Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Analysis of As-Cast and Hot-Rolled Structure
3.2. Influence of Laser Remelting on the Microstructure
3.3. Influence of Annealing on the Hardness and Microstructure
4. Discussion
5. Conclusions
- (1)
- The as-cast alloy microstructure consists of the primary Al27Ca3Cu7 phase and (Al) + (Al,Cu)4Ca + Al27Ca3Cu7 ternary eutectic regions. The total intermetallic volume fraction is about 19.6%. Mn and Zr are contained in the supersaturated solid solution (Al). Laser remelting induces a much higher cooling rate (estimated as ~200 K/s) and suppresses the formation of primary Al27Ca3Cu7 phase crystals during solidification. Laser remelting also produces a much finer α-Al dendritic structure and eutectic (Al,Cu)4Ca and Al27Ca3Cu7 particles. Laser-induced microstructural refinement in the Al5Ca3Cu1.5Mn(0.4Zr) alloy produces dendritic cells and eutectic particles, which are approximately 10 times finer than those typical of the as-cast structure.
- (2)
- During casting, the alloys demonstrate elevated resistance to the formation of hot tears. The hot tearing tendency of the Al5Ca3Cu1.5Mn0.4Zr alloy is close to that of the conventional aluminum alloys (Al–Si).
- (3)
- Laser processing changes the chemical composition of the aluminum–calcium alloys in the melting zone. Under optimal laser processing conditions, calcium evaporation in the melting zone can reach ~6%.
- (4)
- Key approaches to the design of the Al–Ca–Cu–Mn (–Zr)-based alloys for achieving enhanced mechanical properties during laser processing and subsequent annealing were demonstrated. Manganese and zirconium addition lead to hardening during exposure at 350–400 °C due to the decomposition of the (Al) solid solution and the formation of Al6Mn particles and L12–Al3(Zr) phase nanoparticles. The Al5Ca3Cu1.5Mn0.4Zr alloy demonstrates higher thermal stability of hardness during long-term (100 h) isothermal annealing (hardness drops by ~7% during annealing at 350–400 °C). For comparison, the zirconium-free quaternary alloy shows a hardness drop of up to 22%. This suggests that the test Al5Ca3Cu1.5Mn0.4Zr alloy is a promising candidate for high-temperature applications (350–400 °C).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Hu, Z.; Seet, H.; Liu, T.; Liao, W.; Ramamurty, U.; Nai, S. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int. J. Mach. Tools Manuf. 2023, 190, 10404. [Google Scholar] [CrossRef]
- Cui, L.; Peng, Z.; Chang, Y.; He, D.; Cab, Q.; Guo, X.; Zeng, Y. Porosity, microstructure and mechanical property of welded joints produced by different laser welding processes in selective laser melting AlSi10Mg alloys. Opt. Laser Technol. 2022, 150, 107952. [Google Scholar] [CrossRef]
- Ma, P.; Prashanth, K.G.; Scudino, S.; Jia, Y.; Wang, H.; Zou, C.; Wei, Z.; Eckert, J. Influence of Annealing on Mechanical Properties of Al–20Si Processed by Selective Laser Melting. Metals 2014, 4, 28–36. [Google Scholar] [CrossRef]
- Pozdniakov, A.V.; Churyumov, A.Y.; Loginova, I.S.; Daubarayte, D.K.; Ryabov, D.K.; Korolev, V.A. Microstructure and properties of novel AlSi11CuMn alloy manufactured by selective laser melting. Mater. Lett. 2018, 225, 33–36. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, P.; Jia, Y.; Yu, Z.; Sokkalingam, R.; Shi, X.; Ji, P.; Eckert, J.; Prashanth, K.G. Microstructure and Mechanical Properties of Al–(12–20)Si Bi-Material Fabricated by Selective Laser Melting. Materials 2019, 12, 2126. [Google Scholar] [CrossRef] [PubMed]
- Manca, D.R.; Churyumov, A.Y.; Pozdniakov, A.V.; Ryabov, D.K.; Korolev, V.A.; Daubarayte, D.K. Novel heat-resistant Al-Si-Ni-Fe alloy manufactured by selective laser melting. Mater. Lett. 2019, 236, 676–679. [Google Scholar] [CrossRef]
- Salandari-Rabori, A.; Wang, P.; Dong, Q.; Fallah, V. Enhancing as-built microstructural integrity and tensile properties in laser powder bed fusion of AlSi10Mg alloy using a comprehensive parameter optimization procedure. Mater. Sci. Eng. A 2021, 805, 140620. [Google Scholar] [CrossRef]
- Paul, M.J.; Liu, Q.; Best, J.P.; Li, X.; Kruzic, J.J.; Ramamurty, U.; Gludovatz, B. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 2021, 211, 116869. [Google Scholar] [CrossRef]
- Gao, T.; Gao, J.; Zhang, J.; Song, B.; Zhang, L. Development of an accurate “composition-process-properties” dataset for SLMed Al–Si– (Mg) alloys and its application in alloy design. J. Mater. Inform. 2023, 3, 6. [Google Scholar] [CrossRef]
- Pandey, P.; Makineni, S.K.; Gault, B.; Chattopadhyay, K. On the origin of a remarkable increase in the strength and stability of an Al rich Al–Ni eutectic alloy by Zr addition. Acta Mater. 2019, 170, 205–217. [Google Scholar] [CrossRef]
- Oeser, S.; Preußner, J.; Rödler, G.; Pirch, N.; Weisheit, A. Laser Metal Deposition of a Near-Eutectic Al–Ni Alloy. Adv. Eng. Mater. 2022, 24, 2200696. [Google Scholar] [CrossRef]
- Rödler, G.; Fischer, F.G.; Preußner, J.; Friedmann, V.; Fischer, C.; Weisheit, A.; Schleifenbaum, J.H. Additive manufacturing of high-strength eutectic aluminium-nickel alloys—Processing and mechanical properties. J. Mater. Process. Technol. 2021, 298, 117315. [Google Scholar] [CrossRef]
- Zhou, L.; Huynh, T.; Park, S.; Hyer, H.; Mehta, A.; Song, S.; Bai, Y.; McWilliams, B.; Cho, K.; Sohn, Y. Laser powder bed fusion of Al–10 wt% Ce alloys: Microstructure and tensile property. J. Mater. Sci. 2020, 55, 14611–14625. [Google Scholar] [CrossRef]
- Plotkowski, A.; Rios, O.; Sridharan, N.; Sims, Z.; Unocic, K.; Ott, R.T.; Dehoff, R.R.; Babu, S.S. Evaluation of an Al–Ce alloy for laser additive manufacturing. Acta Mater. 2017, 126, 507–519. [Google Scholar] [CrossRef]
- Henderson, H.B.; Hammons, J.A.; Baker, A.A.; McCall, S.K.; Li, T.T.; Perron, A.; Sim, Z.C.; Ott, R.T.; Meng, F.; Thompson, M.J.; et al. Enhanced thermal coarsening resistance in a nanostructured aluminum-cerium alloy produced by additive manufacturing. Mater. Des. 2021, 209, 109988. [Google Scholar] [CrossRef]
- Ekaputra, C.N.; Rachmonov, J.U.; Leinenbach, C.; Dunand, D.C. Hypereutectic Al–Ce–X (X=Mn, Cr, V, Mo, W) alloys fabricated by laser powder-bed fusion. Addit. Manuf. 2024, 93, 104442. [Google Scholar] [CrossRef]
- Chernyshikhin, S.V.; Dzidziguri, E.L.; Fedorenko, L.V.; Gromov, A.A.; Larionov, K.B.; Lyange, M.V.; Kharitonova, N.A.; Naumova, E.A.; Ozherelkov, D.Y.; Pelevin, I.A.; et al. Structure and Mechanical Properties of Al–Ce–Fe Alloy Synthesized by LPBF Method. Met. Mater. Int. 2024, 30, 3184–3201. [Google Scholar] [CrossRef]
- Manca, D.R.; Churyumov, A.Y.; Pozdniakov, V.; Prosviryakov, A.S.; Ryabov, D.K.; Krokhin, A.Y.; Korolev, V.A.; Daubarayte, D.K. Microstructure and Properties of Novel Heat Resistant Al–Ce–Cu Alloy for Additive Manufacturing. Met. Mater. Int. 2021, 25, 633–640. [Google Scholar] [CrossRef]
- Rojas-Arias, N.; Coury, F.G.; Amancio-Filho, S.T.; Gargarella, P. A novel approach for tailoring aluminum alloys for additive manufacturing. Sci. Eng. A 2025, 931, 148179. [Google Scholar] [CrossRef]
- Schon, A.F.; Gouveia, G.L.; Sobral, B.S.; Spinelli, J.E.; Riva, R.; Capella, A.G.; Silva, B.L. Microstructure and hardness of laser remelted surfaces of Al–5%Cu and Al–4%Cu–1%Ni alloys. J. Alloys Compd. 2023, 954, 170189. [Google Scholar] [CrossRef]
- Wu, T.; Poplawsky, J.D.; Allard, L.F.; Plotkowski, A.; Shyam, A.; Dunand, D.C. Microstructure and strengthening of Al-6Ce-3Ni-0.7Fe (wt.%) alloy manufactured by laser powder-bed fusion. Addit. Manuf. 2023, 78, 103858. [Google Scholar] [CrossRef]
- Bahl, S.; Wu, T.; Michi, R.A.; An, K.; Yu, D.; Allard, L.F.; Rakhmonov, J.U.; Poplawsky, J.D.; Fancher, C.M.; Dunand, D.C.; et al. An additively manufactured near-eutectic Al–Ce–Ni–Mn–Zr alloy with high creep resistance. Acta Mater. 2024, 268, 119787. [Google Scholar] [CrossRef]
- Grejtak, T.; Shyam, A.; Blau, P.J.; Qu, J. Additively manufactured and cast high-temperature aluminum alloys for electric vehicle brake rotor application. Wear 2025, 1, 205961. [Google Scholar] [CrossRef]
- Akopyan, T.K.; Letyagin, N.V.; Avxentieva, N.N. High-tech alloys based on Al–Ca–La(–Mn) eutectic system for casting, metal forming and selective laser melting. NFM 2020, 1, 52–59. [Google Scholar] [CrossRef]
- Letyagin, N.V.; Akopyan, T.K.; Palkin, P.A.; Cherkasov, S.O.; Lyukhter, A.B.; Pechnikov, I.S. Laser welding of aluminum-calcium alloys based on ((Al) + Al4(Ca, La)) eutectic. Metallurgist 2024, 68, 692–701. [Google Scholar] [CrossRef]
- Letyagin, N.V.; Akopyan, T.K.; Sokorev, A.A.; Sviridova, T.A.; Cherkasov, S.O.; Mansurov, Y.N. The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation. Metals 2023, 13, 1509. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Doroshenko, V.V.; Korotkova, N.O.; Avxentieva, N.N. Determination of the Parameters of a Peritectic Reaction that Occurred in the Al-Rich Region of the Al–Ca–Mn System. Phys. Met. Metallogr. 2022, 123, 759–767. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Bazlova, T.A.; Doroshenko, V.V. Phase Composition and Hardening of Castable Al–Ca–Ni–Sc Alloys Containing 0.3% Sc. Met. Sci. Heat Treat. 2017, 59, 76–81. [Google Scholar] [CrossRef]
- Akopyan, T.K.; Belov, N.A.; Letyagin, N.V.; Cherkasov, S.O.; Nguen, X.D. Description of the New Eutectic Al-Ca-Cu System in the Aluminum Corner. Metals 2023, 13, 802. [Google Scholar] [CrossRef]
- Shen, T.; Zhang, S.; Liu, Z.; Yu, S.; Jiang, J.; Tao, X.; Akopyan, T.; Belov, N.; Yao, Z. Convert Harm into Benefit: The Role of the Al10CaFe2 Phase in Al–Ca Wrought Aluminum Alloys Having High Compatibility with Fe. Materials 2023, 16, 7488. [Google Scholar] [CrossRef] [PubMed]
- Akopyan, T.K.; Belov, N.A.; Naumova, E.A.; Letyagin, N.V.; Sviridova, T.A. Al-matrix composite based on Al−Ca−Ni−La system additionally reinforced by L12 type nanoparticles. Trans. Nonferrous Met. Soc. China 2022, 30, 850–862. [Google Scholar] [CrossRef]
- Shurkin, P.K.; Letyagin, N.V.; Yakushkova, A.I.; Samoshina, M.E.; Ozherelkov, D.Y.; Akopyan, T.K. Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser-powder bed fusion. Mater. Lett. 2021, 285, 129074. [Google Scholar] [CrossRef]
- Preußner, J.; Rödler, G.; Fischer, F.G.; Hintz, K.; Friedmann, V.; Weisheit, A. Additive manufacturing of a lightweight Al–Ca alloy by direct energy deposition and laser powder bed fusion. Pract. Metallogr. 2023, 60, 704–715. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.; Yu, X.; Zhang, Z.; Cai, D.; Shen, B.; Long, J.; Sun, Y. Microstructure and Mechanical Properties of a Novel Lightweight and Heat-Resistant Al–3.0Ce–0.9Ca–1.9Mn–1.2Zr Alloy Fabricated by Selective Laser Melting. Coatings 2025, 15, 247. [Google Scholar] [CrossRef]
- Rakhmonov, J.U.; Weiss, D.; Dunand, D.C. Comparing evolution of precipitates and strength upon aging of cast and la-ser-remelted Al–8Ce–0.2Scv0.1Zr (wt.%). Mater. Sci. Eng. A 2022, 840, 142990. [Google Scholar] [CrossRef] [PubMed]
- Rogachev, S.O.; Naumova, E.A.; Komissarov, A.A.; Vasina, M.A.; Pavlov, M.D.; Tokar, A.A. Effect of laser surface modification on the structure and mechanical properties of Al–8%Ca, Al–10%La, Al–10%Ce, and Al–6%Ni eutectic aluminum alloys. Izv. Vuzov Tsvetnaya Metall. 2022, 28, 58–70. [Google Scholar] [CrossRef]
- Nunes, A.T.; Gouveia, G.L.; Riva, R.; Capella, A.G.; Garcia, A.; Spinelli, J.E. Laser resolidification of Al–5Mg–0.1Sc alloy: Growth of cells and banded structures. J. Alloys Compd. 2024, 973, 172889. [Google Scholar] [CrossRef]
- Zhang, C.; Chai, L.; Liu, Y.; Li, Z.; Zhang, F.; Li, X.; Fu, Z. Correlating microstructural features with improved wear and corrosion resistance of laser surface remelted A356 alloy at different scanning speeds. Mater. Charact. 2023, 202, 113021. [Google Scholar] [CrossRef]
- Shelekhov, E.V.; Sviridova, T.A. Programs for X-ray analysis of polycrystals. Met. Sci. Heat Treat. 2000, 42, 309–313. [Google Scholar] [CrossRef]
- Huber, S.; Glasschroeder, J.; Zaeh, M.F. Analysis of the Metal Vapour during Laser Beam Welding. Phys. Procedia 2011, 12, 712–719. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, C.; Ji, X.; Li, F.; Zhang, Y.; Hua, X. Correlation between gas-dynamic behaviour of a vapour plume and oscillation of keyhole size during laser welding of 5083 Al alloy. J. Mater. Process. Technol. 2020, 283, 116721. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C. Acta Mat. 2008, 56, 1182–1195. [Google Scholar] [CrossRef]
- Cinkilic, E.; Yan, X.; Luo, A.A. Modeling Precipitation Hardening and Yield Strength in Cast Al–Si–Mg–Mn Alloys. Metals 2020, 10, 1356. [Google Scholar] [CrossRef]
- Orlova, T.S.; Latynina, T.A.; Mavlyutov, A.M.; Murashkin, M.Y.; Valiev, R.Z. Effect of annealing on microstructure, strength and electrical conductivity of the pre-aged and HPT-processed Al–0.4Zr alloy. J. Alloys Compd. 2019, 784, 41–48. [Google Scholar] [CrossRef]
- Mohammadi, A.; Enikeev, N.A.; Murashkin, M.Y.; Arita, M.; Edalati, K. Developing age-hardenable Al–Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Mater. 2021, 203, 116503. [Google Scholar] [CrossRef]
No. | Alloy Designation | Concentration, wt.% (target/actual) | ||||
Al | Ca | Cu | Mn | Zr | ||
1 | Al5Ca3Cu1.5Mn | balance | 5.0/4.8 | 3/3.2 | 1.5/1.4 | -/- |
2 | Al5Ca3Cu1.5Mn0.4Zr | balance | 5.0/4.7 | 3/3.1 | 1.5/1.4 | 0.4/0.35 |
Alloy, wt.% | Phase | Pearson Symbol | Volume Fraction, % | Lattice Parameters, Å | |
a | c | ||||
Al5Ca3Cu1.5Mn0.4Zr | Al | cF4/1 | 80.4 ± 0.1 | 4.046 | - |
(Al,Cu)4Ca | tI10/1 | 15.5 ± 0.1 | 4.298 | 11.273 | |
Al27Ca3Cu7 | cP37/3 | 4.1 ± 0.0 | 8.420 | - |
Field of Investigation | Concentration, wt.% | ||||
Ca | Cu | Mn | Zr | Al | |
Al5Ca3Cu1.5Mn (basic) | 4.9 | 3.0 | 1.35 | - | balance |
Al5Ca3Cu1.5Mn (LR) | 4.7 | 3.0 | 1.35 | - | balance |
Al5Ca3Cu1.5Mn0.4Zr (basic) | 4.9 | 3.0 | 1.4 | 0.3 | balance |
Al5Ca3Cu1.5Mn0.4Zr (LR) | 4.6 | 2.9 | 1.35 | 0.3 | balance |
Alloy | State | M | G, GPa | b, nm | ν | Eutectic Particles | Al6Mn Precipitates | Al3Zr Precipitates | ||||||
Pe, nm | fv, % | λ | d, nm | fv, % | λ | d, nm | fv, % | λ | ||||||
Al5Ca3Cu1.5Mn | LR | 3.06 | 25.4 | 0.286 | 0.345 | 1153 | 19.6 | 407 | - | - | - | - | - | - |
Annealed | 3.06 | 25.4 | 0.286 | 0.345 | 1897 | 19.6 | 152 | 150 | 5.2 | 358 | - | - | - | |
Al5Ca3Cu1.5Mn0.4Zr | LR | 3.06 | 25.4 | 0.286 | 0.345 | 1153 | 19.6 | 407 | - | - | - | - | - | - |
Annealed | 3.06 | 25.4 | 0.286 | 0.345 | 1897 | 19.6 | 152 | 150 | 5.2 | 358 | 15 | 0.6 | 136 |
Alloy | State | σAl (MPa) | σp (MPa) | σss (MPa) | σ0.2calc (MPa) | σ0.2exp (MPa) 3 HV |
---|---|---|---|---|---|---|
Al5Ca3Cu1.5Mn | LR | 30 | 162 1 | 52 4 | 244 | 288 |
Annealed | 30 | 138 (68 1/70 2) | - | 168 | 225 | |
Al5Ca3Cu1.5Mn0.4Zr | LR | 30 | 162 1 | 52 4 | 244 | 288 |
Annealed | 30 | 230 (68 1/70 2/92 3) | - | 260 | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letyagin, N.V.; Akopyan, T.K.; Palkin, P.A.; Cherkasov, S.O.; Fortuna, A.S.; Lyukhter, A.B.; Barkov, R.Y. Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing. J. Manuf. Mater. Process. 2025, 9, 242. https://doi.org/10.3390/jmmp9070242
Letyagin NV, Akopyan TK, Palkin PA, Cherkasov SO, Fortuna AS, Lyukhter AB, Barkov RY. Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing. Journal of Manufacturing and Materials Processing. 2025; 9(7):242. https://doi.org/10.3390/jmmp9070242
Chicago/Turabian StyleLetyagin, Nikolay V., Torgom K. Akopyan, Pavel A. Palkin, Stanislav O. Cherkasov, Anastasiya S. Fortuna, Alexandr B. Lyukhter, and Ruslan Yu. Barkov. 2025. "Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing" Journal of Manufacturing and Materials Processing 9, no. 7: 242. https://doi.org/10.3390/jmmp9070242
APA StyleLetyagin, N. V., Akopyan, T. K., Palkin, P. A., Cherkasov, S. O., Fortuna, A. S., Lyukhter, A. B., & Barkov, R. Y. (2025). Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing. Journal of Manufacturing and Materials Processing, 9(7), 242. https://doi.org/10.3390/jmmp9070242