Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,747)

Search Parameters:
Keywords = cell-size distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5538 KB  
Article
ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity
by Shulin Hou, Yunyun Zhang, Xin Zheng, Ruining Li, Taoran Zhao, Hua Qiao, Xiaozheng Zhang and Zhizhen Liu
Viruses 2025, 17(9), 1167; https://doi.org/10.3390/v17091167 - 27 Aug 2025
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key mediator of SARS-CoV-2 host cell entry, making it an attractive target for drug delivery strategies. Nafamostat (NM), a multifunctional agent with antiviral and anti-inflammatory properties, holds promise for COVID-19 treatment. In this study, we developed PLGA-PEG [...] Read more.
Angiotensin-converting enzyme 2 (ACE2) is a key mediator of SARS-CoV-2 host cell entry, making it an attractive target for drug delivery strategies. Nafamostat (NM), a multifunctional agent with antiviral and anti-inflammatory properties, holds promise for COVID-19 treatment. In this study, we developed PLGA-PEG nanoparticles encapsulating NM (NM-PP NPs) and further conjugated them with specific ACE2 decoys (CTC-445.2d or SI5α) to generate NM-PP-Pro/Pep NPs. Both unmodified and ACE2-decoy-modified NPs exhibited uniform size distributions (diameter < 200 nm) and negative surface charges, as confirmed by dynamic light scattering and zeta potential measurements. The nanoparticles maintained structural integrity for at least 18 days at 4 °C and room temperature. In vitro release studies revealed sustained and controlled NM release kinetics. Notably, NM-PP-Pro NPs displayed potent antiviral activity, with an IC50 < 0.05 nM against wild-type SARS-CoV-2 and remained effective against the D614G variant (IC50 = 2 nM). These results underscore the potential of NM-PP-Pro NPs as a versatile n;anotherapeutic platform for targeting SARS-CoV-2 and its emerging variants. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

18 pages, 6210 KB  
Article
A Non-Destructive System Using UVE Feature Selection and Lightweight Deep Learning to Assess Wheat Fusarium Head Blight Severity Levels
by Xiaoying Liang, Shuo Yang, Lin Mu, Huanrui Shi, Zhifeng Yao and Xu Chen
Agronomy 2025, 15(9), 2051; https://doi.org/10.3390/agronomy15092051 - 26 Aug 2025
Abstract
Fusarium head blight (FHB), a globally significant agricultural disaster, causes annual losses of dozens of millions of tons of wheat toxins produced by FHB, such as deoxyroscyliaceol, further pose serious threats to human and livestock health. Consequently, rapid and non-destructive determination of FHB [...] Read more.
Fusarium head blight (FHB), a globally significant agricultural disaster, causes annual losses of dozens of millions of tons of wheat toxins produced by FHB, such as deoxyroscyliaceol, further pose serious threats to human and livestock health. Consequently, rapid and non-destructive determination of FHB severity is crucial for implementing timely and precise scientific control measures, thereby ensuring wheat supply security. Therefore, this study adopts hyperspectral imaging (HSI) combined with a lightweight deep learning model. Firstly, the wheat ears were inoculated with Fusarium fungi at the spike’s midpoint, and HSI data were acquired, yielding 1660 samples representing varying disease severities. Through the integration of multiplicative scatter correction (MSC) and uninformative variable elimination (UVE) methods, features are extracted from spectral data in a manner that optimizes the reduction of feature dimensionality while preserving elevated classification accuracy. Finally, a lightweight FHB severity discrimination model based on MobileNetV2 was developed and deployed as an easy-to-use analysis system. Analysis revealed that UVE-selected characteristic bands for FHB severity predominantly fell within 590–680 nm (chlorophyll degradation related), 930–1043 nm (water stress related) and 738 nm (cell wall polysaccharide decomposition related). This distribution aligns with the synergistic effect of rapid chlorophyll degradation and structural damage accompanying disease progression. The resulting MobileNetV2 model achieved a mean average precision (mAP) of 99.93% on the training set and 98.26% on the independent test set. Crucially, it maintains an 8.50 MB parameter size, it processes data 2.36 times faster, significantly enhancing its suitability for field-deployed equipment by optimally balancing accuracy and operational efficiency. This advancement empowers agricultural workers to implement timely control measures, dramatically improving precision alongside optimized field deployment. Full article
Show Figures

Figure 1

19 pages, 4309 KB  
Article
Histology of Pompia Peel and Bioactivity of Its Essential Oil: A New Citrus-Based Approach to Skin Regeneration
by Emma Cocco, Giulia Giorgi, Valeria Marsigliesi, Francesco Mura, Jorge M. Alves-Silva, Mónica Zuzarte, Lígia Salgueiro, Valentina Ghiani, Enrico Sanjust, Danilo Falconieri, Delia Maccioni, Alessio Valletta, Elisa Brasili and Andrea Maxia
Pharmaceuticals 2025, 18(9), 1256; https://doi.org/10.3390/ph18091256 - 24 Aug 2025
Viewed by 167
Abstract
Background/Objectives: Pompia is an ancient, endemic citrus ecotype native to Sardinia (Italy), characterized by distinctive morphology and high content of bioactive compounds. Despite increasing interest, several aspects of this fruit, including its histological characteristics, remain poorly understood. This study aims to address [...] Read more.
Background/Objectives: Pompia is an ancient, endemic citrus ecotype native to Sardinia (Italy), characterized by distinctive morphology and high content of bioactive compounds. Despite increasing interest, several aspects of this fruit, including its histological characteristics, remain poorly understood. This study aims to address this gap by investigating the anatomical features and spatial distribution of secretory cavities involved in essential oil (EO) production and accumulation, while also evaluating the EO’s chemical profile and associated biological activity. Methods: Pompia peel (flavedo and albedo) was subjected to histological analysis through fixation, dehydration, resin inclusion and sectioning. Sections were stained with 0.05% toluidine blue and observed under a light microscope to measure different parameters of secretory cavities. Essential oil (EO) was obtained from Pompia peel by hydrodistillation and characterized by gas chromatography–mass spectrometry (GC–MS) analysis. The biological activity of Pompia EO was assessed in vitro using NIH/3T3 fibroblasts, where wound-healing was evaluated by scratch assay and anti-senescence effects by β-galactosidase and γH2AX activity. Results: Microscopic analysis of the peel revealed pronounced variability in depth and size of the secretory cavities, along with the presence of lenticel-like structures in the epidermis. GC–MS analysis showed that Pompia EO is dominated by limonene (89%), with minor compounds including myrcene, geranial and neral. In vitro biological assays demonstrated that the EO promotes cell migration in a wound-healing model at concentrations ≥ 12.5 µg/mL and reduces markers of cellular senescence, including β-galactosidase activity and γH2AX foci, in etoposide-induced senescent fibroblasts. Conclusions: Overall, this study provides the first histological characterization of Pompia peel and confirms the bioactive potential of its EO. These findings support future applications in skin regeneration and anti-aging strategies and contribute to the valorization of this underexplored Citrus ecotype. Full article
(This article belongs to the Special Issue Advances in the Chemical-Biological Knowledge of Essential Oils)
Show Figures

Graphical abstract

29 pages, 4801 KB  
Article
Claudin-1 Contributes to Gastrointestinal Stromal Tumors (GIST) Resistance to Imatinib Mesylate (IM) via Regulation of FGFR-Signaling
by Sergei Boichuk, Firyuza Bikinieva, Pavel Dunaev, Aigul Galembikova, Ekaterina Mikheeva, Elena Valeeva, Shinjit Mani, Natalia Khromova, Pavel Kopnin, Leyla Shigapova, Ruslan Deviatiiarov, Elena Shagimardanova, Sergey Ryzhkin and Alexey Sabirov
Int. J. Mol. Sci. 2025, 26(17), 8138; https://doi.org/10.3390/ijms26178138 - 22 Aug 2025
Viewed by 156
Abstract
We previously demonstrated that the activation of FGFR signaling in GIST may be a mechanism of GIST resistance to imatinib mesylate (IM). We show here that IM-resistant GIST cells lacking secondary KIT mutations overexpress claudin-1 on both transcriptional and translational levels. In contrast, [...] Read more.
We previously demonstrated that the activation of FGFR signaling in GIST may be a mechanism of GIST resistance to imatinib mesylate (IM). We show here that IM-resistant GIST cells lacking secondary KIT mutations overexpress claudin-1 on both transcriptional and translational levels. In contrast, a knockdown of CLDN1 or inhibition of its activity by PDS-0330 effectively restored GIST’s sensitivity to IM both in vitro and in vivo. This was evidenced by the increased expression of apoptotic markers (e.g., cleaved PARP and caspase-3) and the decreased proliferation rate of IM-resistant GIST T-1R cells treated with a combination of IM and PDS-0330 (or siRNA CLDN1). In concordance with these findings, a significant synergy was observed between IM and PDS-0330 in GIST T-1R cells. Importantly, decreased tumor size and weight were observed in IM-resistant GIST xenografts treated with a combination of IM and PDS-0330. Furthermore, the combined treatment of IM-resistant tumors induced an increase in intratumoral apoptosis and other changes, as defined by the histopathologic response rate. Based on the co-immunoprecipitation and immunofluorescence microscopy data, we also demonstrated the strong interaction pattern between CLDN1 and FGFR2. Of note, the inhibition or knockdown of CLDN1 effectively decreased the phosphorylation of FGFR2 and FRS-2, a well-known FGFR adaptor protein, thereby illustrating CLDN1’s ability to regulate FGFR-signaling and thereby promote FGFR-mediated survival in KIT-inhibited GIST. Consequently, CLDN1 inhibition in GIST effectively disrupted the FGFR-mediated pathway and re-sensitized tumor cells to IM. In concordance with these data, molecular profiling of CLDN1-inhibited GIST T-1R cells illustrated a significant decrease in the majority of FGFR transcripts, including FGFR2, 3, and 4. Additionally, several FGFR ligands (e.g., FGF14, -19, and -23) were also down-regulated in PDS-0330-treated GIST. Notably, exogenous FGF-2 increased CLDN1 expression in a time-dependent manner. In contrast, pan-FGFR inhibitors effectively reduced CLDN1 levels in IM-resistant GIST T-1R cells, thereby illustrating a cross-talk between CLDN1- and FGFR-mediated pathways in IM-resistant GIST. Based on subcellular fractionation and immunofluorescence microscopy data, we also observed partial relocalization of CLDN1 into the cytoplasm in IM-resistant GIST. Notably, PDS-0330 effectively abrogated this relocalization, suggesting that changes in CLDN1 subcellular distribution might also impact GIST resistance to IM. Lastly, based on our small cohort clinical study (n = 24), we observed the increased expression of CLDN1 in most “high-risk” primary GIST known to be associated with poor prognosis and aggressive behavior, thereby illustrating the prognostic value of increased CLDN1 expression in GIST and providing a further rationale to evaluate the effectiveness of CLDN1 inhibition for GIST therapy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 4377 KB  
Article
Compressive Mechanical Properties of Lattice Structures with Varied Structural Parameters Prepared by Stereolithography
by Jianhua Sun, Hai Gu, Jie Zhang, Guoqing Dai, Bin Li, Zhonggang Sun and Zulei Liang
Materials 2025, 18(16), 3898; https://doi.org/10.3390/ma18163898 - 20 Aug 2025
Viewed by 348
Abstract
The use of additive manufacturing technology for the lightweight design of complex lattice structures is becoming increasingly popular, but research on lattice structure design and strength evaluation still relies on the visual comparison of stress distributions and lacks quantitative assessment data. Given this [...] Read more.
The use of additive manufacturing technology for the lightweight design of complex lattice structures is becoming increasingly popular, but research on lattice structure design and strength evaluation still relies on the visual comparison of stress distributions and lacks quantitative assessment data. Given this perspective, this study explored the effects of structural parameters (relative density, cell size, and sample size) on the compressive strength of diamond lattice structures prepared by Stereolithography (SLA) and revealed the underlying mechanisms through stress distribution simulations and the calculation of characteristic stress distribution parameters (structural efficiency and stress concentration coefficient). The results showed that a greater relative density can increase structural efficiency, but it hardly affects the stress concentration coefficient, and smaller cell sizes and larger sample sizes increase the stress concentration coefficient without affecting the structural efficiency. Lattice structures with a greater relative density, higher structural efficiency, and a larger stress concentration coefficient exhibit higher compressive strength according to the lattice strength formula, which indicates that lattice strength is determined by the product of structural efficiency, stress concentration coefficient, relative density, and material strength. The relevant conclusions could guide the analysis of lattice stress distribution and the design of lattice structures. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 266
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

17 pages, 5121 KB  
Article
Cholesterol-Conjugated Polyion Complex Nanoparticles for Combination Delivery of Hydrophobic Paclitaxel and Hydrophilic miR-34a for Colon Cancer Therapy
by Arjaree Jobdeedamrong, Hye Jin Yoo, Hosun Jung, Chiravoot Pechyen, Sitakan Natphopsuk, Peerapat Thongnuek, Seok Jeong, Junghan Lee and Su-Geun Yang
Int. J. Mol. Sci. 2025, 26(16), 7965; https://doi.org/10.3390/ijms26167965 - 18 Aug 2025
Viewed by 305
Abstract
In recent years, combination chemotherapy with therapeutic nucleic acids has emerged as a promising strategy to enhance the effectiveness of cancer therapy. However, developing an effective co-delivery system to simultaneously transport both chemotherapeutic drugs and nucleic acids remains challenging. Herein, we fabricated cholesterol-conjugated [...] Read more.
In recent years, combination chemotherapy with therapeutic nucleic acids has emerged as a promising strategy to enhance the effectiveness of cancer therapy. However, developing an effective co-delivery system to simultaneously transport both chemotherapeutic drugs and nucleic acids remains challenging. Herein, we fabricated cholesterol-conjugated polyion complex nanoparticles (PCNs) for combination delivery of hydrophobic paclitaxel (PTX) and hydrophilic miR-34a. Cholesterol was conjugated to polyethylenimine (PEI) and hyaluronic acid (HA), producing C–PEI and C–HA, respectively. PTX was initially encapsulated within the hydrophobic core formed by the self-assembly of C–HA and C–PEI, yielding polyion complex nanoparticles (PTX@C–HA/C–PEI PCNs). Subsequently, the negatively charged miR-34a was electrostatically complexed with the cationic C–PEI moieties to generate miR-34a/PTX@C–HA/C–PEI PCNs. These PCNs exhibited a nanoscale structure with a uniform size distribution and demonstrated low cytotoxicity in colon cancer cells. Fluorescence microscopy confirmed efficient cytosolic delivery of C–HA/C–PEI PCNs in colon carcinoma cells. Furthermore, combination delivery of PTX and miR-34a using C–HA/C–PEI PCNs exhibited significantly enhanced transfection efficiency and cellular uptake for human colon cancer cells. Notably, PTX/miR-34a@C–HA/C–PEI PCNs effectively downregulated critical oncogenic targets, including Notch1, Snail1, and BCL-2, resulting in reduced cancer cell migration and proliferation. These findings indicate that PTX/miR-34a@C–HA/C–PEI PCNs hold significant potential as an innovative combination delivery platform, offering improved therapeutic efficacy for colon cancer therapy. Full article
(This article belongs to the Special Issue Fundamental and Translational Insights into Colorectal Cancer)
Show Figures

Graphical abstract

21 pages, 6478 KB  
Article
Localized Combination Therapy Using Collagen–Hydroxyapatite Bone Grafts for Simultaneous Bone Cancer Inhibition and Tissue Regeneration
by Alina Florentina Vladu, Madalina Georgiana Albu Kaya, Anton Ficai, Denisa Ficai, Raluca Tutuianu, Ludmila Motelica, Vasile Adrian Surdu, Ovidiu-Cristian Oprea, Roxana Doina Truşcă and Irina Titorencu
Polymers 2025, 17(16), 2239; https://doi.org/10.3390/polym17162239 - 18 Aug 2025
Viewed by 505
Abstract
The global burden of cancer continues to grow, with bone cancer—though rare—posing serious challenges in terms of treatment and post-surgical reconstruction. Autologous bone grafting remains the gold standard, yet limitations such as donor site morbidity drive the search for alternative solutions. Tissue engineering, [...] Read more.
The global burden of cancer continues to grow, with bone cancer—though rare—posing serious challenges in terms of treatment and post-surgical reconstruction. Autologous bone grafting remains the gold standard, yet limitations such as donor site morbidity drive the search for alternative solutions. Tissue engineering, combining biomaterials and therapeutic agents, offers promising avenues. This study focuses on the development of multifunctional scaffolds based on collagen and hydroxyapatite obtained by the freeze-drying technique and incorporating both synthetic (doxorubicin) and natural (caffeic acid) compounds for osteosarcoma treatment. These scaffolds aim to combine tumor inhibition with bone regeneration, addressing the dual need for local drug delivery and structural repair in bone cancer therapy. The characterization of these composite materials revealed that a spongious structure with interconnected pores and a homogeneous pore distribution, with pore sizes between 20 and 250 μm suitable for osteoblasts infiltration. The Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) and X-ray diffraction (XRD) analyses confirmed the formation of hydroxyapatite inside the collagen matrix. LDH and XTT assays confirmed that the antitumoral scaffolds possess great potential for osteosarcoma treatment, showing that after 3 days of culturing, the extracts containing doxorubicin-7A, both alone and in combination with caffeic acid-9A, significantly reduced the viability of cell lines to below 7% and 20%, respectively. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 3rd Edition)
Show Figures

Figure 1

14 pages, 3502 KB  
Article
Deep Learning-Based Nuclei Segmentation and Melanoma Detection in Skin Histopathological Image Using Test Image Augmentation and Ensemble Model
by Mohammadesmaeil Akbarpour, Hamed Fazlollahiaghamalek, Mahdi Barati, Mehrdad Hashemi Kamangar and Mrinal Mandal
J. Imaging 2025, 11(8), 274; https://doi.org/10.3390/jimaging11080274 - 15 Aug 2025
Viewed by 346
Abstract
Histopathological images play a crucial role in diagnosing skin cancer. However, due to the very large size of digital histopathological images (typically in the order of billion pixels), manual image analysis is tedious and time-consuming. Therefore, there has been significant interest in developing [...] Read more.
Histopathological images play a crucial role in diagnosing skin cancer. However, due to the very large size of digital histopathological images (typically in the order of billion pixels), manual image analysis is tedious and time-consuming. Therefore, there has been significant interest in developing Artificial Intelligence (AI)-enabled computer-aided diagnosis (CAD) techniques for skin cancer detection. Due to the diversity of uncertain cell boundaries, automated nuclei segmentation of histopathological images remains challenging. Automating the identification of abnormal cell nuclei and analyzing their distribution across multiple tissue sections can significantly expedite comprehensive diagnostic assessments. In this paper, a deep neural network (DNN)-based technique is proposed to segment nuclei and detect melanoma in histopathological images. To achieve a robust performance, a test image is first augmented by various geometric operations. The augmented images are then passed through the DNN and the individual outputs are combined to obtain the final nuclei-segmented image. A morphological technique is then applied on the nuclei-segmented image to detect the melanoma region in the image. Experimental results show that the proposed technique can achieve a Dice score of 91.61% and 87.9% for nuclei segmentation and melanoma detection, respectively. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

16 pages, 1217 KB  
Article
Genomic Analysis of Laccaria Genomes at High Altitude
by Yu Bao, Ye Mu, Jinghuan Hu, Mengchao Chen and Jing Xing
J. Fungi 2025, 11(8), 592; https://doi.org/10.3390/jof11080592 - 14 Aug 2025
Viewed by 415
Abstract
The Qinghai–Tibet Plateau (QTP) harbors extreme environmental conditions (e.g., low temperature, intense UV radiation, and hypoxia), presenting unique challenges for biological adaptation. However, the genetic mechanisms underlying the adaptation of macrofungi to high-altitude environments on the QTP remain poorly understood. In this study, [...] Read more.
The Qinghai–Tibet Plateau (QTP) harbors extreme environmental conditions (e.g., low temperature, intense UV radiation, and hypoxia), presenting unique challenges for biological adaptation. However, the genetic mechanisms underlying the adaptation of macrofungi to high-altitude environments on the QTP remain poorly understood. In this study, we de novo sequenced and assembled the genomes of three Laccaria species collected from the QTP, aiming to unravel the genomic basis of their adaptation to high altitudes. The genomic data indicates that the genome of high-altitude species is slightly larger than that of their low-altitude relatives, particularly due to LTR retrotransposons, which also show a negative correlation with altitude. The expanded and positively selected gene families in high-altitude species were enriched in pathways related to DNA damage repair, maintenance of cell membrane stability, signal transduction, enzyme activity, stress response, and reproduction. In contrast, contracted gene families in high-altitude species were primarily associated with disease and immune responses, likely due to the reduced pathogen pressure in extreme high-altitude environments. Additionally, species-specific genes of high-altitude Laccaria were enriched in functions related to enzyme activity, membrane stability, and signal transduction, further supporting their adaptive roles. Analysis of carbohydrate-active enzymes (CAZymes) showed distinct gene family distributions between high- and low-altitude species, with several families absent in the low-altitude species, suggesting their potential involvement in environmental adaptation. Overall, our findings indicate that genome size expansion driven by LTR retrotransposons, coordinated evolution of gene families, positive selection, and divergence in CAZymes collectively may contribute to the adaptation of Laccaria to extreme high-altitude environments. This study provides basic data into the genetic mechanisms of fungal adaptation to harsh plateau environments and lays a foundation for further research on extremophilic fungi. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

24 pages, 12879 KB  
Article
Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation
by João Gabriel Acioli de Siqueira, Ângela Leão Andrade, Rodrigo Ribeiro de Andrade, Pedro Igor Macário Viana, Lucas Resende Dutra Sousa, Paula Melo de Abreu Vieira, Gabriel Maia Vieira, Tatiane Cristine Silva de Almeida, Maximiliano Delany Martins, Samantha Roberta Machado de Oliveira, Flaviano dos Santos Martins, Marcelo Barbosa de Andrade, Rosana Zacarias Domingues, Alfredo Miranda de Goes, Guilherme Mattos Jardim Costa and Thalita Marcolan Valverde
Pharmaceutics 2025, 17(8), 1048; https://doi.org/10.3390/pharmaceutics17081048 - 12 Aug 2025
Viewed by 644
Abstract
Background/Objectives: Gamma irradiation is a promising terminal sterilization method for nanoparticle-based biomedical systems. However, its potential effects on the physicochemical properties and biological performance of multifunctional nanomaterials must be carefully evaluated. This study aimed to assess the structural integrity, sterility, and cytocompatibility [...] Read more.
Background/Objectives: Gamma irradiation is a promising terminal sterilization method for nanoparticle-based biomedical systems. However, its potential effects on the physicochemical properties and biological performance of multifunctional nanomaterials must be carefully evaluated. This study aimed to assess the structural integrity, sterility, and cytocompatibility of magnetic nanoparticles (MNPs) and bioactive-glass-coated magnetic nanoparticles (MNPBGs), both based on magnetite (Fe3O4), after gamma irradiation. Methods: MNPs and MNPBGs were synthesized and subjected to gamma irradiation at 25 kGy, with additional doses explored in preliminary evaluations. Physicochemical characterizations were performed using XRD, TEM, SAED, and Raman spectroscopy. FTIR analyses were conducted on bioactive glass (BG) controls without magnetite. Sterility was evaluated via microbiological assays. Cytocompatibility and nitric oxide (NO) production were assessed using RAW 264.7 macrophages and Saos-2 osteosarcoma cells. Prussian blue staining was used to evaluate cellular uptake. Results: Gamma irradiation preserved the crystal structure, morphology, and size distribution of the nanoparticles. FTIR revealed only minor changes in the silicate network of BG, such as reduced intensity and slight shifting of Si-O-Si and Si-O-NBO bands, indicating limited radiation-induced structural rearrangement without affecting the material’s stability or cytocompatibility. Microbiological assays confirmed complete inhibition of microbial growth. All irradiated samples exhibited high cytocompatibility, with MNPBGs demonstrating enhanced biological responses. Notably, MNPBGs induced a more pronounced NO production in macrophages. Cellular uptake of nanoparticles by Saos-2 cells remained unaffected after irradiation. Conclusions: Gamma irradiation at 25 kGy is an effective sterilization strategy that maintains the structural and functional integrity of MNPs and MNPBGs. These findings support their safe use in sterile biomedical applications, particularly for bone-related therapies involving immunomodulation and drug delivery, with potential relevance for cancer treatment strategies such as osteosarcoma. Full article
Show Figures

Figure 1

24 pages, 4513 KB  
Article
Anticancer Activity of Paclitaxel-Loaded Mesoporous Silica Nanoparticles in B16F10 Melanoma-Bearing Mice
by Jihoon Lee, Jung Mo Kim, Yeon-Ju Baek, Hyojeung Kang, Min-Koo Choi and Im-Sook Song
Pharmaceutics 2025, 17(8), 1042; https://doi.org/10.3390/pharmaceutics17081042 - 11 Aug 2025
Viewed by 479
Abstract
Background/Objectives: Paclitaxel (PTX) faces clinical limitations in melanoma treatment due to poor solubility, P-glycoprotein (P-gp)-mediated efflux, and systemic toxicity. This study aimed to develop PTX-loaded mesoporous silica nanoparticles (PS), which would be co-administered with curcumin (CUR) and D-α-tocopherol polyethylene glycol 1000 succinate [...] Read more.
Background/Objectives: Paclitaxel (PTX) faces clinical limitations in melanoma treatment due to poor solubility, P-glycoprotein (P-gp)-mediated efflux, and systemic toxicity. This study aimed to develop PTX-loaded mesoporous silica nanoparticles (PS), which would be co-administered with curcumin (CUR) and D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) to enhance intracellular accumulation and improve anti-tumor activity. CUR and TPGS were integrated with PS to inhibit P-gp-mediated PTX-efflux, to enhance the intracellular accumulation of PTX, and to improve anti-tumor activity in B16F10 cells. Methods: The physicochemical properties of PS were analyzed using standard characterization methods. The antitumor activity of PS co-administered with CUR and TPGS was evaluated using two-dimensional (2D) culture and three-dimensional (3D) spheroid assays, and also assessed in B16F10 tumor-bearing mice. The therapeutic mechanism of the PS combination was compared using apoptosis and microtubule disruption through flow cytometry and confocal microscopy. The pharmacokinetics and biodistribution of the PS combination were compared in B16F10 tumor-bearing mice. Results: PS formulations exhibited amorphous transformation with an approximate particle size of 200 nm. PS co-administered with CUR and TPGS reduced the IC50 to 178.7 nM compared with 283.3 nM for free PTX in B16F10 melanoma cells and achieved significant tumor growth inhibition in B16F10 melanoma spheroid culture. The intracellular accumulation of PTX correlated with its therapeutic efficacy. Flow cytometry revealed a significant induction of both early and late apoptosis in cells treated with the PS + CUR + TPGS combination, while confocal imaging confirmed enhanced microtubule disruption. In B16F10 tumor-bearing mice, PS co-administered with CUR and TPGS demonstrated higher and selective distribution of PTX into tumor tissue without affecting systemic exposure of PTX in B16F10-xenografted mice. Conclusions: PS + CUR + TPGS combination enhanced PTX delivery by improving solubility and enhancing distribution to tumor tissue through P-gp inhibition, thereby increasing its therapeutic potential. The combination of CUR and TPGS offers synergistic apoptosis induction and microtubule disruption. Thus, the PS + CUR + TPGS combination represents a promising approach for treating drug-resistant melanomas. Full article
(This article belongs to the Special Issue Targeted Drug Delivery to Improve Cancer Therapy, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 1115 KB  
Article
Widespread Presence of SPX and Its Potential Role as a Phosphorus Nutrient Regulator in Dinoflagellates
by Jiashun Li, Jingtian Wang, Xiaoyu Wang, Kaidian Zhang and Senjie Lin
Microorganisms 2025, 13(8), 1867; https://doi.org/10.3390/microorganisms13081867 - 10 Aug 2025
Viewed by 317
Abstract
SPX domain-containing proteins (SPXc) are crucial for regulating phosphorus (P) homeostasis in plants. Recently, the SPX gene was identified in the diatom model Phaeodactylum tricornutum and shown to serve as a negative regulator of P acquisition. Whether SPXc occurs in dinoflagellates is unclear. [...] Read more.
SPX domain-containing proteins (SPXc) are crucial for regulating phosphorus (P) homeostasis in plants. Recently, the SPX gene was identified in the diatom model Phaeodactylum tricornutum and shown to serve as a negative regulator of P acquisition. Whether SPXc occurs in dinoflagellates is unclear. Here, we report the presence and potential functions of genes encoding SPXc in dinoflagellates (dino-SPXc). Four classes of SPXc were identified in dinoflagellates, including the three known classes—the stand-alone SPX, SPX-EXS, and SPX-VTC—and SPX-other, with SPX and SPX-EXS being dominant. Using the TARA Oceans database, we investigated the taxonomic and geographic distributions of dino-SPXc and found variations in dino-SPXc expression among size classes of dinoflagellates. The harmful algal bloom-causative species Prorocentrum shikokuense possesses all four classes of SPXc proteins, showing a fluctuating expression pattern under different nutrient conditions and during different phases of the cell cycle and algal bloom. In addition, the SPXc genes in Symbiodiniaceae respond not only to P stress but also to thermal variations. These results are consistent with a role of dino-SPXc in maintaining P homeostasis in dinoflagellates and suggest the importance of SPX-related genes in enabling dinoflagellates to sustain population growth in nutrient-variable oceans, warranting further research. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 2377 KB  
Article
Dependence of Bubble Size on Magnesite Flotation Recovery Using Sodium Oleate (NaOL) with Different Frothers
by Khandjamts Batjargal, Onur Güven, Orhan Ozdemir, Feridun Boylu and Mehmet Sabri Çelik
Minerals 2025, 15(8), 849; https://doi.org/10.3390/min15080849 - 9 Aug 2025
Viewed by 251
Abstract
Developments of new research tools in flotation studies, including bubble–particle attachment time efficiency and dynamic froth analysis, can help improve our understanding of particle–bubble interactions in flotation processes. In particular, the selection of new collectors and frothers, and their mixtures can provide a [...] Read more.
Developments of new research tools in flotation studies, including bubble–particle attachment time efficiency and dynamic froth analysis, can help improve our understanding of particle–bubble interactions in flotation processes. In particular, the selection of new collectors and frothers, and their mixtures can provide a wide distribution of bubble sizes at their respective concentrations. In the literature, several studies have reported the effect of different frothers and collector mixtures on bubble characteristics like bubble size and critical coalescence concentration (CCC). The general trend obtained from these studies showed that the addition of frothers, along with collectors, which also act as frothers during flotation, resulted in finer bubbles and required lower concentrations of frothers, which in turn positively affected the flotation recoveries. In this study, an attempt was made to study fine-sized magnesite in the presence of sodium oleate (NaOL) and five different types of frothers (PPG600, PPG400, BTPG, BDPG, and MIBC). Bubble–particle attachment time with different sized capillary tubes and dynamic froth analysis values in a liquid–air system, along with flotation recoveries in a micro-flotation cell, were interpreted to show possible correlations and provide an optimum bubble/particle size ratio in the presence of different frothers. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Graphical abstract

24 pages, 5480 KB  
Article
Liposomal Co-Delivery of Acteoside, CBD, and Naringenin: A Synergistic Strategy Against Gliomas
by Jagoda Szkudlarek, Ludwika Piwowarczyk, Violetta Krajka-Kuźniak, Aleksandra Majchrzak-Celińska, Szymon Tomczak, Mikołaj Baranowski, Rafał Pietrzyk, Aneta Woźniak-Braszak and Anna Jelińska
Pharmaceutics 2025, 17(8), 1026; https://doi.org/10.3390/pharmaceutics17081026 - 7 Aug 2025
Viewed by 459
Abstract
Background/Objectives: Adult-type diffuse gliomas, including astrocytoma and glioblastoma multiforme (GBM), are brain tumors with a very poor prognosis. While current treatment options for glioma patients are not providing satisfactory outcomes, research indicates that natural compounds could serve as alternative treatments. However, their [...] Read more.
Background/Objectives: Adult-type diffuse gliomas, including astrocytoma and glioblastoma multiforme (GBM), are brain tumors with a very poor prognosis. While current treatment options for glioma patients are not providing satisfactory outcomes, research indicates that natural compounds could serve as alternative treatments. However, their low bioavailability requires nanotechnology solutions, such as liposomes. Methods: In this study, we propose the co-encapsulation of acteoside (ACT) with other natural compounds, cannabidiol (CBD) or naringenin (NG), in a cationic liposomal nanoformulation consisting of DOTAP and POPC lipids, which were prepared using the dry lipid film method. The liposomes were characterized by their physicochemical properties, including particle size, zeta potential, and polydispersity index (PDI), with additional analyses performed using 1H Nuclear Magnetic Resonance (NMR). Furthermore, biological experiments were performed with U-87 MG astrocytoma and U-138 MG GBM cell lines and non-cancerous MRC-5 lung fibroblasts using the MTT assay and evaluating the expression of Bax and Bcl-xL to evaluate their potential as anticancer agents. Conclusions: The IC50 values for the nanoformulations in U-138 MG cells at 48 h were 6 µM for ACT + CBD and 5 µM for ACT + NG. ACT and CBD or NG demonstrated a potential synergistic effect against GBM in a liposomal formulation. Notably, treatment with ACT + CBD (5 µM) and ACT + NG (5 µM) liposomal formulations significantly upregulated Bax protein level in U-138 cells at both 24 and 48 h. In parallel, ACT + CBD (5 µM) also modulated Bcl-xL protein level in both U-138 MG and U-87 MG cell lines at the same time points. The obtained nanoformulations were homogeneous and stable for 21 days, evidenced by a narrow particle size distribution, a low polydispersity index (PDI) < 0.3, and a positive zeta potential. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop