ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification of Recombinant CTC-445.2d
2.2. Production of Nafamostat-Loaded Nanoparticles
2.3. Conjugation of ACE2 Decoy to NM-PP NPs
2.4. Nanoparticle Characterization
2.4.1. Physicochemical Properties
2.4.2. Encapsulation and Conjugation Efficiency
2.4.3. In Vitro Drug Release
2.5. Biological Evaluation
2.5.1. SARS-CoV-2 Pseudovirus Neutralization
2.5.2. Cytotoxicity Assay
2.5.3. Cellular Uptake of Nanoparticles
2.6. Statistical Analysis
3. Results
3.1. Preparation and Characterization of Nafamostat-Loaded Nanoparticles
3.2. Preparation and Characterization of ACE2 Decoy-Modified NM-PP NPs
3.2.1. Conjugation of CTC-445.2d Protein to NM-PP NPs
3.2.2. Conjugation of Ultrashort Peptide (SI5α) to NM-PP NPs
3.3. Neutralization of SARS-CoV-2 Pseudovirus by Modified NM-PP NPs
3.4. Nanoparticles-Cell Interaction Studies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | angiotensin-converting enzyme 2 |
NM | nafamostat |
TMPRSS2 | transmembrane serine protease 2 |
NP | nanoparticle |
PLGA-PEG | Poly(lactide-co-glycolide)-poly (ethylene glycol) |
IPTG | isopropyl-β-D-thiogalactopyranoside |
EDC | 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride |
NHS | N-Hydroxysuccinimide |
PDI | polydispersity index |
References
- Jian, F.; Wang, J.; Yisimayi, A.; Song, W.; Xu, Y.; Chen, X.; Niu, X.; Yang, S.; Yu, Y.; Wang, P.; et al. Evolving antibody response to SARS-CoV-2 antigenic shift from XBB to JN.1. Nature 2025, 637, 921–929. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, S.; Luo, Y.; Peng, J.; Guo, J.; Dong, A.; Xu, Z.; Li, J.; Lei, L.; He, L.; et al. Predicting the transmission dynamics of novel coronavirus infection in Shanxi province after the implementation of the “Class B infectious disease Class B management” policy. Front. Public Health 2023, 11, 1322430. [Google Scholar] [CrossRef] [PubMed]
- Dinata, R.; Baindara, P.; Mandal, S.M. Evolution of Antiviral Drug Resistance in SARS-CoV-2. Viruses 2025, 17, 722. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Makary, M.A. An Evidence-Based Approach to Covid-19 Vaccination. N. Engl. J. Med. 2025, 392, 2484–2486. [Google Scholar] [CrossRef] [PubMed]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell Infect. Microbiol. 2020, 10, 587269. [Google Scholar] [CrossRef]
- Guo, J.; Luo, Y.; Ma, Y.; Xu, S.; Li, J.; Wang, T.; Lei, L.; He, L.; Yu, H.; Xie, J. Assessing the impact of vaccination and medical resource allocation on infectious disease outbreak management: A case study of COVID-19 in Taiyuan City. Front. Public Health 2024, 12, 1368876. [Google Scholar] [CrossRef]
- Cohen, M.S.; Brown, E.R. Rebound of COVID-19 With Nirmatrelvir-Ritonavir Antiviral Therapy. Ann. Intern. Med. 2023, 176, 1672–1673. [Google Scholar] [CrossRef]
- Syed, Y.Y. Molnupiravir: First Approval. Drugs 2022, 82, 455–460. [Google Scholar] [CrossRef]
- Tian, L.; Pang, Z.; Li, M.; Lou, F.; An, X.; Zhu, S.; Song, L.; Tong, Y.; Fan, H.; Fan, J. Molnupiravir and Its Antiviral Activity Against COVID-19. Front. Immunol. 2022, 13, 855496. [Google Scholar] [CrossRef]
- Syed, Y.Y. Ensitrelvir Fumaric Acid: First Approval. Drugs 2024, 84, 721–728. [Google Scholar] [CrossRef]
- Van Egeren, D.; Stoddard, M.; White, L.F.; Hochberg, N.S.; Rogers, M.S.; Zetter, B.; Joseph-McCarthy, D.; Chakravarty, A. Vaccines Alone Cannot Slow the Evolution of SARS-CoV-2. Vaccines 2023, 11, 853. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Franchini, M.; Maggi, F.; Shoham, S. COVID-19 therapeutics. Clin. Microbiol. Rev. 2024, 37, e0011923. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.M.; Huang, Q.Y.J.; Zvornicanin, S.N.; Schneider-Nachum, G.; Shaqra, A.M.; Yilmaz, N.K.; Moquin, S.A.; Dovala, D.; Schiffer, C.A.; Bolon, D.N.A. Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease. ACS Infect. Dis. 2023, 9, 1372–1386. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Ann. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef]
- Yu, S.; Zheng, X.; Zhou, B.; Li, J.; Chen, M.; Deng, R.; Wong, G.; Lavillette, D.; Meng, G. SARS-CoV-2 spike engagement of ACE2 primes S2’ site cleavage and fusion initiation. Proc. Natl. Acad. Sci. USA 2022, 119, e2111199119. [Google Scholar] [CrossRef]
- Nawrath, P.; Wrobel, A.G. Hold your horses: The receptor-binding domains of SARS-CoV-2, SARS-CoV, and hCoV-NL63 bind equine ACE2. Structure 2022, 30, 1367–1368. [Google Scholar] [CrossRef]
- Ning, T.; Liu, S.; Xu, J.; Yang, Y.; Zhang, N.; Xie, S.; Min, L.; Zhang, S.; Zhu, S.; Wang, Y. Potential intestinal infection and faecal-oral transmission of human coronaviruses. Rev. Med. Virol. 2022, 32, e2363. [Google Scholar] [CrossRef]
- Koch, J.; Uckeley, Z.M.; Doldan, P.; Stanifer, M.; Boulant, S.; Lozach, P.Y. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021, 40, e107821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Z.; Gao, Y.; Liu, Y.; Tai, Y.-H.; Liang, L.-Z.; Zhang, Y.-L.; Hou, S.-L.; Xie, J. Screening of Potential Inhibitors Against SARS-CoV-2 Based on Prescription Mining and Molecular Dynamics Simulations. Prog. Biochem. Biophys. 2022, 49, 1889–1900. [Google Scholar]
- Li, J.; Liu, F.; Wu, F.; Su, X.; Zhang, L.; Zhao, X.; Shang, C.; Han, L.; Zhang, Y.; Xiao, Z.; et al. Inhibition of multiple SARS-CoV-2 variants entry by Lycium barbarum L. polysaccharides through disruption of spike protein-ACE2 interaction. Int. J. Biol. Macromol. 2024, 261 Pt 1, 129785. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. ACE2, a therapeutic target of COVID-19, needs to be treated with caution. Arch. Virol. 2025, 170, 143. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, J.; Hu, H.; Zhang, Z.; Zhang, W.; Lu, H.; Lei, X.; Zeng, Y.; Xia, J.; Xu, F. Trained Decoy Nanocages Confer Selective Cuproptosis and Metabolic Reprogramming for Drug-Resistant Bacterial Targeting Therapy. ACS Nano 2025, 19, 5217–5239. [Google Scholar] [CrossRef]
- Maniak, H.; Talma, M.; Giurg, M. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies. Int. J. Mol. Sci. 2021, 22, 12307. [Google Scholar] [CrossRef]
- Haschke, M.; Schuster, M.; Poglitsch, M.; Loibner, H.; Salzberg, M.; Bruggisser, M.; Penninger, J.; Krähenbühl, S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet. 2013, 52, 783–792. [Google Scholar] [CrossRef]
- Wirnsberger, G.; Monteil, V.; Eaton, B.; Postnikova, E.; Murphy, M.; Braunsfeld, B.; Crozier, I.; Kricek, F.; Niederhöfer, J.; Schwarzböck, A.; et al. Clinical grade ACE2 as a universal agent to block SARS-CoV-2 variants. EMBO Mol. Med. 2022, 14, e15230. [Google Scholar]
- Chan, K.K.; Dorosky, D.; Sharma, P.; Abbasi, S.A.; Dye, J.M.; Kranz, D.M.; Herbert, A.S.; Procko, E. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 2020, 369, 1261–1265. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; An, Y. ACE2 Shedding and the Role in COVID-19. Front. Cell Infect. Microbiol. 2021, 11, 789180. [Google Scholar] [CrossRef]
- Paidi, R.K.; Jana, M.; Mishra, R.K.; Dutta, D.; Pahan, K. Selective Inhibition of the Interaction between SARS-CoV-2 Spike S1 and ACE2 by SPIDAR Peptide Induces Anti-Inflammatory Therapeutic Responses. J. Immunol. 2021, 207, 2521–2533. [Google Scholar] [CrossRef]
- Valiente, P.A.; Wen, H.; Nim, S.; Lee, J.; Kim, H.J.; Kim, J.; Perez-Riba, A.; Paudel, Y.P.; Hwang, I.; Kim, K.D.; et al. Computational Design of Potent D-Peptide Inhibitors of SARS-CoV-2. J. Med. Chem. 2021, 64, 14955–14967. [Google Scholar] [CrossRef]
- Pei, P.; Qin, H.; Chen, J.; Wang, F.; He, C.; He, S.; Hong, B.; Liu, K.; Qiao, R.; Fan, H.; et al. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Brief. Bioinform. 2021, 22, bbab243. [Google Scholar]
- Ikemura, N.; Taminishi, S.; Inaba, T.; Arimori, T.; Motooka, D.; Katoh, K.; Kirita, Y.; Higuchi, Y.; Li, S.; Suzuki, T.; et al. An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant and confers protection against infection in vivo. Sci. Transl. Med. 2022, 14, eabn7737. [Google Scholar] [CrossRef] [PubMed]
- Linsky, T.W.; Vergara, R.; Codina, N.; Nelson, J.W.; Walker, M.J.; Su, W.; Barnes, C.O.; Hsiang, T.Y.; Esser-Nobis, K.; Yu, K.; et al. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020, 370, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Cocozza, F.; Névo, N.; Piovesana, E.; Lahaye, X.; Buchrieser, J.; Schwartz, O.; Manel, N.; Tkach, M.; Théry, C.; Martin-Jaular, L. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. J. Extracell. Vesicles 2020, 10, e12050. [Google Scholar] [CrossRef]
- Fang, J.Y.; Huang, K.Y.; Wang, T.H.; Lin, Z.C.; Chen, C.C.; Chang, S.Y.; Chen, E.L.; Chao, T.L.; Yang, S.C.; Yang, P.C.; et al. Development of nanoparticles incorporated with quercetin and ACE2-membrane as a novel therapy for COVID-19. J. Nanobiotechnol. 2024, 22, 169. [Google Scholar] [CrossRef]
- Neary, M.; Sharp, J.; Gallardo-Toledo, E.; Herriott, J.; Kijak, E.; Bramwell, C.; Cox, H.; Tatham, L.; Box, H.; Curley, P.; et al. Evaluation of Nafamostat as Chemoprophylaxis for SARS-CoV-2 Infection in Hamsters. Viruses 2023, 15, 1744. [Google Scholar] [CrossRef]
- Yamamoto, M.; Matsuyama, S.; Li, X.; Takeda, M.; Kawaguchi, Y.; Inoue, J.I.; Matsuda, Z. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob. Agents Chemother. 2016, 60, 6532–6539. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kiso, M.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Takeda, M.; Kinoshita, N.; Ohmagari, N.; Gohda, J.; Semba, K.; et al. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Ogawa, H. Potential of heparin and nafamostat combination therapy for COVID-19. J. Thromb. Haemost. 2020, 18, 1521–1522. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.L.; Zhao, R.; Matalon, S.; Matthay, M.A. Elevated Plasmin (ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol. Rev. 2020, 100, 1065–1075. [Google Scholar] [CrossRef]
- Aoyama, T.; Ino, Y.; Ozeki, M.; Oda, M.; Sato, T.; Koshiyama, Y.; Suzuki, S.; Fujita, M. Pharmacological studies of FUT-175, nafamstat mesilate I. Inhibition of protease activity in in vitro and in vivo experiments. Jpn. J. Pharmacol. 1984, 35, 203–227. [Google Scholar] [CrossRef]
- Okugawa, S.; Ikeda, M.; Kashiwabara, K.; Moritoyo, T.; Kohsaka, T.; Shimizu, T.; Hagiya, H.; Hasegawa, K.; Otsuka, F.; Miwa, A.; et al. Antiviral effect and safety of nafamostat mesilate in patients with mild early-onset COVID-19: An exploratory multicentre randomized controlled clinical trial. Int. J. Antimicrob. Agents 2023, 62, 106922. [Google Scholar] [CrossRef]
- Cao, Y.G.; Zhang, M.; Yu, D.; Shao, J.P.; Chen, Y.C.; Liu, X.Q. A method for quantifying the unstable and highly polar drug nafamostat mesilate in human plasma with optimized solid-phase extraction and ESI-MS detection: More accurate evaluation for pharmacokinetic study. Anal. Bioanal. Chem. 2008, 391, 1063–1071. [Google Scholar] [CrossRef]
- Arakawa, K.; Kurotori, M.; Sugiyama, S.; Kurumi, M.; Aoyama, T. Stability studies on nafamstat mesilate in aqueous solution. I. Kinetic studies in various pH and temperature conditions. Yakugaku Zasshi. 1985, 105, 512–516. [Google Scholar] [CrossRef]
- Rai, G.; Gauba, P.; Tyagi, A.; Dang, S. Lactoferrin-modified PLGA nanoparticles for pregabalin: Development, characterization, in vitro targeting and pharmacodynamic evaluation. Drug Deliv. Transl. Res. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Rai, G.; Gauba, P.; Tyagi, A.; Dang, S. Drug repurposing for the treatment of COVID-19: Targeting nafamostat to the lungs by a liposomal delivery system. J. Control. Release 2023, 364, 654–671. [Google Scholar] [CrossRef]
- Lo, Y.C.; Lin, W.J. Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles. Pharmaceutics 2023, 15, 2429. [Google Scholar] [CrossRef]
- Guo, S.; Zheng, Y.; Gao, Z.; Duan, M.; Liu, S.; Du, P.; Xu, X.; Xu, K.; Zhao, X.; Chai, Y.; et al. Dosing interval regimen shapes potency and breadth of antibody repertoire after vaccination of SARS-CoV-2 RBD protein subunit vaccine. Cell Discov. 2023, 9, 79. [Google Scholar] [CrossRef]
- Kelle, D.; Speth, K.R.; Martínez-Negro, M.; Mailänder, V.; Landfester, K.; Iyisan, B. Effect of protein corona on drug release behavior of PLGA nanoparticles. Eur. J. Pharm. Biopharm. 2025, 207, 114611. [Google Scholar] [CrossRef]
- Zeng, X.; Pan, Y.; Lin, J.; Zheng, Z.; Wu, H.; Wang, Y.; Wu, Y.; Shen, Y.; Chen, Y.; Zhao, Y.; et al. IL-21R-Targeted Nano-immunosuppressant Prevents Acute Rejection in Allogeneic Transplantation by Blocking Maturation of T Follicular Helper Cells. Acta Biomater. 2025, 199, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Chen, Z.; Zhou, W.; Li, T.; Wang, M.; Gao, Y.; Ma, S.; Feng, Y.; Du, S.; Lan, P.; et al. Boosting Glioblastoma Therapy with Targeted Pyroptosis Induction. Small 2023, 19, e2207604. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef]
- Mehrabadi, M.E.; Hemmati, R.; Tashakor, A.; Homaei, A.; Yousefzadeh, M.; Hemati, K.; Hosseinkhani, S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed. Pharmacother. 2021, 137, 111363. [Google Scholar] [CrossRef]
- Bobkova, N.V. The Balance between Two Branches of RAS Can Protect from Severe COVID-19 Course. Biochem. Suppl. Ser. A Membr. Cell Biol. 2021, 15, 36–51. [Google Scholar] [CrossRef]
- Cooper, H.A.; Cicalese, S.; Preston, K.J.; Kawai, T.; Okuno, K.; Choi, E.T.; Kasahara, S.; Uchida, H.A.; Otaka, N.; Scalia, R.; et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc. Res. 2021, 117, 971–982. [Google Scholar] [CrossRef]
- Kuba, K.; Yamaguchi, T.; Penninger, J.M. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Front. Immunol. 2021, 12, 732690. [Google Scholar] [CrossRef]
- Oudit, G.Y.; Kassiri, Z.; Jiang, C.; Liu, P.P.; Poutanen, S.M.; Penninger, J.M.; Butany, J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Investig. 2009, 39, 618–625. [Google Scholar] [CrossRef]
- Nowak, J.K.; Lindstrøm, J.C.; Kalla, R.; Ricanek, P.; Halfvarson, J.; Satsangi, J. Age, Inflammation, and Disease Location Are Critical Determinants of Intestinal Expression of SARS-CoV-2 Receptor ACE2 and TMPRSS2 in Inflammatory Bowel Disease. Gastroenterology 2020, 159, 1151–1154.e2. [Google Scholar] [CrossRef]
- Niemeyer, B.F.; Miller, C.M.; Ledesma-Feliciano, C.; Morrison, J.H.; Jimenez-Valdes, R.; Clifton, C.; Poeschla, E.M.; Benam, K.H. Broad antiviral and anti-inflammatory efficacy of nafamostat against SARS-CoV-2 and seasonal coronaviruses in primary human bronchiolar epithelia. Nano Sel. 2022, 3, 437–449. [Google Scholar] [CrossRef]
- Takahashi, W.; Yoneda, T.; Koba, H.; Ueda, T.; Tsuji, N.; Ogawa, H.; Asakura, H. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. Int. J. Infect. Dis. 2021, 102, 529–531. [Google Scholar] [CrossRef]
- Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clin. Proc. 2020, 95, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Biondi, M.; Ungaro, F.; Quaglia, F.; Netti, P.A. Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2008, 60, 229–242. [Google Scholar] [CrossRef]
Name | Size (nm) | Zeta (mV) | PDI | EE (%) | LD (%) |
---|---|---|---|---|---|
B-PP | 155.4 ± 0.81 | −30.433 ± 1.76 | 0.156 ± 0.02 | \ | \ |
NM-PP | 157.3 ± 1.43 | −27.100 ± 1.18 | 0.152 ± 0.213 | 74.93 ± 2.18% | 3.44 ± 0.17% |
NM-PP-Pro | 184.4 ± 0.62 | −22.133 ± 0.06 | 0.152 ± 0.021 | 70.51 ± 1.78% | 3.74 ± 0.42% |
NM-PP-Pep | 168.7 ± 1.25 | −27.467 ± 0.21 | 0.135 ± 0.078 | 69.21 ± 2.45% | 3.34 ± 0.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Zhang, Y.; Zheng, X.; Li, R.; Zhao, T.; Qiao, H.; Zhang, X.; Liu, Z. ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity. Viruses 2025, 17, 1167. https://doi.org/10.3390/v17091167
Hou S, Zhang Y, Zheng X, Li R, Zhao T, Qiao H, Zhang X, Liu Z. ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity. Viruses. 2025; 17(9):1167. https://doi.org/10.3390/v17091167
Chicago/Turabian StyleHou, Shulin, Yunyun Zhang, Xin Zheng, Ruining Li, Taoran Zhao, Hua Qiao, Xiaozheng Zhang, and Zhizhen Liu. 2025. "ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity" Viruses 17, no. 9: 1167. https://doi.org/10.3390/v17091167
APA StyleHou, S., Zhang, Y., Zheng, X., Li, R., Zhao, T., Qiao, H., Zhang, X., & Liu, Z. (2025). ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity. Viruses, 17(9), 1167. https://doi.org/10.3390/v17091167