Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,683)

Search Parameters:
Keywords = cellular cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1940 KB  
Article
Protective Effect of Multifloral Honey on Stem Cell Aging in a Dynamic Cell Culture Model
by Fikriye Fulya Kavak, Sara Cruciani, Giuseppe Garroni, Diletta Serra, Rosanna Satta, Ibrahim Pirim, Melek Pehlivan and Margherita Maioli
Antioxidants 2026, 15(1), 115; https://doi.org/10.3390/antiox15010115 - 16 Jan 2026
Abstract
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on [...] Read more.
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on stem cell–associated genes and the Wingless-related integration site (Wnt) signaling pathway following ultraviolet (UV)-induced aging. Using a bioreactor, skin stem cells (SSCs) derived from healthy skin biopsies and human skin fibroblasts (HFF1) were pre-treated with 1% honey for 48 h and then exposed to UV. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses were performed on Wnt signaling and anti-aging molecular responses. Honey pre-treatment enhanced the expression of pluripotency markers (Octamer-binding transcription factor 4 (Oct4); SRY-box transcription factor 2 (Sox2)) and reduced senescence-related cell cycle regulators (cyclin-dependent kinase inhibitor 2A (p16); cyclin-dependent kinase inhibitor 1A (p21); tumor protein 53 (p53)) in SSCs. In UV-damaged SSCs, honey also significantly increased Wnt3a expression. In fibroblasts, honey pre-treatment upregulated Heat shock protein 70 (Hsp70) and Hyaluronan synthase 2 (HAS2) expression, while downregulating caspase-8 (CASP8), indicating a protective role against UV-mediated cellular stress. We also analyzed nitric oxide release and the total antioxidant capacity of cells after treatment. Collectively, these findings suggest that honey may safeguard skin stem cells from UV-induced aging by modulating pluripotency and senescence-associated genes and regulating differentiation through alterations in Wnt signaling. Furthermore, Hsp70 upregulation in fibroblasts appears to strengthen cellular stress responses and support homeostatic stability. Full article
(This article belongs to the Special Issue Oxidative Stress in Cell Senescence)
Show Figures

Figure 1

10 pages, 4034 KB  
Article
MRI Diffusion Imaging as an Additional Biomarker for Monitoring Chemotherapy Efficacy in Tumors
by Małgorzata Grzywińska, Anna Sobolewska, Małgorzata Krawczyk, Ewa Wierzchosławska and Dominik Świętoń
Medicina 2026, 62(1), 173; https://doi.org/10.3390/medicina62010173 - 15 Jan 2026
Viewed by 40
Abstract
Background and Objectives: Soft tissue sarcomas account for approximately 7% of all malignant tumors in the pediatric population. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) measurements may provide early functional biomarkers of treatment response by reflecting changes in tumor cellularity. This [...] Read more.
Background and Objectives: Soft tissue sarcomas account for approximately 7% of all malignant tumors in the pediatric population. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) measurements may provide early functional biomarkers of treatment response by reflecting changes in tumor cellularity. This study evaluated whether ADC-derived parameters can serve as quantitative biomarkers of neoadjuvant chemotherapy response in pediatric rhabdomyosarcoma. Materials and Methods: This retrospective single-center study included 14 patients aged ≤18 years with histopathologically confirmed rhabdomyosarcoma who underwent MRI before treatment and after three cycles of chemotherapy. Twenty-five patients were initially identified; eleven were excluded due to imaging artifacts or absence of baseline examination. ADC maps were generated on 1.5T and 3T scanners. Regions of interest were placed over the entire lesion and areas with the lowest ADC signal. Relative ADC (rADC) was calculated by normalizing tumor ADC to adjacent healthy muscle. Paired t-tests were used to compare pre- and post-treatment values. Results: At baseline, 13/14 patients (93%) demonstrated diffusion restriction. Mean ADC increased from 1.11 × 10−3 mm2/s (SD ± 0.48) at baseline to 1.63 × 10−3 mm2/s (SD ± 0.67) after treatment. The paired t-test for rADC yielded t = −3.089 (p = 0.0086, 95% CI: −0.79 to −0.14), indicating a statistically significant change. There was a significant difference between the ADC values of the entire lesion and the areas with the lowest signal in tumors with a heterogenic structure, t = 2.862, p = 0.013. Conclusions: ADC and rADC increased significantly after neoadjuvant chemotherapy in pediatric rhabdomyosarcoma, suggesting potential utility as early functional biomarkers of treatment response. These preliminary findings require validation in larger multicenter prospective studies with correlation to histopathological response and clinical outcomes before clinical implementation. Full article
(This article belongs to the Special Issue Interventional Radiology and Imaging in Cancer Diagnosis)
Show Figures

Figure 1

19 pages, 1271 KB  
Article
Adherence to the Mediterranean Diet and Metabolic Gene Expression in Smokers: An Integrative Transcriptomic Approach
by İlayda Öztürk Altuncevahir, Ayşe Büşranur Çelik, Kezban Uçar Çifçi, Mervenur Uslu, Meltem Vural, Alev Kural, Ezgi Nurdan Yenilmez Tunoğlu and Yusuf Tutar
Nutrients 2026, 18(2), 276; https://doi.org/10.3390/nu18020276 - 15 Jan 2026
Viewed by 51
Abstract
Background: Cigarette smoking disrupts cellular energy metabolism and remains a major global health problem. The Mediterranean diet, characterized by antioxidant and anti-inflammatory properties, has been implicated in the regulation of metabolic pathways. Objective: This study aimed to examine the association between adherence to [...] Read more.
Background: Cigarette smoking disrupts cellular energy metabolism and remains a major global health problem. The Mediterranean diet, characterized by antioxidant and anti-inflammatory properties, has been implicated in the regulation of metabolic pathways. Objective: This study aimed to examine the association between adherence to the Mediterranean diet and the expression of energy metabolism-related genes in smokers aged 18–55 years. Methods: Smokers were classified according to their Mediterranean Diet Adherence Screener (MEDAS) scores into an adhering group (n = 24) and a non-adhering group (n = 24). Participant characteristics were recorded, blood samples were collected, and total RNA was isolated. Gene expression analysis was performed using a custom RT-qPCR array targeting energy metabolism-related genes. Pathway enrichment analysis was conducted using EnrichR Reactome 2024, and gene–metabolite relationships were explored using MetaboAnalyst 6.0 to support pathway-level interpretation. Results: Smoking was associated with coordinated upregulation of genes involved in glycolysis, glucose transport, lipid metabolism, amino acid metabolism, the pentose phosphate pathway, and redox regulation, consistent with a metabolically stressed state. In contrast, adherence to the Mediterranean diet was associated with lower expression of genes related to glycolytic flux, lipid β-oxidation, and amino acid turnover, alongside relatively higher engagement of tricarboxylic acid cycle-related pathways and reduced activation of redox-associated processes. Conclusions: Adherence to the Mediterranean diet was associated with differences in the expression of genes involved in cellular energy metabolism among smokers, suggesting a potential modulatory role of dietary patterns in smoking-related metabolic alterations. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

15 pages, 4517 KB  
Article
Platelet Secretome Drives Mitogenic and TGF-β Responses in Gingival Fibroblasts
by Layla Panahipour, Matilde Riberti, Xiaoyu Huang, Michael B. Fischer, Richard J. Miron and Reinhard Gruber
Biology 2026, 15(2), 143; https://doi.org/10.3390/biology15020143 - 14 Jan 2026
Viewed by 163
Abstract
Platelet-rich fibrin (PRF) is widely used in regenerative dentistry and oral surgery for its ability to promote tissue healing and modulate cellular responses. However, PRF contains not only platelets but also leukocytes and plasma components, complicating efforts to define the specific contribution of [...] Read more.
Platelet-rich fibrin (PRF) is widely used in regenerative dentistry and oral surgery for its ability to promote tissue healing and modulate cellular responses. However, PRF contains not only platelets but also leukocytes and plasma components, complicating efforts to define the specific contribution of platelets to its biological activity. To address this, we used washed, leukocyte-depleted platelets activated with thrombin to generate platelet-released supernatant (PRS), which was applied to gingival fibroblasts. RNA sequencing identified 147 upregulated and 39 downregulated genes (|log2 fold change| ≥ 2, FDR < 0.001), including cytokines IL11 and CXCL8 previously associated with PRF, as well as mitosis-related genes such as centromere-associated proteins, cell division cycle proteins, kinesin-like proteins, and shugoshins, consistent with gene ontology analyses. Validation by RT-PCR and immunoassays confirmed robust upregulation of IL11 and CXCL8. Functionally, PRS activated TGF-β signaling, indicated by Smad2/3 nuclear translocation, but did not induce NF-κB signaling. These findings demonstrate that platelets are major contributors to PRF’s biological effects, independent of leukocytes and plasma, and elicit a pronounced mitogenic and TGF-β-dominant response in gingival fibroblasts. They also provide insight into the cellular mechanisms underlying PRF-mediated tissue regeneration. Full article
(This article belongs to the Special Issue Research Advancements in Oral Biology)
Show Figures

Figure 1

13 pages, 1189 KB  
Communication
A Three-Tier In Vitro Strategy for Accelerated Pine Breeding and Resistance Research Against Pine Wilt Disease
by Zi-Hui Zhu, Yan-Fei Liao, Yang-Chun-Zi Liao, Hui Sun, Jian-Ren Ye and Li-Hua Zhu
Plants 2026, 15(2), 246; https://doi.org/10.3390/plants15020246 - 13 Jan 2026
Viewed by 161
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is a globally destructive threat to coniferous forests, causing severe ecological and economic losses. Conventional resistance breeding is critically hampered by long life cycles of trees and field evaluation [...] Read more.
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is a globally destructive threat to coniferous forests, causing severe ecological and economic losses. Conventional resistance breeding is critically hampered by long life cycles of trees and field evaluation challenges. To address these limitations, we developed a three-tier biotechnology pipeline with a dual-output goal (generating both resistant germplasm and mechanistic insights) designed to bridge the in vitro–field gap. This strategy is founded upon the resolution of a longstanding pathogenesis debate, which established aseptic PWNs as a standardized research tool. The pipeline integrates high-throughput in vitro cellular screening (Tier 1), whole-plant validation via organogenesis (Tier 2), and scaled production coupled with mechanistic investigation through somatic embryogenesis (Tier 3). Tier 1 enables rapid phenotypic screening, Tier 2 validates resistance in whole plants, and Tier 3 facilitates mass production and in-depth study. It operates as a closed-loop, knowledge-driven system, simultaneously accelerating PWN-resistant germplasm development and empowering molecular mechanism discovery. Validated across Pinus massoniana and P. densiflora, this work provides a concrete, community-usable model system that directly addresses a core methodological bottleneck in forest pathology. This strategy effectively bridges the in vitro–field gap, offering a replicable model for perennial crop breeding and contributing to resilient forest management. Full article
Show Figures

Figure 1

25 pages, 4161 KB  
Article
p53 Interacts with VDAC1, Modulating Its Expression Level and Oligomeric State to Activate Apoptosis
by Elinor Gigi, Aditya Karunanithi Nivedita, Danya Ben-Hail, Manikandan Santhanam, Anna Shteinfer-Kuzmine and Varda Shoshan-Barmatz
Biomolecules 2026, 16(1), 141; https://doi.org/10.3390/biom16010141 - 13 Jan 2026
Viewed by 172
Abstract
The p53 tumor suppressor, a key transcription factor, acts as a cellular stress sensor that regulates hundreds of genes involved in responses to DNA damage, oxidative stress, and ischemia. Through these actions, p53 can arrest cell cycle, initiate DNA repair, or trigger cell [...] Read more.
The p53 tumor suppressor, a key transcription factor, acts as a cellular stress sensor that regulates hundreds of genes involved in responses to DNA damage, oxidative stress, and ischemia. Through these actions, p53 can arrest cell cycle, initiate DNA repair, or trigger cell death. In addition to its nuclear functions, p53 can translocate to mitochondria to promote apoptosis. Studies using isolated mitochondria have suggested that p53 drives the voltage-dependent anion channel (VDAC1) into high molecular mass complexes to mediate apoptosis. VDAC1 is a central regulator of cellular energy production and metabolism and also an essential player in apoptosis, induced by various apoptotic stimuli and stress conditions. We previously demonstrated that VDAC1 oligomerization, induced by various apoptosis stimuli and stress conditions, forms a large pore that enables cytochrome c release from mitochondria, thereby promoting apoptotic cell death. In this study, we show that p53 interacts with VDAC1, modulates its expression levels, and promotes VDAC1 oligomerization-dependent apoptosis. Using purified proteins, we found that p53 directly binds VDAC1, as revealed by microscale thermophoresis and by experiments using bilayer-reconstituted VDAC1, in which p53 reduced VDAC1 channel conductance. Furthermore, overexpression of p53 in p53-null cells or in cells expressing wild-type p53 increased VDAC1 expression and induced VDAC1 oligomerization even in the absence of apoptotic stimuli. Together, these findings identify VDAC1 as a direct p53 target whose expression, oligomerization, and pro-apoptotic activity are regulated by p53. They also reinforce the central role of VDAC1 oligomerization in apoptosis. Full article
Show Figures

Figure 1

16 pages, 1145 KB  
Article
Untargeted Metabolomics Unravel the Effect of SlPBB2 on Tomato Fruit Quality and Associated Plant Metabolism
by Cuicui Wang, Lihua Jin, Daqi Fu and Weina Tian
Metabolites 2026, 16(1), 68; https://doi.org/10.3390/metabo16010068 - 12 Jan 2026
Viewed by 99
Abstract
Background: Proteasomes are protein complexes that mediate proteolysis to degrade unneeded or damaged proteins, and they play an indispensable role in plant growth and development. However, their regulatory effects on tomato fruit quality and the underlying metabolic mechanisms remain largely elusive. This study [...] Read more.
Background: Proteasomes are protein complexes that mediate proteolysis to degrade unneeded or damaged proteins, and they play an indispensable role in plant growth and development. However, their regulatory effects on tomato fruit quality and the underlying metabolic mechanisms remain largely elusive. This study aimed to elucidate the metabolic regulatory mechanisms of proteasomes in tomato fruits through untargeted metabolome analysis. Methods: An untargeted metabolomics approach was employed to profile the metabolic changes in tomato fruits. Metabolites were detected and identified under both positive and negative ion modes. Metabolic profiles were compared between wild-type (WT) tomato fruits and SlPBB2 RNA interference (SlPBB2-RNAi) lines. Specifically, the SlPBB2-RNAi line refers to a transgenic tomato line constructed via Agrobacterium-mediated transformation, where the expression of the proteasome component gene SlPBB2 was stably downregulated by RNA interference technology to clarify its regulatory role in fruit metabolism. KEGG enrichment analysis was performed to annotate the functions of differential metabolites. Results: A total of 568 and 333 metabolites were identified in positive and negative ion modes, respectively. Comparative analysis revealed 43 differentially abundant metabolites between WT and SlPBB2-RNAi fruits, including D-glucose, pyruvic acid, leucine, and naringenin. KEGG enrichment analysis further identified key metabolites involved in the carbon fixation pathway of photosynthetic organisms, with L-malic acid being a prominent representative. Reduced accumulation of D-glucose and pyruvic acid in SlPBB2-RNAi fruits suggested the inhibition of the citrate cycle, a core pathway in cellular energy metabolism. This metabolic perturbation was associated with decreased chlorophyll content in SlPBB2-RNAi plants, implying impaired photosynthetic carbon fixation and energy metabolism. Conclusions: This study uncovers the metabolic regulatory role of SlPBB2-mediated proteasome function in tomato fruits, providing novel insights into the link between proteasomal activity and fruit metabolic homeostasis from a metabolomic perspective. These findings offer new theoretical foundations for developing strategies to improve tomato nutritional quality. Full article
27 pages, 1352 KB  
Review
Hematopoietic Niche Hijacking in Bone Metastases: Roles of Megakaryocytes, Erythroid Lineage Cells, and Perivascular Stromal Subsets
by Abdul Rahman Alkhatib, Youssef Elshimy, Bilal Atassi and Khalid Said Mohammad
Biomedicines 2026, 14(1), 161; https://doi.org/10.3390/biomedicines14010161 - 12 Jan 2026
Viewed by 229
Abstract
Bone metastases mark a critical and often terminal phase in cancer progression, where disseminated tumor cells (DTCs) manage to infiltrate and exploit the complex microenvironments of the bone marrow. While most current therapies focus on the well-known late-stage “vicious cycle” of osteolysis, they [...] Read more.
Bone metastases mark a critical and often terminal phase in cancer progression, where disseminated tumor cells (DTCs) manage to infiltrate and exploit the complex microenvironments of the bone marrow. While most current therapies focus on the well-known late-stage “vicious cycle” of osteolysis, they often overlook the earlier stages, namely, tumor cell colonization and dormancy. During these early phases, cancer cells co-opt hematopoietic stem cell (HSC) niches, using them as sanctuaries for long-term survival. In this review, we bring together emerging insights that highlight a trio of underappreciated cellular players in this metastatic takeover: megakaryocytes, erythroid lineage cells, and perivascular stromal subsets. Far from being passive bystanders, these cells actively shape the metastatic niche. For instance, megakaryocytes and platelets go beyond their role in transport; they orchestrate immune evasion and dormancy through mechanisms such as transforming growth factor-β1 (TGF-β1) signaling and the physical shielding of tumor cells. In parallel, we uncover a distinct “erythroid-immune” axis: here, stress-induced CD71+ erythroid progenitors suppress T-cell responses via arginase-mediated nutrient depletion and checkpoint engagement, forming a potent metabolic barrier against immune attack. Furthermore, leptin receptor–positive (LepR+) perivascular stromal cells emerge as key structural players. These stromal subsets not only act as anchoring points for DTCs but also maintain them in protective vascular zones via CXCL12 chemokine gradients. Altogether, these findings reveal that the metastatic bone marrow niche is not static; it is a highly dynamic, multi-lineage ecosystem. By mapping these intricate cellular interactions, we argue for a paradigm shift: targeting these early and cooperative crosstalk, whether through glycoprotein-A repetitions predominant (GARP) blockade, metabolic reprogramming, or other niche-disruptive strategies, could unlock new therapeutic avenues and prevent metastatic relapse at its root. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

30 pages, 711 KB  
Review
A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms
by Charalampos Voros, Fotios Chatzinikolaou, Ioannis Papapanagiotou, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Charalampos Tsimpoukelis, Dimitrios Vaitsis, Athanasios Karpouzos, Maria Anastasia Daskalaki, Nikolaos Kanakas, Marianna Theodora, Nikolaos Thomakos, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 759; https://doi.org/10.3390/ijms27020759 - 12 Jan 2026
Viewed by 283
Abstract
Women of reproductive age, especially those with polycystic ovarian syndrome (PCOS), often use glucagon-like peptide-1 receptor agonists (GLP-1RAs) to improve their metabolic functions. A growing body of evidence suggests that GLP-1R signaling may directly affect ovarian physiology, influencing granulosa cell proliferation, survival pathways, [...] Read more.
Women of reproductive age, especially those with polycystic ovarian syndrome (PCOS), often use glucagon-like peptide-1 receptor agonists (GLP-1RAs) to improve their metabolic functions. A growing body of evidence suggests that GLP-1R signaling may directly affect ovarian physiology, influencing granulosa cell proliferation, survival pathways, and steroidogenic production, in addition to its systemic metabolic effects. Nonetheless, there is a limited comprehension of the molecular mechanisms that regulate these activities and their correlation with menstrual function, reproductive potential, and assisted reproduction. This comprehensive review focuses on ovarian biology, granulosa cell signaling networks, steroidogenesis, and translational fertility outcomes, integrating clinical, in vivo, and in vitro information to elucidate the effects of GLP-1 receptor agonists on reproductive health. We conducted a thorough search of PubMed, Scopus, and Web of Science for randomized trials, prospective studies, animal models, and cellular experiments evaluating the effects of GLP-1RA on reproductive or ovarian outcomes, in accordance with PRISMA criteria. The retrieved data included metabolic changes, androgen levels, monthly regularity, ovarian structure, granulosa cell growth and death, FOXO1 signaling, FSH-cAMP-BMP pathway activity, and fertility or IVF results. Clinical trials shown that GLP-1 receptor agonists improve menstrual regularity, decrease body weight and central adiposity, increase sex hormone-binding globulin levels, and lower free testosterone in overweight and obese women with PCOS. Liraglutide, when combined with metformin, significantly improved IVF pregnancy rates, whereas exenatide increased natural conception rates. Mechanistic studies demonstrate that GLP-1R activation affects FOXO1 phosphorylation, hence promoting granulosa cell proliferation and anti-apoptotic processes. Incretin signaling altered steroidogenesis by reducing the levels of StAR, P450scc, and 3β-HSD, so inhibiting FSH-induced progesterone synthesis, while simultaneously enhancing BMP-Smad signaling. Animal studies demonstrated both beneficial (enhanced follicular growth, anti-apoptotic effects) and detrimental results (oxidative stress, granulosa cell death, uterine inflammation), indicating a context- and dose-dependent response. GLP-1 receptor agonists influence female reproductive biology by altering overall physiological processes and specifically impacting the ovaries via FOXO1 regulation, steroidogenic enzyme expression, and BMP-mediated FSH signaling. Preliminary clinical data indicate improved reproductive function in PCOS, as seen by increased pregnancy rates in both natural and IVF cycles; nevertheless, animal studies reveal a potential risk of ovarian and endometrial damage. These results highlight the need for controlled human research to clarify reproductive safety, molecular pathways, and optimum therapy timing, particularly in non-PCOS patients and IVF settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

27 pages, 1620 KB  
Review
A Solution to Chromium Toxicity? Unlocking the Multi-Faceted Role of Biochar
by Muhammad Umair Hassan and Qitao Su
Plants 2026, 15(2), 234; https://doi.org/10.3390/plants15020234 - 12 Jan 2026
Viewed by 304
Abstract
Chromium (Cr) toxicity poses a significant challenge to agricultural productivity, human health, and food security. Biochar (BC) is a versatile amendment employed to alleviate Cr toxicity. Chromium stress impairs growth by inducing membrane damage and cellular oxidation, as well as inhibiting chlorophyll synthesis, [...] Read more.
Chromium (Cr) toxicity poses a significant challenge to agricultural productivity, human health, and food security. Biochar (BC) is a versatile amendment employed to alleviate Cr toxicity. Chromium stress impairs growth by inducing membrane damage and cellular oxidation, as well as inhibiting chlorophyll synthesis, photosynthetic efficiency, water uptake, and nutrient absorption. This review consolidates information on the mechanisms through which BC mitigates Cr stress. Biochar facilitates Cr immobilization by reduction, adsorption, precipitation, and complexation processes. It enhances growth by improving photosynthetic efficiency, water and nutrient uptake, osmolyte synthesis, and hormonal balance. Additionally, biochar promotes resilient bacterial communities that reduce Cr and enhance nutrient cycling. The effectiveness of BC is not universal and largely depends on its feedstock properties and pyrolysis temperature. This review provides insights into soil quality, plant function, and human health, which contribute to providing a comprehensive assessment of the capacity of BC to mitigate Cr toxicity. This review highlights that BC application can reduce Cr entry into the food chain, thus decreasing its health risk. This review also identifies knowledge gaps and outlines future research directions to increase the efficiency of BC in mitigating Cr toxicity. This review also offers insights into the development of eco-friendly measures to remediate Cr-polluted soils. Full article
(This article belongs to the Special Issue Plant Ecotoxicology and Remediation Under Heavy Metal Stress)
Show Figures

Figure 1

23 pages, 2945 KB  
Article
Intracellular Oxidant Levels Are Crucial for Cell Survival and JAK/STAT Signaling in Classical Hodgkin’s Lymphoma
by Julia Wildfeuer, Rashmi P. Dheenadayalan, Svenja Hartung, Malena Zahn, Timo P. Albrecht, Zhouli Cao, Alexey Ushmorov, Peter Möller, Nadine T. Gaisa and Ralf Marienfeld
Antioxidants 2026, 15(1), 90; https://doi.org/10.3390/antiox15010090 - 9 Jan 2026
Viewed by 256
Abstract
Although oxidants are known to be deleterious for cellular homeostasis by oxidizing macromolecules like DNA or proteins, they are also involved in signaling processes essential for cellular proliferation and survival. Here, we investigated the role of superoxide anion (O2) and [...] Read more.
Although oxidants are known to be deleterious for cellular homeostasis by oxidizing macromolecules like DNA or proteins, they are also involved in signaling processes essential for cellular proliferation and survival. Here, we investigated the role of superoxide anion (O2) and hydrogen peroxide (H2O2) homeostasis for the proliferation and survival of classical Hodgkin’s lymphoma (cHL) cell lines. Inhibition of NADPH oxidases (NOX) using apocynin (Apo) and diphenylene iodonium (DPI), or treatment with the antioxidant butylated hydroxyanisole (BHA), significantly reduced proliferation and induced apoptosis in HL cell lines. These effects correlated with transcriptomic alterations involving redox regulation, immune signaling, and cell cycle control. Interestingly, treatment with DPI or antioxidants attenuated constitutive Signal Transducer and Activator of Transcription (STAT) activity, as seen by decreased phospho-STAT6 levels and reduced STAT6 DNA binding. This suggests a sensitivity of the Janus kinase (JAK)/STAT pathway in cHL cell lines to O2 and H2O2 depletion. Functional assays confirmed this by demonstrating partial restoration of proliferation or apoptosis in L428 cells that expressed constitutively active STAT6 or were transfected with small interfering RNAs (siRNAs) that targeted STAT regulators. These findings highlight that oxidants, particularly H2O2, act as both general oxidative stressors and essential modulators of oncogenic signaling pathways. Specifically, maintenance of oxidant homeostasis is critical for sustaining JAK/STAT-mediated growth and survival programs in cHL cells. Targeting redox homeostasis might offer a promising therapeutic strategy to impair JAK/STAT-driven proliferation and survival in cHL. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
20 pages, 4705 KB  
Article
Dissecting the Interaction Domains of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicase DDX3X and Search for Potential Inhibitors
by Camilla Lodola, Maria Michela Pallotta, Fabrizio Manetti, Paolo Governa, Emmanuele Crespan, Giovanni Maga and Massimiliano Secchi
Int. J. Mol. Sci. 2026, 27(2), 672; https://doi.org/10.3390/ijms27020672 - 9 Jan 2026
Viewed by 141
Abstract
The SARS-CoV-2 nucleocapsid protein (Np) plays multifunctional roles in the viral life cycle. By interacting with host cellular proteins, Np regulates viral RNA transcription, replication, and immune evasion. It controls genome packaging and counteracts host RNA interference mediated antiviral responses through its RNA [...] Read more.
The SARS-CoV-2 nucleocapsid protein (Np) plays multifunctional roles in the viral life cycle. By interacting with host cellular proteins, Np regulates viral RNA transcription, replication, and immune evasion. It controls genome packaging and counteracts host RNA interference mediated antiviral responses through its RNA binding activity. Previous studies revealed a physical interaction between Np and DDX3X, a human DEAD-box RNA helicase that facilitates the replication of several viruses. This interaction enhances Np affinity for double-stranded RNA and inhibits DDX3X helicase activity. Since Np-RNA binding activity promotes ribonucleoprotein complex formation, targeting this interaction is a promising antiviral strategy. We generated truncated protein variants to define interaction regions between Np and DDX3X. Using AlphaFold modelling, we identified RecA2 as the key DDX3X domain involved in Np binding. Finally, to disrupt Np-RNA complex formation, we screened a small molecule library of putative binders of Np N-terminal region and identified two candidate inhibitors for further development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 7592 KB  
Article
Nucleosome Clustering as a Biomarker and Mechanistic Switch for Reprogramming Cells
by Zhaoyuan Xu, Yinzhi Xu, Baiyan Li, Lidan You, Jing Liu and Hiroki Yokota
Cells 2026, 15(2), 113; https://doi.org/10.3390/cells15020113 - 8 Jan 2026
Viewed by 198
Abstract
Chromatin architecture is highly dynamic, undergoing nanoscale rearrangements throughout the cell cycle and in response to environmental cues. In this study, we employed high-resolution stochastic optical reconstruction microscopy (STORM) to visualize chromatin organization and cellular plasticity at the nanoscale in two osteosarcoma cell [...] Read more.
Chromatin architecture is highly dynamic, undergoing nanoscale rearrangements throughout the cell cycle and in response to environmental cues. In this study, we employed high-resolution stochastic optical reconstruction microscopy (STORM) to visualize chromatin organization and cellular plasticity at the nanoscale in two osteosarcoma cell lines, U2OS and MG63. To promote a tumor-suppressive bone microenvironment, we applied three biophysical modalities, namely mechanical vibration, electrical stimulation, and optical pulses, each previously linked to altered tumor behavior by reprogramming cells and generating induced tumor-suppressing (iTS) cells. These stimuli enlarged nuclear size and disrupted nuclear envelope integrity, as revealed by increased surface roughness. Critically, all three modalities transiently scattered nucleosome clusters, indicating chromatin decondensation as a hallmark of iTS cell generation. iTS cells exhibited elevated expression of histone demethylases lysine demethylase 3A (KDM3A) and lysine demethylase 4 (KDM4), accompanied by reduced levels of trimethylated histone H3 lysine 9 (H3K9me3). Consistently, pharmacological agents—Trichostatin A as a histone deacetylase inhibitor and chaetocin as a histone methyltransferase inhibitor—induced nucleosome scattering and converted U2OS cells into iTS cells, whose conditioned media exerted tumor-suppressive effects. Our findings highlight nucleosome clustering as a key epigenetic feature responsive to both biophysical and chemical cues, underscoring its role in microscale chromatin remodeling and reprogramming of the tumor microenvironment. Full article
(This article belongs to the Section Cellular Biophysics)
Show Figures

Figure 1

28 pages, 8604 KB  
Article
The Proteome of Dictyostelium discoideum Across Its Entire Life Cycle Reveals Sharp Transitions Between Developmental Stages
by Sarena Banu, P. V. Anusha, Pedro Beltran-Alvarez, Mohammed M. Idris, Katharina C. Wollenberg Valero and Francisco Rivero
Proteomes 2026, 14(1), 3; https://doi.org/10.3390/proteomes14010003 - 8 Jan 2026
Viewed by 290
Abstract
Background: Dictyostelium discoideum is widely used in developmental and evolutionary biology due to its ability to transition from a single cell to a multicellular organism in response to starvation. While transcriptome information across its life cycle is widely available, only early-stage data exist [...] Read more.
Background: Dictyostelium discoideum is widely used in developmental and evolutionary biology due to its ability to transition from a single cell to a multicellular organism in response to starvation. While transcriptome information across its life cycle is widely available, only early-stage data exist at the proteome level. This study characterizes and compares the proteomes of D. discoideum cells at the vegetative, aggregation, mound, culmination and fruiting body stages. Methods: Samples were collected from cells developing synchronously on nitrocellulose filters. Proteins were extracted and digested with trypsin, and peptides were analyzed by liquid chromatography–tandem mass spectrometry. Data were processed using Proteome Discoverer™ for protein identification and label-free quantification. Results: A total of 4502 proteins were identified, of which 1848 (41%) were present across all stages. Pairwise comparisons between adjacent stages revealed clear transitions, the largest ones occurring between the culmination and fruiting body and between the fruiting body and vegetative stage, involving 29% and 52% of proteins, respectively. Hierarchical clustering assigned proteins to one of nine clusters, each displaying a distinct pattern of abundances across the life cycle. Conclusions: This study presents the first complete developmental proteomic time series for D. discoideum, revealing changes that contribute to multicellularity, cellular differentiation and morphogenesis. Full article
Show Figures

Figure 1

19 pages, 8208 KB  
Article
Transcriptomic Analysis Provides Insights into Flowering in Precocious-Fruiting Amomum villosum Lour.
by Yating Zhu, Shuang Li, Hongyou Zhao, Qianxia Li, Yanfang Wang, Chunyong Yang, Ge Li, Wenlin Zhang, Zhibin Guan, Lin Xiao, Yanqian Wang and Lixia Zhang
Plants 2026, 15(2), 198; https://doi.org/10.3390/plants15020198 - 8 Jan 2026
Viewed by 185
Abstract
Precocious-fruiting Amomum villosum Lour. is characterized by early fruit set, rapid yield formation, and shortened economic return cycles, indicating strong cultivation potential. However, the molecular mechanisms underlying its flowering transition remain unclear. To elucidate the flowering mechanism of A. villosum, we used [...] Read more.
Precocious-fruiting Amomum villosum Lour. is characterized by early fruit set, rapid yield formation, and shortened economic return cycles, indicating strong cultivation potential. However, the molecular mechanisms underlying its flowering transition remain unclear. To elucidate the flowering mechanism of A. villosum, we used the Illumina NovaSeq X Plus platform to compare gene expression profiles in three tissues (Rhizomes, R; Stems, S; Leaves, L) during the vegetative stage and three tissues (Rhizomes and Inflorescences, R&I; Stems, S; Leaves, L) during the flowering stage of individual plants: VS-R vs. FS-R&I, VS-S vs. FS-S, and VS-L vs. FS-L. We obtained 52.5 Gb clean data and 789 million reads, and identified 2963 novel genes. The 3061 differentially expressed genes (DEGs, FDR ≤ 0.05 and |log2FC| ≥ 1) identified in the three comparison groups included six overlapping genes. The DEGs were enriched primarily in GO terms related to cellular process, metabolic process, binding, catalytic activity, and cellular anatomical entity, as well as multiple terms associated with development and reproduction. KEGG enrichment analysis revealed enrichment primarily in metabolic pathways, including global and overview maps, energy metabolism, and carbohydrate metabolism. Moreover, the most significantly enriched core pathways included metabolic pathways, photosynthesis, and carbon assimilation. Among all alternative splicing (AS) events, skipped exons (SEs) accounted for the largest proportion (59.5%), followed by retained introns (RI, 19.4%), alternative 3′ splice sites (A3SS, 10.7%), alternative 5′ splice sites (A5SS, 6.8%), and mutually exclusive exons (MXE, 3.6%). A preliminary set of 43 key DEGs was predicted, displaying spatiotemporal expression specificity and strong interactions among certain genes. Nine genes were further selected for RT-qPCR validation to confirm the reliability of the RNA-seq results. This study established a foundational framework for elucidating the flowering mechanism of precocious-fruiting A. villosum. Full article
(This article belongs to the Special Issue Cell Biology, Development, Adaptation and Evolution of Plants)
Show Figures

Figure 1

Back to TopTop