resolution. Time-dependent microscopic analysis was conducted using the “critical size model”. In untreated rat calvaria bone defects (control), re-ossification exclusively started at the lateral regions from the edges of the remaining bone. At the 6th month, only a few new bones were formed, which were independent of the lateral ossification. The overall ossification resulted in a 57% osseous encroachment of the defect. In contrast, aerogels (AE), hydrogels (H), and their β-tricalcium-phosphate (βTCP)-containing counterparts, which were used to fill the bone defects, characteristically induced rapid early ossification starting from the 1st month. This was accompanied by fibrous granulomatous inflammation with multinucleated giant macrophages, which persisted in decreasing intensity throughout the observational time. In addition to lateral ossification, multiple and intense intralesional osseous foci developed as early as the 1st month, and grew progressively thereafter, reflecting the osteo-inductive effects of all compounds. However, both βTCP-containing bone substituents generated larger amounts and more mature new bones inside the defects. Nevertheless, only 72.8–76.9% of the bone defects treated with AE and H and 80.5–82.9% of those treated with βTCP-containing counterparts were re-ossified by the 6th month. Remarkably, by this time, some intra-osseous hydrogels were found, and traces of silica from AE were still detectable, indicating these as the causative agents for the persistent osseous–fibrous granulomatous inflammation. When silica or methacrylate-based bone substituents are used, chronic ossifying fibrous granulomatous inflammation develops. Although 100% re-ossification takes more than 6 months, by this time, the degree of osteo-fibrous solidification provides functionally well-suited bone repair. Full article
Show Figures

Figure 1

26 pages, 4251 KB  
Article
Cellular Automaton Simulation Model for Predicting the Microstructure Evolution of an Additively Manufactured X30Mn21 Austenitic Advanced High-Strength Steel
by Ashutosh Singh, Christian Haase and Luis A. Barrales-Mora
Metals 2025, 15(7), 770; https://doi.org/10.3390/met15070770 - 8 Jul 2025
Cited by 1 | Viewed by 1443
Abstract
Additive manufacturing techniques, such as laser-based powder bed fusion of metals (PBF-LB/M), have now gained high industrial and academic interest. Despite its design flexibility and the ability to fabricate intricate components, LPBF has not yet reached its full potential, partly due to the [...] Read more.
Additive manufacturing techniques, such as laser-based powder bed fusion of metals (PBF-LB/M), have now gained high industrial and academic interest. Despite its design flexibility and the ability to fabricate intricate components, LPBF has not yet reached its full potential, partly due to the challenges associated with microstructure control. The precise manipulation of the microstructure in LPBF is a formidable yet highly rewarding endeavor, offering the capability to engineer components at a local level. This work introduces an innovative parallelized Cellular Automaton (CA) framework for modeling the evolution of the microstructure during the LPBF process. LPBF involves remelting and subsequent nucleation followed by crystal growth during solidification, which complicates and burdens microstructure simulations. In this research, a novel approach to nucleation seeding and crystal growth is implemented, focusing exclusively on the final stages of melting and solidification, enhancing the computational efficiency by 30%. This approach streamlines the simulation process, making it more efficient and effective. The developed model was employed to simulate the microstructure of an austenitic advanced high-strength steel (AHSS). The model was validated by comparing the simulation results qualitatively and quantitatively with the experimental data obtained under the same process parameters. The predicted microstructure closely aligned with the experimental findings. Simulations were also conducted at varying resolutions of CA cells, enabling a comprehensive study of their impact on microstructure evolution. Furthermore, the computational efficiency was critically evaluated. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

27 pages, 6313 KB  
Review
Experimental and Simulation Research Progress on the Solidification Structure Evolution of High Chromium Cast Iron
by Longxiao Huang, Yang Liu and Hanguang Fu
Metals 2025, 15(6), 663; https://doi.org/10.3390/met15060663 - 13 Jun 2025
Viewed by 867
Abstract
High-chromium cast irons (HCCIs) have emerged as preferred materials for critical wear-resistant components operating under extreme conditions, owing to their excellent wear resistance, low cost, and good castability. They are widely used in metallurgy, energy, and mechanical engineering industries. The evolution of solidification [...] Read more.
High-chromium cast irons (HCCIs) have emerged as preferred materials for critical wear-resistant components operating under extreme conditions, owing to their excellent wear resistance, low cost, and good castability. They are widely used in metallurgy, energy, and mechanical engineering industries. The evolution of solidification microstructure directly governs the final properties of HCCIs, making the in-depth investigation of their solidification behavior of great significance. This paper provides a comprehensive review of recent experimental and simulation-based advances in understanding the solidification microstructure evolution of HCCIs. The effects of alloy composition, cooling rate, and inoculation treatments on microstructure development and phase distribution during solidification are critically analyzed. Furthermore, the application of simulation techniques—including thermodynamic modeling, phase-field method, cellular automata, and finite element analysis—is discussed in detail, highlighting their roles in revealing the mechanisms of microstructural evolution. Finally, the current challenges and potential future research directions in the study of the solidification behavior of high-chromium cast irons are outlined. Full article
(This article belongs to the Special Issue Calphad Tools for the Metallurgy of Solidification)
Show Figures

Figure 1

21 pages, 8308 KB  
Article
Endogenous–Exogenous Analyses of the Solidification Structure in 475 mm Extra-Thick Slabs: Columnar-to-Equiaxed Positioning and Effect of Strand Electromagnetic Stirring
by Kezai Yu, Lijun Xu, Yanling Zhang, Haibo Zhang and Zhonghua Zhan
Materials 2025, 18(10), 2179; https://doi.org/10.3390/ma18102179 - 8 May 2025
Viewed by 597
Abstract
The spatial distribution of equiaxed crystal zones during extra-thick slab solidification exerts a critical influence on the mechanical performance of the final product. This investigation establishes a dual-pathway control framework for solidification structure modulation, differentiating between intrinsic regulation through columnar-to-equiaxed transition (CET) positioning [...] Read more.
The spatial distribution of equiaxed crystal zones during extra-thick slab solidification exerts a critical influence on the mechanical performance of the final product. This investigation establishes a dual-pathway control framework for solidification structure modulation, differentiating between intrinsic regulation through columnar-to-equiaxed transition (CET) positioning and extrinsic intervention via strand electromagnetic stirring (S-EMS) parameter adjustment. The aim is to improve the internal quality of extra-thick slabs, enabling further investigations into the material properties. To achieve this, a solidification heat transfer model along with a cellular automata–finite element model were developed to characterize the thermal conditions at CET initiation, with experimental validation conducted on a 475 mm extra-thick slab. The systematic analysis identified a significant correlation between continuous casting parameters, alloy concentrations, and CET positioning, while S-EMS experiments further elucidated the distribution patterns of the solidification structure and the formation mechanism of the white band in the mushy zone. This methodology bridges computational metallurgy with process engineering, offering systematic guidance for solidification structure control in extra-thick slabs. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

17 pages, 4496 KB  
Article
Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs
by Jingjing Wang, Xiaoyu Liu, Yuxin Li and Ruina Mao
Materials 2025, 18(9), 1955; https://doi.org/10.3390/ma18091955 - 25 Apr 2025
Viewed by 523
Abstract
Microstructure simulations of continuous casting billets are vital for understanding solidification mechanisms and optimizing process parameters. However, the commonly used CA (Cellular Automaton) model is limited by grid anisotropy, which affects the accuracy of dendrite morphology simulations. While the DCSA (Decentered Square Algorithm) [...] Read more.
Microstructure simulations of continuous casting billets are vital for understanding solidification mechanisms and optimizing process parameters. However, the commonly used CA (Cellular Automaton) model is limited by grid anisotropy, which affects the accuracy of dendrite morphology simulations. While the DCSA (Decentered Square Algorithm) reduces anisotropy, its high computational cost due to the use of fine grids and dynamic liquid/solid interface tracking hinders large-scale applications. To address this, we propose a high-performance CA-DCSA method on GPUs (Graphic Processing Units). The CA-DCSA algorithm is first refactored and implemented on a CPU–GPU heterogeneous architecture for efficient acceleration. Subsequently, key optimizations, including memory access management and warp divergence reduction, are proposed to enhance GPU utilization. Finally, simulated results are validated through industrial experiments, with relative errors of 2.5% (equiaxed crystal ratio) and 2.3% (average secondary dendrite arm spacing) in 65# steel, and 2.1% and 0.7% in 60# steel. The maximum temperature difference in 65# steel is 1.8 °C. Compared to the serial implementation, the GPU-accelerated method achieves a 1430× higher speed using two GPUs. This work has provided a powerful tool for detailed microstructure observation and process parameter optimization in continuous casting billets. Full article
Show Figures

Figure 1

19 pages, 5646 KB  
Article
Crystal Plasticity Modeling of Dislocation Density Evolution in Cellular Dislocation Structures
by Md Mahabubur Rohoman and Caizhi Zhou
Metals 2025, 15(4), 419; https://doi.org/10.3390/met15040419 - 8 Apr 2025
Cited by 3 | Viewed by 1991
Abstract
The complex thermal cycles during the solidification process in metal additive manufacturing (AM) lead to the formation of high-density dislocation networks, organizing into submicron-scale cellular structures. These ultrafine structures are recognized as crucial for enhancing the mechanical properties of AM metals. In this [...] Read more.
The complex thermal cycles during the solidification process in metal additive manufacturing (AM) lead to the formation of high-density dislocation networks, organizing into submicron-scale cellular structures. These ultrafine structures are recognized as crucial for enhancing the mechanical properties of AM metals. In this study, we investigate the evolution of dislocation density within these cellular structures under plastic deformation and its impact on mechanical response using dislocation density-based crystal plasticity finite element (CPFE) modeling. The model incorporates the evolution of both statistically stored dislocation (SSD) and geometrically necessary dislocation (GND). Our simulations reveal that the yield and flow stresses of dislocation cell structures exceed predictions based on the rule of mixtures (ROM). Additionally, the SSD density increases at a higher rate than the GND density. Factors such as the volume fraction of the cell wall, cell diameter, and initial dislocation density difference between the cell wall and interior significantly influence GND accumulation across different regions of the cellular dislocation structures. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

25 pages, 15725 KB  
Article
Columnar-to-Equiaxed Transition on Laser Powder Bed Fusion Ultra-Precision Additive Manufacturing Accuracy and Surface Roughness for Solidified 316L Micro-Lattice Structure
by Chenxu Li, Zhanqiang Liu, Xiaoliang Liang, Jinfu Zhao, Yukui Cai and Bing Wang
Metals 2025, 15(3), 267; https://doi.org/10.3390/met15030267 - 28 Feb 2025
Cited by 3 | Viewed by 1791
Abstract
The improvement of PBF manufacturing accuracy has been an urgent problem to solve. The columnar-to-equiaxed transition of rapid solidification during laser powder bed fusion (L-PBF) has been reported, while its influence on the accuracy and surface roughness of fabricated 316L micro-lattice structures remains [...] Read more.
The improvement of PBF manufacturing accuracy has been an urgent problem to solve. The columnar-to-equiaxed transition of rapid solidification during laser powder bed fusion (L-PBF) has been reported, while its influence on the accuracy and surface roughness of fabricated 316L micro-lattice structures remains to be studied. This study presents a novel fully coupled finite volume method for cellular automata (CA), integrated with response surface methodology (RSM), which is applied to investigate the columnar-to-equiaxed transition influence on the accuracy and surface roughness of ultra-precision additive manufactured 316L lattice structure by L-PBF. It is proven that the higher overlap is identified as the optimal strategy for improving both surface quality and dimensional accuracy. Both the CA model prediction and the experimental results reveal that the effect of latent heat releases from the grain refinement on the adhesion of the surrounding powder is an increment of the surface roughness, while the decrement of the surface quality and accuracy. The overlap strategy is promoted to be the most suitable measure to achieve both high surface quality and manufacturing accuracy. The surface roughness Ra (SP) can rapidly decrease by 68.6%, and the mean diameters decrease by 18.7% under the overlap strategy. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

13 pages, 3043 KB  
Article
Prediction of Grain Structure and Texture in Twin-Roll Cast Aluminum Alloys Using Cellular Automaton–Finite Element Method
by Han-Gyoung Cho, Young Do Kim and Min-Seok Kim
Materials 2025, 18(5), 1075; https://doi.org/10.3390/ma18051075 - 27 Feb 2025
Cited by 1 | Viewed by 1111
Abstract
The twin-roll casting (TRC) process has gained significant attention for aluminum sheet production due to its cost-effectiveness and high processing efficiency. However, controlling the initial grain structure of TRC strips remains challenging due to the absence of a hot rolling stage, necessitating an [...] Read more.
The twin-roll casting (TRC) process has gained significant attention for aluminum sheet production due to its cost-effectiveness and high processing efficiency. However, controlling the initial grain structure of TRC strips remains challenging due to the absence of a hot rolling stage, necessitating an advanced predictive modeling approach. In this study, a cellular automaton–finite element (CA-FE) model was developed to predict the grain structure and texture of aluminum strips fabricated via TRC. Both pure Al and AA7075 alloys were cast under identical conditions using a pilot-scale horizontal twin-roll caster, and their microstructures were characterized experimentally. The developed model incorporated a Gaussian nucleation distribution function and an equivalent binary approach to account for the solidification behavior of multicomponent alloys. The CA-FE simulation results successfully reproduced the key aspects of solidification, grain structure, and texture evolution of TRC strips. The predicted temperature distribution and solid fraction evolution showed distinct differences between the alloys, with pure Al forming columnar grains and AA7075 developing a fully equiaxed structure, which closely matched the experimental findings. Additionally, texture analysis using inverse pole figures (IPFs) and pole figures (PFs) revealed a clear <001> orientation in pure Al, whereas AA7075 exhibited a random texture, both of which were well captured by the CA-FE model. The findings indicate that the developed model offers a reliable prediction of the solidification microstructure and texture evolution in TRC strips, making it a valuable tool for optimizing continuous casting processes. Full article
Show Figures

Figure 1

12 pages, 10747 KB  
Communication
Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated Using Wire Feeding Oscillated Double-Pulsed GTA-AM
by Gang Zhang, Cheng Zhang, Yu Shi and Ding Fan
Metals 2025, 15(3), 248; https://doi.org/10.3390/met15030248 - 26 Feb 2025
Cited by 1 | Viewed by 2498
Abstract
To address anisotropy challenges in electric arc-based additive manufacturing of Inconel 718 alloy, this study develops a novel wire feeding oscillated double-pulsed gas tungsten arc welding additive manufacturing method (DP-GTA-AM) enabling precise thermal-mass transfer control. Series of crack-free thin-walled Inconel 718 alloy parts [...] Read more.
To address anisotropy challenges in electric arc-based additive manufacturing of Inconel 718 alloy, this study develops a novel wire feeding oscillated double-pulsed gas tungsten arc welding additive manufacturing method (DP-GTA-AM) enabling precise thermal-mass transfer control. Series of crack-free thin-walled Inconel 718 alloy parts were successfully obtained by this proposed approach, and the microstructure and mechanical properties of the parts were thoroughly studied. The results indicate that the microstructure changes from dendrites and cellular crystals in the bottom to equiaxed grains in the midsection and entirely equiaxed crystals in the top, resulting in notable grain refinement. With an average grain size of 61.76 μm and an average length of 83.31 μm of large angle grain boundaries, the density of the <001> direction reaches 19.45. The difference in tensile strength and ductility between the horizontal and the vertical directions decreases to 6.3 MPa and 0.38%, which significantly diminishes anisotropy. Fractographic analysis confirms quasi-cleavage failure with homogeneous dimple distribution, demonstrating effective anisotropy mitigation through controlled solidification dynamics. Full article
(This article belongs to the Special Issue Advance in Wire-Based Additive Manufacturing of Metal Materials)
Show Figures

Figure 1

Back to TopTop