Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,036)

Search Parameters:
Keywords = cell screening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2282 KiB  
Article
From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts
by Azza SalahEldin El-Demerdash, Amira E. Sehim, Abeer Altamimi, Hanan Henidi, Yasmin Mahran and Ghada E. Dawwam
Microorganisms 2025, 13(8), 1818; https://doi.org/10.3390/microorganisms13081818 - 4 Aug 2025
Abstract
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. [...] Read more.
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. Hibiscus sabdariffa emerged as the most promising, demonstrating potent broad-spectrum antimicrobial and significant antibiofilm activity. Sub-inhibitory concentrations of H. sabdariffa robustly downregulated essential bacterial virulence genes and suppressed aflatoxin gene expression. Comprehensive chemical profiling via HPLC identified major anthocyanin glucosides, while GC-MS revealed diverse non-pigment bioactive compounds, including fatty acids and alcohols. Molecular docking suggested favorable interactions of key identified compounds (Cyanidin-3-O-glucoside and 1-Deoxy-d-arabitol) with E. coli outer membrane protein A (OmpA), indicating potential antiadhesive and antimicrobial mechanisms. Furthermore, H. sabdariffa exhibited selective cytotoxicity against MCF-7 breast cancer cells. These findings establish H. sabdariffa pigment-enriched extract as a highly promising, multi-functional source of novel therapeutics, highlighting its potential for simultaneously addressing drug resistance and cancer challenges through an integrated chemical, biological, and computational approach. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

18 pages, 7672 KiB  
Article
Molecular Subtypes and Biomarkers of Ulcerative Colitis Revealed by Sphingolipid Metabolism-Related Genes: Insights from Machine Learning and Molecular Dynamics
by Quanwei Li, Junchen Li, Shuyuan Liu, Yunshu Zhang, Jifeng Liu, Xing Wan and Guogang Liang
Curr. Issues Mol. Biol. 2025, 47(8), 616; https://doi.org/10.3390/cimb47080616 (registering DOI) - 4 Aug 2025
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with disrupted lipid metabolism. This study aimed to uncover novel molecular subtypes and biomarkers by integrating sphingolipid metabolism-related genes (SMGs) with machine learning approaches. Using data from the GEO and GeneCards databases, 29 [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with disrupted lipid metabolism. This study aimed to uncover novel molecular subtypes and biomarkers by integrating sphingolipid metabolism-related genes (SMGs) with machine learning approaches. Using data from the GEO and GeneCards databases, 29 UC-related SMGs were identified. Consensus clustering was employed to define distinct molecular subtypes of UC, and a diagnostic model was developed through various machine learning algorithms. Further analyses—including functional enrichment, transcription factor prediction, single-cell localization, potential drug screening, molecular docking, and molecular dynamics simulations—were conducted to investigate the underlying mechanisms and therapeutic prospects of the identified genes in UC. The analysis revealed two molecular subtypes of UC: C1 (metabolically dysregulated) and C2 (immune-enriched). A diagnostic model based on three key genes demonstrated high accuracy in both the training and validation cohorts. Moreover, the transcription factor FOXA2 was predicted to regulate the expression of all three genes simultaneously. Notably, mebendazole and NVP-TAE226 emerged as promising therapeutic agents for UC. In conclusion, SMGs are integral to UC molecular subtyping and immune microenvironment modulation, presenting a novel framework for precision diagnosis and targeted treatment of UC. Full article
Show Figures

Figure 1

27 pages, 1595 KiB  
Review
Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives
by Pierre Bougnères, Catherine Le Stunff and Romina Aron Badin
Biomedicines 2025, 13(8), 1892; https://doi.org/10.3390/biomedicines13081892 - 4 Aug 2025
Abstract
Gene replacement using adeno-associated viral (AAV) vectors has become a major therapeutic avenue for neurodegenerative diseases (NDD). In single-gene diseases with loss-of-function mutations, the objective of gene therapy is to express therapeutic transgenes abundantly in cell populations that are implicated in the pathological [...] Read more.
Gene replacement using adeno-associated viral (AAV) vectors has become a major therapeutic avenue for neurodegenerative diseases (NDD). In single-gene diseases with loss-of-function mutations, the objective of gene therapy is to express therapeutic transgenes abundantly in cell populations that are implicated in the pathological phenotype. X-ALD is one of these orphan diseases. It is caused by ABCD1 gene mutations and its main clinical form is adreno-myelo-neuropathy (AMN), a disabling spinal cord axonopathy starting in middle-aged adults. Unfortunately, the main cell types involved are yet poorly identified, complicating the choice of cells to be targeted by AAV vectors. Pioneering gene therapy studies were performed in the Abcd1-/y mouse model of AMN with AAV9 capsids carrying the ABCD1 gene. These studies tested ubiquitous or cell-specific promoters, various routes of vector injection, and different ages at intervention to either prevent or reverse the disease. The expression of one of these vectors was studied in the spinal cord of a healthy primate. In summary, gene therapy has made promising progress in the Abcd1-/y mouse model, inaugurating gene replacement strategies in AMN patients. Because X-ALD is screened neonatally in a growing number of countries, gene therapy might be applied in the future to patients before they become overtly symptomatic. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

13 pages, 1388 KiB  
Article
A Proof-of-Concept Study on Bioelectric-Based Biosensing for Prostate-Specific Antigen Detection in Serum Samples
by Georgios Giannakos, Sofia Marka, Konstantina Georgoulia, Spyridon Kintzios and Georgia Moschopoulou
Biosensors 2025, 15(8), 503; https://doi.org/10.3390/bios15080503 (registering DOI) - 3 Aug 2025
Abstract
Prostate cancer is among the most prevalent malignancies in men worldwide, underscoring the need for early and accurate diagnostic tools. This study presents a proof-of-concept and pilot clinical validation of a novel bioelectric impedance-based biosensor for the detection of prostate-specific antigen (PSA) in [...] Read more.
Prostate cancer is among the most prevalent malignancies in men worldwide, underscoring the need for early and accurate diagnostic tools. This study presents a proof-of-concept and pilot clinical validation of a novel bioelectric impedance-based biosensor for the detection of prostate-specific antigen (PSA) in human serum. The system integrates Molecular Identification through Membrane Engineering (MIME) with the xCELLigence real-time cell analysis platform, employing Vero cells electroinserted with anti-PSA antibodies. Optimization experiments identified 15,000 cells/well as the optimal configuration for impedance response. The biosensor exhibited specific, concentration-dependent changes in impedance upon exposure to PSA standard solutions and demonstrated significant differentiation between PSA-positive and PSA-negative human serum samples relative to the clinical threshold of 4 ng/mL. The biosensor offered rapid results within one minute, unlike standard immunoradiometric assay (IRMA), while showing strong diagnostic agreement. The system’s specificity, sensitivity, and reproducibility support its potential for integration into point-of-care screening workflows. This bioelectric assay represents one of the fastest PSA detection approaches reported to date and offers a promising solution for reducing overdiagnosis while improving clinical decision-making and patient outcomes. Full article
Show Figures

Graphical abstract

27 pages, 2143 KiB  
Review
The Allium cepa Model: A Review of Its Application as a Cytogenetic Tool for Evaluating the Biosafety Potential of Plant Extracts
by Daniela Nicuță, Luminița Grosu, Oana-Irina Patriciu, Roxana-Elena Voicu and Irina-Claudia Alexa
Methods Protoc. 2025, 8(4), 88; https://doi.org/10.3390/mps8040088 (registering DOI) - 2 Aug 2025
Viewed by 47
Abstract
In establishing the safety or tolerability profile of bioactive plant extracts, it is important to perform toxicity studies using appropriate, accessible, and sustainable methods. The Allium cepa model is well known and frequently used for accurate environmental risk assessments, as well as for [...] Read more.
In establishing the safety or tolerability profile of bioactive plant extracts, it is important to perform toxicity studies using appropriate, accessible, and sustainable methods. The Allium cepa model is well known and frequently used for accurate environmental risk assessments, as well as for evaluating the toxic potential of the bioactive compounds of plant extracts. The present review focuses on this in vivo cytogenetic model, highlighting its widespread utilization and advantages as a first assessment in monitoring the genotoxicity and cytotoxicity of herbal extracts, avoiding the use of animals for testing. This plant-based assay allows for the detection of the possible cytotoxic and genotoxic effects induced on onion meristematic cells. The outcomes of the Allium cepa assay are comparable to other tests on various organisms, making it a reliable screening test due to its simplicity in terms of implementation, as well as its high sensitivity and reproducibility. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

33 pages, 4098 KiB  
Systematic Review
Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)
by Tatiana Bobkova, Artem Bobkov and Yang Li
Pharmaceuticals 2025, 18(8), 1152; https://doi.org/10.3390/ph18081152 - 2 Aug 2025
Viewed by 84
Abstract
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate [...] Read more.
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate standardized effects of pathway inhibitors on proliferation, apoptosis, migration/invasion, IL-6/IL-8 secretion, p-AKT, and LC3; (ii) assess heterogeneity and identify key moderators of variability, including stimulus type, cell source, and inhibitor class. Methods: PubMed, Europe PMC, and the Cochrane Library were searched up to 18 May 2025 (PROSPERO CRD420251058185). Twenty of 2684 screened records met eligibility. Two reviewers independently extracted data and assessed study quality with SciRAP. Standardized mean differences (Hedges g) were pooled using a Sidik–Jonkman random-effects model with Hartung–Knapp confidence intervals. Heterogeneity (τ2, I2), 95% prediction intervals, and meta-regression by cell type were calculated; robustness was tested with REML-HK, leave-one-out, and Baujat diagnostics. Results: PI3K/AKT/mTOR inhibition markedly reduced proliferation (to –5.1 SD), IL-6 (–11.1 SD), and IL-8 (–6.5 SD) while increasing apoptosis (+2.7 SD). Fourteen of seventeen outcome clusters showed large effects (|g| ≥ 0.8), with low–moderate heterogeneity (I2 ≤ 35% in 11 clusters). Prediction intervals crossed zero only in small k-groups; sensitivity analyses shifted pooled estimates by ≤0.05 SD. p-AKT and p-mTOR consistently reflected functional changes and emerged as reliable pharmacodynamic markers. Conclusions: Targeted blockade of PI3K/AKT/mTOR robustly suppresses the proliferative and inflammatory phenotype of RA-FLSs, reaffirming this axis as a therapeutic target. The stability of estimates across multiple analytic scenarios enhances confidence in these findings and highlights p-AKT and p-mTOR as translational response markers. The present synthesis provides a quantitative basis for personalized dual-PI3K/mTOR strategies and supports the adoption of standardized long-term preclinical protocols. Full article
Show Figures

Graphical abstract

19 pages, 812 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 (registering DOI) - 1 Aug 2025
Viewed by 70
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07-1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
12 pages, 1435 KiB  
Article
Amino Acid Analysis and Cytotoxicity Study of Iraqi Ocimum basilicum Plant
by Omar Hussein Ahmed
Molecules 2025, 30(15), 3232; https://doi.org/10.3390/molecules30153232 - 1 Aug 2025
Viewed by 133
Abstract
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in [...] Read more.
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in November 2024. After drying and powdering, the plant material went through cold methanol extraction. Initial phytochemical screening was conducted to identify the presence of alkaloids, flavonoids, coumarins, and terpenoids. Amino acid analysis was completed by an amino acid analyzer with fluorescence detection. The cytotoxic effect was evaluated via the MTT assay on HRT-18 cell lines. Morphological changes were further tested using dual Propidium Iodide/Acridine Orange assay fluorescent staining. Results: Seventeen amino acids were detected in the plant extract. The extract showed dose-dependent cytotoxic effects on HRT-18 cells, with significant reduction in cell viability at concentrations of more than 25 µg/mL. Morphological alterations of membrane blebbing and cell shrinkage were observed, suggesting apoptotic activity. The IC50 value confirmed strong cytotoxic potential. Conclusions: The extract of Ocimum basilicum leaf cultivated in Iraq shows a rich amino acid profile and significant cytotoxic activity against colorectal cancer cells that highlights its potential effect as a natural source of anticancer compounds. Full article
Show Figures

Figure 1

35 pages, 10887 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 - 1 Aug 2025
Viewed by 80
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

44 pages, 1418 KiB  
Review
Human-Induced Pluripotent Stem Cells (iPSCs) for Disease Modeling and Insulin Target Cell Regeneration in the Treatment of Insulin Resistance: A Review
by Sama Thiab, Juberiya M. Azeez, Alekya Anala, Moksha Nanda, Somieya Khan, Alexandra E. Butler and Manjula Nandakumar
Cells 2025, 14(15), 1188; https://doi.org/10.3390/cells14151188 - 1 Aug 2025
Viewed by 80
Abstract
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired [...] Read more.
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired pancreatic beta cell function and insulin resistance (IR) in peripheral organs, namely the liver, skeletal muscle, and adipose tissue. Additional insulin target tissues, including cardiomyocytes and neuronal cells, are also affected. The advent of stem cell research has opened new avenues for tackling this disease, particularly through the regeneration of insulin target cells and the establishment of disease models for further investigation. Human-induced pluripotent stem cells (iPSCs) have emerged as a valuable resource for generating specialized cell types, such as hepatocytes, myocytes, adipocytes, cardiomyocytes, and neuronal cells, with diverse applications ranging from drug screening to disease modeling and, importantly, treating IR in T2D. This review aims to elucidate the significant applications of iPSC-derived insulin target cells in studying the pathogenesis of insulin resistance and T2D. Furthermore, recent differentiation strategies, protocols, signaling pathways, growth factors, and advancements in this field of therapeutic research for each specific iPSC-derived cell type are discussed. Full article
(This article belongs to the Special Issue Advances in Human Pluripotent Stem Cells)
Show Figures

Figure 1

17 pages, 1907 KiB  
Systematic Review
Pilomatricoma in Syndromic Contexts: A Literature Review and a Report of a Case in Apert Syndrome
by Gianmarco Saponaro, Elisa De Paolis, Mattia Todaro, Francesca Azzuni, Giulio Gasparini, Antonio Bosso, Giuliano Ascani, Angelo Minucci and Alessandro Moro
Dermatopathology 2025, 12(3), 24; https://doi.org/10.3390/dermatopathology12030024 - 1 Aug 2025
Viewed by 139
Abstract
Pilomatricomas are benign tumors originating from hair follicle matrix cells and represent the most common skin tumors in pediatric patients. Pilomatricomas may be associated with genetic syndromes such as myotonic dystrophy, familial adenomatous polyposis (FAP), Turner syndrome, Rubinstein–Taybi syndrome, Kabuki syndrome, and Sotos [...] Read more.
Pilomatricomas are benign tumors originating from hair follicle matrix cells and represent the most common skin tumors in pediatric patients. Pilomatricomas may be associated with genetic syndromes such as myotonic dystrophy, familial adenomatous polyposis (FAP), Turner syndrome, Rubinstein–Taybi syndrome, Kabuki syndrome, and Sotos syndrome. This study reviews the literature on pilomatricomas occurring in syndromic contexts and presents a novel case linked to Apert syndrome. A systematic review was conducted using PubMed and Cochrane databases, focusing on case reports, case series, and reviews describing pilomatricomas associated with syndromes. A total of 1272 articles were initially screened; after removing duplicates and excluding articles without syndromic diagnoses or lacking sufficient data, 81 full-text articles were reviewed. Overall, 96 cases of pilomatricomas associated with genetic syndromes were identified. Reports of patients with Apert syndrome who do not develop pilomatricomas are absent in the literature. Pilomatricomas predominantly affect pediatric patients, with a slight female predominance, and are often the first manifestation of underlying genetic syndromes. Our study highlights previously unreported associations of pilomatricoma with Apert syndrome, providing molecular insights. This study contributes to understanding the clinical and molecular features of pilomatricomas in syndromic contexts and underscores the importance of genetic analysis for accurate diagnosis and management. Full article
Show Figures

Figure 1

17 pages, 1304 KiB  
Review
Treatment Strategies for First-Line PD-L1-Unselected Advanced NSCLC: A Comparative Review of Immunotherapy-Based Regimens by PD-L1 Expression and Clinical Indication
by Blerina Resuli, Diego Kauffmann-Guerrero, Maria Nieves Arredondo Lasso, Jürgen Behr and Amanda Tufman
Diagnostics 2025, 15(15), 1937; https://doi.org/10.3390/diagnostics15151937 - 31 Jul 2025
Viewed by 269
Abstract
Background: Lung cancer remains the leading cause of cancer-related mortality worldwide. Advances in screening, diagnosis, and management have transformed clinical practice, particularly with the integration of immunotherapy and target therapies. Methods: A systematic literature search was carried out for the period between [...] Read more.
Background: Lung cancer remains the leading cause of cancer-related mortality worldwide. Advances in screening, diagnosis, and management have transformed clinical practice, particularly with the integration of immunotherapy and target therapies. Methods: A systematic literature search was carried out for the period between October 2016 to September 2024. Phase II and III randomized trials evaluating ICI monotherapy, ICI–chemotherapy combinations, and dual ICI regimens in patients with advanced NSCLC were included. Outcomes of interest included overall survival (OS), progression-free survival (PFS), and treatment-related adverse events (AEs). Results: PD-1-targeted therapies demonstrated superior OS compared to PD-L1-based regimens, with cemiplimab monotherapyranking highest for OS benefit (posterior probability: 90%), followed by sintilimab plus platinum-based chemotherapy (PBC) and pemetrexed—PBC. PFS atezolizumab plus bevacizumab and PBC, and camrelizumab plus PBC were the most effective regimens. ICI–chemotherapy combinations achieved higher ORRs but were associated with greater toxicity. The most favorable safety profiles were observed with cemiplimab, nivolumab, and avelumab monotherapy, while atezolizumab plus PBC and sugemalimab plus PBC carried the highest toxicity burdens. Conclusions: In PD-L1-unselected advanced NSCLC, PD-1 blockade—particularly cemiplimab monotherapy—and rationally designed ICI–chemotherapy combinations represent the most efficacious treatment strategies. Balancing efficacy with safety remains critical, especially in the absence of predictive biomarkers. These findings support a patient-tailored approach to immunotherapy and highlight the need for further biomarker-driven and real-world investigations to optimize treatment selection. Full article
(This article belongs to the Special Issue Lung Cancer: Screening, Diagnosis and Management: 2nd Edition)
22 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Viewed by 206
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

21 pages, 4988 KiB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 (registering DOI) - 31 Jul 2025
Viewed by 218
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

Back to TopTop