Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis
2.2.1. Magnetic Nanoparticles
2.2.2. Bioactive Glass and Coating
2.3. Physicochemical Characterizations:
Structural Characterization and Morphological Analysis
2.4. Biological Assays
2.4.1. Microbial Assays
Microorganisms and Culture Conditions
Sample Preparation and Irradiation
Microbial Growth and Colony Counting
2.4.2. In Vitro Assays Using Eukaryotic Cell Lines
RAW 264.7 Cells
Saos-2 Cells
2.4.3. Sample Preparation
2.4.4. Cell Viability Assay
2.4.5. Nitric Oxide Production Assay
2.4.6. Prussian Blue Staining for Intracellular Iron Detection
2.4.7. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Evaluation
3.2. Physicochemical Characterizations
3.2.1. Fourier-Transform Infrared Spectroscopy
3.2.2. X-Ray Diffraction
3.2.3. Raman Spectroscopy
3.2.4. Scanning Electron Microscopy
3.2.5. Transmission Electron Microscopy
3.3. In Vitro Assays
3.3.1. Assessment of Saos-2 and RAW 264.7 Responses: Cytocompatibility and Nitric Oxide Production
3.3.2. Prussian Blue Staining for Intracellular Iron Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BG | Bioactive glass |
BHI | Brain–heart infusion |
EDS | Energy-dispersive X-ray spectroscopy |
FBS | Fetal bovine serum |
FTIR | Fourier-transform infrared |
HCl | Hydrochloric acid |
HRTEM | High-resolution TEM |
IFN-γ | Interferon-gamma |
iNOS | Inducible nitric oxide synthase |
ISO | International Organization for Standardization |
kGy | Kilogray |
LPS | Lipopolysaccharides |
MNP | Magnetic nanoparticles |
MNPBG | Bioactive glass-coated magnetic nanoparticles |
MO | Microorganism species |
MTT | (4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide |
PBS | Phosphate-buffered saline |
RPMI | Roswell Park Memorial Institute (medium) |
SAL | Sterility assurance level |
SAED | Selected area electron diffraction |
SD | Standard deviation |
SDD | Silicon drift detector |
SDS | Sodium lauryl sulfate |
SEM | Scanning electron microscopy |
Si | Silicon |
TEM | Transmission electron microscopy |
TEOS | Tetraethyl orthosilicate |
TEP | Triethyl phosphate |
TMAOH | Tetramethylammonium hydroxide |
XRD | X-ray diffraction |
YPG | Yeast extract, peptone, glucose (dextrose) |
References
- Jadhav, V.; Roy, A.; Kaur, K.; Rai, A.K.; Rustagi, S. Recent advances in nanomaterial-based drug delivery systems. Nano-Struct. Nano-Objects 2024, 37, 101103. [Google Scholar] [CrossRef]
- McDermott, S.; Guimaraes, A.R. Magnetic Nanoparticles in the Imaging of Tumor Angiogenesis. Appl. Sci. 2012, 2, 525–534. [Google Scholar] [CrossRef]
- Kossatz, S.; Grandke, J.; Couleaud, P.; Latorre, A.; Aires, A.; Crosbie-Staunton, K.; Ludwig, R.; Dähring, H.; Ettelt, V.; Lazaro-Carrillo, A.; et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, B.; MacDonald, D.; Jasiński, K.; Cheng, F.-Y.; Tomanek, B. Application of H2N-Fe3O4 Nanoparticles for Prostate Cancer Magnetic Resonance Imaging in an Animal Model. Int. J. Mol. Sci. 2024, 25, 10334. [Google Scholar] [CrossRef] [PubMed]
- Valverde, T.M.; Santos, V.M.R.D.; Viana, P.I.M.; Costa, G.M.J.; de Goes, A.M.; Sousa, L.R.D.; Xavier, V.F.; Vieira, P.M.A.; Silva, D.L.; Domingues, R.Z.; et al. Novel Fe3O4 Nanoparticles with Bioactive Glass-Naproxen Coating: Synthesis, Characterization, and In Vitro Evaluation of Bioactivity. Int. J. Mol. Sci. 2024, 25, 4270. [Google Scholar] [CrossRef]
- Andronescu, E.; Ficai, M.; Voicu, G.; Ficai, D.; Maganu, M.; Ficai, A. Synthesis and characterization of collagen/hydroxyapatite: Magnetite composite material for bone cancer treatment. J. Mater. Sci. Mater. Med. 2010, 21, 2237–2242. [Google Scholar] [CrossRef]
- Gomes, A.A.; Valverde, T.M.; Machado, V.O.; Silva, E.N.; Fagundes, D.A.; Oliveira, F.P.; Freitas, E.T.F.; Ardisson, J.D.; Ferreira, J.M.F.; Oliveira, J.A.C.; et al. Heating Capacity and Biocompatibility of Hybrid Nanoparticles for Magnetic Hyperthermia Treatment. Int. J. Mol. Sci. 2024, 25, 493. [Google Scholar] [CrossRef]
- Taşar, C.; Ercan, B. Fabrication and biological properties of magnetic bioactive glass nanoparticles. Ceram. Int. 2023, 49, 12925–12933. [Google Scholar] [CrossRef]
- Autefage, H.; Allen, F.; Tang, H.M.; Kallepitis, C.; Gentleman, E.; Reznikov, N.; Nitiputri, K.; Nommeots-Nomm, A.; O’Donnell, M.D.; Lange, C.; et al. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials 2019, 209, 152–162. [Google Scholar] [CrossRef]
- Li, Y.; Fujita, M.; Boraschi, D. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results. Front. Immunol. 2017, 8, 472. [Google Scholar] [CrossRef]
- Sagy, M.; Al-Qaqaa, Y.; Kim, P. Definitions and Pathophysiology of Sepsis. Curr. Probl. Pediatr. Adolesc. Health Care 2013, 43, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.C.S.; Júnior, P.A.M.; Santos, J.V.J.; Andrade, V.B.; Ladeira, L.C.D.; Vieira, M.A.R.; Junior, A.C.; Caliari, M.V.; Ladeira, L.O.; Ferreira, A.J. Carbon nanotubes functionalized with sodium hyaluronate: Sterilization, osteogenic capacity and renal function analysis. Life Sci. 2020, 248, 117460. [Google Scholar] [CrossRef]
- Smagina, V.; Yudaev, P.; Kuskov, A.; Chistyakov, E. Polymeric Gel Systems Cytotoxicity and Drug Release as Key Features for their Effective Application in Various Fields of Addressed Pharmaceuticals Delivery. Pharmaceutics 2023, 15, 830. [Google Scholar] [CrossRef] [PubMed]
- Rojas, G.G.F.; Saucedo, F.L.; Bucio, E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiat. Phys. Chem. 2020, 169, 107962. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, B.; Wang, Y.; Liu, C.; Shen, C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater. Sci. Eng. C 2019, 105, 110041. [Google Scholar] [CrossRef]
- Messerian, K.O.; Zverev, A.; Kramarczyk, J.F.; Zydney, A.L. Development of a new modeling framework to describe sterile filtration of mRNA-Lipid nanoparticles. J. Membr. Sci. 2024, 706, 122965. [Google Scholar] [CrossRef]
- Rachmawati, P.; Susanto, S.; Christian, Y.E. Impact of sterilization method on the system performance of lipid-based novel drug delivery. Int. J. Pharm. 2025, 674, 125486. [Google Scholar] [CrossRef]
- Galante, R.; Rediguieri, C.F.; Kikuchi, I.S.; Vasquez, P.A.S.; Colaço, R.; Serro, A.P.; Pinto, T.J.A. About the Sterilization of Chitosan Hydrogel Nanoparticles. PLoS ONE 2016, 11, e0168862. [Google Scholar] [CrossRef]
- Bernal-Chávez, S.A.; Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Giraldo-Gomez, D.M.; Figueroa-Gonzalez, G.; Reyes-Hernandez, O.D.; Carmen, M.G.-D.; González-Torres, M.; Cortés, H.; Leyva-Gómez, G. Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications. Molecules 2021, 26, 2068. [Google Scholar] [CrossRef]
- Tapia-Guerrero, Y.S.; Del Prado-Audelo, M.L.; Borbolla-Jiménez, F.V.; Gomez, D.M.G.; García-Aguirre, I.; Colín-Castro, C.A.; Morales-González, J.A.; Leyva-Gómez, G.; Magaña, J.J. Effect of UV and Gamma Irradiation Sterilization Processes in the Properties of Different Polymeric Nanoparticles for Biomedical Applications. Materials 2020, 13, 1090. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.L.; Cavalcante, L.C.D.; Fabris, J.D.; Pereira, M.C.; Fernandez-Outon, L.E.; Pedersoli, D.C.; Ardisson, J.D.; Domingues, R.Z.; Ferreira, J.M.F. Magnetically induced heating by iron oxide nanoparticles dispersed in liquids of different viscosities. Ceram. Int. 2020, 46, 21496–21504. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Ferraz, F.S.; López, J.L.; Lacerda, S.M.S.N.; Procópio, M.S.; Figueiredo, A.F.A.; Martins, E.M.N.; Guimarães, P.P.G.; Ladeira, L.O.; Kitten, G.T.; Dias, F.F.; et al. Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles. J. Inorg. Biochem. 2020, 206, 111017. [Google Scholar] [CrossRef]
- Bitonto, V.; Garello, F.; Scherberich, A.; Filippi, M. Prussian blue staining to visualize iron oxide nanoparticles. Methods Mol. Biol. 2023, 2566, 321–332. [Google Scholar] [CrossRef]
- ISO 11137-2; Sterilization of Health Care Products-Radiation-Part 2: Establishing the Sterilization Dose. International Organization for Standardization: Geneva, Switzerland, 2013.
- Serra, J.; González, P.; Liste, S.; Chiussi, S.; León, B.; Pérez-Amor, M.; Ylänen, H.O.; Hupa, M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J. Mater. Sci. Mater. Med. 2002, 13, 1221–1225. [Google Scholar] [CrossRef]
- Pai, P.G.; Chao, S.S.; Takagi, Y.; Lucovsky, G. Infrared spectroscopic study of SiO x films produced by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 1986, 4, 689–694. [Google Scholar] [CrossRef]
- Farag, M.M.; Abd-Allah, W.M.; Ibrahim, A.M. Effect of gamma irradiation on drug releasing from nano-bioactive glass. Drug Deliv. Transl. Res. 2015, 5, 63–73. [Google Scholar] [CrossRef]
- Laopaiboon, R.; Bootjomchai, C. Radiation effects on structural properties of glass by using ultrasonic techniques and FTIR spectroscopy: A comparison between local sand and SiO2. Ann. Nucl. Energy 2014, 68, 220–227. [Google Scholar] [CrossRef]
- León, M.; Martín, P.; Ibarra, A.; Hodgson, E.R. Gamma irradiation induced defects in different types of fused silica. J. Nucl. Mater. 2009, 386–388, 1034–1037. [Google Scholar] [CrossRef]
- Tiama, T.M.; Farag, M.M. Effect of gamma irradiation on the bioactivity of silicate bioglass containing strontium oxide synthesized by Sol-Gel route. Egypt. J. Chem. 2024, 67, 415–425. [Google Scholar] [CrossRef]
- Rai, V.N.; Rajput, P.; Jha, S.N.; Bhattacharyya, D.; Shekhar, B.N.R.; Deshpande, U.P.; Shripathi, T. Effect of gamma irradiation on X-ray absorption and photoelectron spectroscopy of Nd-doped phosphate glass. Synchrotron Radiat. 2016, 23, 1424–1432. [Google Scholar] [CrossRef]
- Fayad, A.M.; Abd-Allah, W.M.; Moustafa, F.A. Effect of Gamma Irradiation on Structural and Optical Investigations of Borosilicate Glass Doped Yttrium Oxide. Silicon 2018, 10, 799–809. [Google Scholar] [CrossRef]
- Darbandi, M.; Stromberg, F.; Landers, J.; Reckers, N.; Sanyal, B.; Keune, W.; Wende, H. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 2012, 45, 195001. [Google Scholar] [CrossRef]
- Gorski, C.A.; Scherer, M.M. Determination of nanoparticulate magnetite stoichiometry by Mossbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review. Am. Mineral. 2010, 95, 1017–1026. [Google Scholar] [CrossRef]
- Magela, G.; Blanco-Andujar, C.; De Grave, E.; Pankhurst, Q.A. Magnetic nanoparticles for in vivo use: A critical assessment of their composition. J. Phys. Chem. B 2014, 118, 11738–11746. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef]
- Hong, R.Y.; Pan, T.T.; Han, Y.P.; Li, H.Z.; Ding, J.; Han, S. Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids. J. Magn. Magn. Mater. 2007, 310, 37–47. [Google Scholar] [CrossRef]
- Gokhale, S.; Lamb, S.; Kumari, N.; Singh, B.; Avasthi, D.K.; Kulkarni, S.K. Modifying the morphology and magnetic properties of magnetite nanoparticles using swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. B 2014, 333, 64–68. [Google Scholar] [CrossRef]
- Buckley, P.R.; McKinley, G.H.; Wilson, T.S.; Small, W.; Benett, W.J.; Bearinger, J.P.; McElfresh, M.W.; Maitland, D.J. Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans. Biomed. Eng. 2006, 53, 2075–2083. [Google Scholar] [CrossRef]
- Maric, I.; Drazic, G.; Stefanic, G.; Zadro, K.; Gotic, M.; Jurkin, T. Characterization of radiolytically synthesized feroxyhyte and oxidized magnetite nanoparticles. Mater. Charact. 2020, 159, 110038. [Google Scholar] [CrossRef]
- Abedini, A.; Larki, F.; Saion, E.; Zakaria, A.; Hussein, M.Z. Influence of dose and ion concentration on formation of binary Al-Ni alloy nanoclusters. Radiat. Phys. Chem. 2012, 81, 1653–1658. [Google Scholar] [CrossRef]
- Abedini, A.; Daud, A.R.; Hamid, M.A.A.; Othman, N.K. Radiolytic Formation of Fe3O4 Nanoparticles: Influence of Radiation Dose on Structure and Magnetic Properties. PLoS ONE 2014, 9, e90055. [Google Scholar] [CrossRef] [PubMed]
- Brovarone, C.V.; Verné, E.; Appendino, P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 2006, 17, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Chourpa, I.; Douziech-Eyrolles, L.; Ngaboni-Okassa, L.; Fouquenet, J.F.; Cohen-Jonathan, S.; Soucé, M.; Marchais, H.; Dubois, P. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 2005, 130, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.R.; Yanful, E.K.; Pratt, A.R. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles. J. Hazard. Mater. 2012, 235–236, 246–256. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef]
- Gao, C.; Gao, Q.; Bao, X.; Li, Y.; Teramoto, A.; Abe, K. Preparation and In Vitro Bioactivity of Novel Mesoporous Borosilicate Bioactive Glass Nanofibers. J. Am. Ceram. Soc. 2011, 94, 2841–2845. [Google Scholar] [CrossRef]
- Li, G.D.; Zhou, D.L.; Lin, Y.; Pan, T.H.; Chen, G.S.; Yin, Q.D. Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater. Sci. Eng. C 2010, 30, 148–153. [Google Scholar] [CrossRef]
- Wang, C.M.; Baer, D.R.; Amonette, J.E.; Engelhard, M.H.; Antony, J.J.; Qiang, Y. Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles. Ultramicroscopy 2007, 108, 43–51. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv. Sci. Technol. 2021, 61, 102316. [Google Scholar] [CrossRef]
- Kraus, S.; Arbib, S.; Rukenstein, P.; Shoval, I.; Khandadash, R.; Shalev, O. Macrophage Responses to Multicore Encapsulated Iron Oxide Nanoparticles for Cancer Therapy. ACS Omega 2025, 10, 3535–3550. [Google Scholar] [CrossRef] [PubMed]
- McQuillan, D.J.; Richardson, M.D.; Bateman, J.F. Matrix Deposition by a Calcifying Human Osteogenic Sarcoma Cell Line (SAOS-2). Bone 1995, 16, 415–426. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5; Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. International Organisation for Standardization: Geneva, Switzerland, 2009.
- Bakir, M.; Dawalibi, A.; Mufti, M.A.; Behiery, A.; Mohammad, K.S. Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor-Bone Microenvironment. Pharmaceutics 2025, 17, 603. [Google Scholar] [CrossRef]
- Syahida, A.; Israf, D.A.; Permana, D.; Lajis, N.H.; Khozirah, S.; Afiza, A.W.; Khaizurin, T.A.; Somchit, M.N.; Sulaiman, M.R.; Nasaruddin, A.A. Atrovirinone inhibits pro-inflammatory mediator release from murine macrophages and human whole blood. Immunol. Cell Biol. 2006, 84, 250–258. [Google Scholar] [CrossRef]
- Abramson, S.B.; Amin, A.R.; Clancy, R.M.; Attur, M. The role of nitric oxide in tissue destruction. Best. Pract. Res. Clin. Rheumatol. 2001, 15, 831–845. [Google Scholar] [CrossRef]
- Miao, X.; Leng, X.; Zhang, Q. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research. Int. J. Mol. Sci. 2017, 18, 336. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Chang, J. Calcium silicate enhances immunosuppressive function of MSCs to indirectly modulate the polarization of macrophages. Regen. Biomater. 2021, 8, rbab056. [Google Scholar] [CrossRef]
- Zhang, D.; Dang, Y.; Deng, R.; Ma, Y.; Wang, J.; Ao, J.; Wang, X. Research Progress of Macrophages in Bone Regeneration. J. Tissue Eng. Regen. Med. 2023, 1, 1512966. [Google Scholar] [CrossRef]
- Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef]
- Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986–994. [Google Scholar] [CrossRef]
- Yao, H.; Luo, J.; Deng, Y.; Li, Z.; Wei, J. Alginate-modified mesoporous bioactive glass and its drug delivery, bioactivity, and osteogenic properties. Front. Bioeng. Biotechnol. 2022, 10, 994925. [Google Scholar] [CrossRef]
Sample (Dose) | Candida albicans | Geobacillus stearothermophilus |
---|---|---|
MNP (25 kGγ) | (−) | (−) |
MNPBG (25 kGγ) | (−) | (−) |
MNP (20 kGγ) | (−) | (−) |
MNPBG (20 kGγ) | (−) | (+) |
MNP (15 kGγ) | (−) | (−) |
MNPBG (15 kGγ) | (−) | (+) |
MNP (10 kGγ) | (+) | (+) |
MNPBG (10 kGγ) | (−) | (+) |
MNP (0 kGγ) | (+) | (+) |
MNPBG (0 kGγ) | (+) | (+) |
Parameter | Samples | |||
---|---|---|---|---|
MNP (0 kGy) | MNP (25 kGy) | MNPBG (0 kGy) | MNPBG (25 kGy) | |
a = b = c | 8.351 ± 0.003 | 8.355 ± 0.003 | 8.350 ± 0.004 | 8.356 ± 0.003 |
RP | 7.09 | 10.2 | 5.60 | 6.54 |
RWP | 9.36 | 13.6 | 7.09 | 8.38 |
S | 0.72 | 1.07 | 0.74 | 1.15 |
RB | 1.73 | 4.18 | 4.07 | 6.61 |
RF | 1.47 | 2.59 | 2.25 | 5.13 |
Chi2 | 0.513 | 1.15 | 0.551 | 0.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acioli de Siqueira, J.G.; Andrade, Â.L.; de Andrade, R.R.; Viana, P.I.M.; Sousa, L.R.D.; Vieira, P.M.d.A.; Vieira, G.M.; Almeida, T.C.S.d.; Martins, M.D.; de Oliveira, S.R.M.; et al. Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation. Pharmaceutics 2025, 17, 1048. https://doi.org/10.3390/pharmaceutics17081048
Acioli de Siqueira JG, Andrade ÂL, de Andrade RR, Viana PIM, Sousa LRD, Vieira PMdA, Vieira GM, Almeida TCSd, Martins MD, de Oliveira SRM, et al. Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation. Pharmaceutics. 2025; 17(8):1048. https://doi.org/10.3390/pharmaceutics17081048
Chicago/Turabian StyleAcioli de Siqueira, João Gabriel, Ângela Leão Andrade, Rodrigo Ribeiro de Andrade, Pedro Igor Macário Viana, Lucas Resende Dutra Sousa, Paula Melo de Abreu Vieira, Gabriel Maia Vieira, Tatiane Cristine Silva de Almeida, Maximiliano Delany Martins, Samantha Roberta Machado de Oliveira, and et al. 2025. "Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation" Pharmaceutics 17, no. 8: 1048. https://doi.org/10.3390/pharmaceutics17081048
APA StyleAcioli de Siqueira, J. G., Andrade, Â. L., de Andrade, R. R., Viana, P. I. M., Sousa, L. R. D., Vieira, P. M. d. A., Vieira, G. M., Almeida, T. C. S. d., Martins, M. D., de Oliveira, S. R. M., Martins, F. d. S., Andrade, M. B. d., Domingues, R. Z., Goes, A. M. d., Costa, G. M. J., & Valverde, T. M. (2025). Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation. Pharmaceutics, 17(8), 1048. https://doi.org/10.3390/pharmaceutics17081048