Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,742)

Search Parameters:
Keywords = cell counting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 220 KB  
Article
Risk Factors of High-Grade CIN or Cervix Cancer in Young Women with Abnormal Pap Smear Results: Who Should Be Treated with LEEP (Loop Electrosurgical Excision Procedure)?
by Hye-Yon Cho
J. Clin. Med. 2025, 14(19), 7011; https://doi.org/10.3390/jcm14197011 - 3 Oct 2025
Abstract
Objective: This study aimed to identify risk factors associated with high-grade cervical intraepithelial neoplasia (CIN3+) in young adults with abnormal Pap smears. Methods: We performed a retrospective chart review of women ≤30 years who underwent loop electrosurgical excision procedure (LEEP) for [...] Read more.
Objective: This study aimed to identify risk factors associated with high-grade cervical intraepithelial neoplasia (CIN3+) in young adults with abnormal Pap smears. Methods: We performed a retrospective chart review of women ≤30 years who underwent loop electrosurgical excision procedure (LEEP) for abnormal Pap results (atypical squamous cells of undetermined significance [ASCUS] or higher), between 2012 and 2022 at Dongtan Sacred Heart Hospital. Clinical characteristics, including age, HPV infection, prior gynecologic surgery, pelvic inflammatory disease (PID), complete blood count, and Pap smear screening history were collected. Women with CIN3+ based on punch biopsy or LEEP were designated as CIN3+. Results: A total of 158 women underwent LEEP. Of these, 61.4% were diagnosed with CIN3+ and 8.2% with invasive cervical cancer. Independent predictors of CIN3+ included age >28 years, smoking, lack of regular Pap screening, and high-risk HPV infection. Subgroup analysis suggested age ≥28 years and neutrophil-to-lymphocyte ratio >2.12 were risk factors for invasive cervical cancer. Conclusions: Young Korean women with abnormal Pap smears and risk factors such as older age, smoking, high-risk HPV infection, and irregular screening histories are at increased risk for CIN3+. These findings highlight the importance of timely intervention; however, because our cohort included only women who underwent LEEP, it may represent a higher-risk subset and thus introduce selection bias. Validation in larger multicenter, prospective studies incorporating fertility and recurrence outcomes are needed before definitive recommendations can be made. Full article
(This article belongs to the Section Obstetrics & Gynecology)
13 pages, 1023 KB  
Article
The Clinical Features and Prognosis of Idiopathic and Infection-Triggered Acute Exacerbation of Idiopathic Inflammatory Myopathy-Associated Interstitial Lung Disease: A Preliminary Study
by Jingping Zhang, Kai Yang, Lingfei Mo, Liyu He, Jiayin Tong, He Hei, Yuting Zhang, Yadan Sheng, Blessed Kondowe and Chenwang Jin
Diagnostics 2025, 15(19), 2516; https://doi.org/10.3390/diagnostics15192516 - 3 Oct 2025
Abstract
Background: Acute exacerbation (AE) of idiopathic inflammatory myopathy-associated interstitial lung disease (IIM-ILD) is fatal. Infection is one of the most important triggers of the AE of IIM-ILD. We evaluated the clinical features and prognosis of idiopathic (I-AE) and infection-triggered (iT-AE) acute exacerbation [...] Read more.
Background: Acute exacerbation (AE) of idiopathic inflammatory myopathy-associated interstitial lung disease (IIM-ILD) is fatal. Infection is one of the most important triggers of the AE of IIM-ILD. We evaluated the clinical features and prognosis of idiopathic (I-AE) and infection-triggered (iT-AE) acute exacerbation in IIM-ILD patients. Methods: We retrospectively reviewed 278 consecutive patients with IIM admitted to our hospital between January 2014 and December 2020. Among them, 69 patients experienced AE of IIM-ILD, including 34 with I-AE and 35 with iT-AE. Clinical features and short- and long-term outcomes were analyzed in this preliminary study. Results: Compared with I-AE, patients with iT-AE presented with lower hemoglobin and PaO2/FiO2 ratios but higher pulse, body temperature, white blood cell count, neutrophil percentage (NEU), C-reactive protein, erythrocyte sedimentation rates, lactate dehydrogenase, and hydroxybutyrate dehydrogenase levels. They also had more extensive ground-glass opacities (GGOs) on high-resolution computed tomography (all p < 0.05). Mortality was significantly higher in iT-AE than that in I-AE at 30 days (28.6% vs. 5.9%), 90 days (34.3% vs. 14.9%), and 1 year (54.3% vs. 17.6%; log-rank test, p = 0.002). Multivariate logistic regression showed that the combination of NEU and GGO extent could help discriminate iT-AE from I-AE (area under the receiver operating characteristic curve: 0.812; 95% confidence interval: 0.711–0.913; sensitivity: 71.4%, specificity: 73.5%, accuracy: 72.5%). Conclusion: This study found that iT-AE patients exhibited more severe hyperinflammation and markedly worse survival than I-AE patients. Combining NEU and GGO extent may assist in differentiating AE subtypes. Larger prospective studies are required to validate these findings. Full article
Show Figures

Figure 1

13 pages, 1292 KB  
Article
Development and Internal Validation of Machine Learning Algorithms to Predict 30-Day Readmission in Patients Undergoing a C-Section: A Nation-Wide Analysis
by Audrey Andrews, Nadia Islam, George Bcharah, Hend Bcharah and Misha Pangasa
J. Pers. Med. 2025, 15(10), 476; https://doi.org/10.3390/jpm15100476 - 2 Oct 2025
Abstract
Background/Objectives: Cesarean section (C-section) is a common surgical procedure associated with an increased risk of 30-day postpartum hospital readmissions. This study utilized machine learning (ML) to predict readmissions using a nationwide database. Methods: A retrospective analysis of the National Surgical Quality [...] Read more.
Background/Objectives: Cesarean section (C-section) is a common surgical procedure associated with an increased risk of 30-day postpartum hospital readmissions. This study utilized machine learning (ML) to predict readmissions using a nationwide database. Methods: A retrospective analysis of the National Surgical Quality Improvement Project (2012–2022) included 54,593 patients who underwent C-sections. Random Forests (RF) and Extreme Gradient Boosting (XGBoost) models were developed and compared to logistic regression (LR) using demographic, preoperative, and perioperative data. Results: Of the cohort, 1306 (2.39%) patients were readmitted. Readmitted patients had higher rates of being of African American race (17.99% vs. 9.83%), diabetes (11.03% vs. 8.19%), and hypertension (11.49% vs. 4.68%) (p < 0.001). RF achieved the highest performance (AUC = 0.737, sensitivity = 72.03%, specificity: 61.33%), and a preoperative-only RF model achieved a sensitivity of 83.14%. Key predictors included age, BMI, operative time, white blood cell count, and hematocrit. Conclusions: ML effectively predicts C-section readmissions, supporting early identification and interventions to improve patient outcomes and reduce healthcare costs. Full article
(This article belongs to the Special Issue Advances in Prenatal Diagnosis and Maternal Fetal Medicine)
Show Figures

Figure 1

17 pages, 4833 KB  
Article
Lactoferrin-Loaded Liposomal Nanoparticles: Enhanced Intestinal Stability and Bioactivity for Mitigating Radiation-Induced Intestinal Injury
by Yingying Lin, Rui Ding, Yuning Zhang, Yimeng Wang, Sijia Song and Huiyuan Guo
Foods 2025, 14(19), 3410; https://doi.org/10.3390/foods14193410 - 2 Oct 2025
Abstract
Radiation-induced intestinal injury (RIII), a severe complication of abdominopelvic radiotherapy, causes intestinal ischemia, ulcers, and necrosis, severely impacting patients’ quality of life. Currently, effective treatments are limited, and a specific cure remains elusive. Our previous research showed that lactoferrin (LF) can promote intestinal [...] Read more.
Radiation-induced intestinal injury (RIII), a severe complication of abdominopelvic radiotherapy, causes intestinal ischemia, ulcers, and necrosis, severely impacting patients’ quality of life. Currently, effective treatments are limited, and a specific cure remains elusive. Our previous research showed that lactoferrin (LF) can promote intestinal stem cell (ISC) proliferation and tissue repair; however, its oral administration is limited by rapid degradation in the gastric environment. In this study, we developed LF-loaded liposomal nanoparticles (Lip-LF) using a simple ethanol injection method. The optimal formulation (cholesterol/egg yolk lecithin ratio 2:8, LF concentration 12.5 mg/mL) achieved a drug-loading capacity of 6.8% and a narrow size distribution (0.2 < PDI < 0.4). In vitro experiments demonstrated that Lip-LF protected LF from pepsin degradation in simulated gastric fluid (SGF), retaining over 80% integrity after 120 min, while releasing in simulated intestinal fluid (SIF). In vivo imaging revealed prolonged gastrointestinal retention of Lip-LF compared to free LF. In a murine model of RIII (12 Gy whole-body irradiation), Lip-LF significantly restored villus counts, increased crypt height, and promoted goblet-cell regeneration. Immunohistochemical and qPCR analyses revealed enhanced ISCs proliferation and upregulation of repair-associated genes, including Pcna and Olfm4. These findings demonstrate that Lip-LF protects LF from gastric degradation and enhances its targeted delivery to the intestine, improving its therapeutic efficacy in repairing RIII. Lip-LF thus offers a promising strategy for managing RIII. Full article
Show Figures

Graphical abstract

25 pages, 3499 KB  
Article
Dual Machine Learning Framework for Predicting Long-Term Glycemic Change and Prediabetes Risk in Young Taiwanese Men
by Chung-Chi Yang, Sheng-Tang Wu, Ta-Wei Chu, Chi-Hao Liu and Yung-Jen Chuang
Diagnostics 2025, 15(19), 2507; https://doi.org/10.3390/diagnostics15192507 - 2 Oct 2025
Abstract
Background: Early detection of dysglycemia in young adults is important but underexplored. This study aimed to (1) predict long-term changes in fasting plasma glucose (δ-FPG) and (2) classify future prediabetes using complementary machine learning (ML) approaches. Methods: We analyzed 6247 Taiwanese men aged [...] Read more.
Background: Early detection of dysglycemia in young adults is important but underexplored. This study aimed to (1) predict long-term changes in fasting plasma glucose (δ-FPG) and (2) classify future prediabetes using complementary machine learning (ML) approaches. Methods: We analyzed 6247 Taiwanese men aged 18–35 years (mean follow-up 5.9 years). For δ-FPG (continuous outcome), random forest, stochastic gradient boosting (SGB), eXtreme gradient boosting (XGBoost), and elastic net were compared with multiple linear regression using Symmetric mean absolute percentage error (SMAPE), Root mean squared error (RMSE), Relative absolute error(RAE), and Root relative squared error (RRSE) Sensitivity analyses excluded baseline FPG (FPGbase). Shapley additive explanations(SHAP) values provided interpretability, and stability was assessed across 10 repeated train–test cycles with confidence intervals. For prediabetes (binary outcome), an XGBoost classifier was trained on top predictors, with class imbalance corrected by SMOTE-Tomek. Calibration and decision-curve analysis (DCA) were also performed. Results: ML models consistently outperformed regression on all error metrics. FPGbase was the dominant predictor in full models (100% importance). Without FPGbase, key predictors included body fat, white blood cell count, age, thyroid-stimulating hormone, triglycerides, and low-density lipoprotein cholesterol. The prediabetes classifier achieved accuracy 0.788, precision 0.791, sensitivity 0.995, ROC-AUC 0.667, and PR-AUC 0.873. At a high-sensitivity threshold (0.2892), sensitivity reached 99.53% (specificity 47.46%); at a balanced threshold (0.5683), sensitivity was 88.69% and specificity was 90.61%. Calibration was acceptable (Brier 0.1754), and DCA indicated clinical utility. Conclusions: FPGbase is the strongest predictor of glycemic change, but adiposity, inflammation, thyroid status, and lipids remain informative. A dual interpretable ML framework offers clinically actionable tools for screening and risk stratification in young men. Full article
(This article belongs to the Special Issue Metabolic Diseases: Diagnosis, Management, and Pathogenesis)
Show Figures

Figure 1

12 pages, 1673 KB  
Article
Impact of Tissue Decay on Drying Kinetics, Moisture Diffusivity, and Microstructure of Bell Pepper and Strawberry
by Sindy Palma-Salgado, Luis Vargas, Taha M. Rababah and Hao Feng
Foods 2025, 14(19), 3401; https://doi.org/10.3390/foods14193401 - 1 Oct 2025
Abstract
This study investigates the potential to transform plant-based waste into a sustainable resource for animal feed through dehydration. Currently, research on the drying performance of decayed plant tissues remains scarce. To address this gap, we explored the use of a thermogravimetric analyzer (TGA) [...] Read more.
This study investigates the potential to transform plant-based waste into a sustainable resource for animal feed through dehydration. Currently, research on the drying performance of decayed plant tissues remains scarce. To address this gap, we explored the use of a thermogravimetric analyzer (TGA) as a precisely controlled convective drying method to evaluate the drying performance of decayed strawberries (ST) and bell peppers (BP), as models for high- and low-porous structures, respectively. Drying curves, moisture diffusivity, yeast and mold load, and microstructure of decayed plant tissues were evaluated. Our results showed that decayed BP and ST tissues dried up to 22% faster than fresh tissues, with a higher effective moisture diffusivity. Significantly higher yeast and mold counts (log CFU/g) were detected in decayed tissues, resulting in softening and deterioration of the plant tissues. Significant differences were found in the effective moisture diffusivity (Deff) of bell pepper (BP) and strawberry (ST), with ST tissues exhibiting a greater degree of decay. The microstructural changes in the cell wall caused by decay influenced drying performance and mass transport kinetics, indicating that drying decayed plant tissues is less time-consuming than drying fresh food. These findings offer critical insights for designing drying processes that enhance the value of food waste. Full article
(This article belongs to the Topic Sustainable Food Processing: 2nd Edition)
Show Figures

Figure 1

12 pages, 2366 KB  
Brief Report
Effects of Eucommia ulmoides Oliver Extracts on Odontoblast Differentiation in Human Dental Pulp Stem Cells
by Hye-Ock Jang, Ji-Min Ju, Soo-Kyung Bae, Da-Sol Kim and Hyung-Ryong Kim
Curr. Issues Mol. Biol. 2025, 47(10), 805; https://doi.org/10.3390/cimb47100805 - 1 Oct 2025
Abstract
Eucommia ulmoides Oliver (E. ulmoides), a traditional medicinal plant, has been widely used for its antioxidant and anti-inflammatory properties. However, its effects on dental tissue regeneration remain largely unexplored. In this study, we investigated the odontogenic potential of E. ulmoides extract [...] Read more.
Eucommia ulmoides Oliver (E. ulmoides), a traditional medicinal plant, has been widely used for its antioxidant and anti-inflammatory properties. However, its effects on dental tissue regeneration remain largely unexplored. In this study, we investigated the odontogenic potential of E. ulmoides extract in human dental pulp stem cells (hDPSCs). Cell viability was assessed using the cell counting kit-8 (CCK-8) assay, and antioxidant activity was evaluated via the DPPH radical scavenging method. Odontoblast differentiation was examined using Alizarin Red S (ARS) staining, real-time PCR, and Western blot analysis of key differentiation markers, including dentin matrix protein 1 (DMP-1) and dentin sialophosphoprotein (DSPP). Our results demonstrated that E. ulmoides extract enhanced mineralization and upregulated both gene and protein expression of odontoblast differentiation markers in a dose-dependent manner. Furthermore, signaling pathway analysis revealed that E. ulmoides extract activated the SMAD pathway while downregulating ERK and p38 MAPK phosphorylation during odontogenic differentiation. These findings suggest that E. ulmoides extract promotes odontoblast differentiation in hDPSCs and may serve as a promising natural agent for dental tissue regeneration. These findings further underscore its potential clinical relevance as a therapeutic candidate to enhance dental tissue repair and regeneration. Full article
Show Figures

Figure 1

13 pages, 1249 KB  
Article
Dynamics of Telomerase-Based PD-L1 Circulating Tumor Cells as a Longitudinal Biomarker for Treatment Response Prediction in Patients with Non-Small Cell Lung Cancer
by Issei Sumiyoshi, Shinsaku Togo, Takahiro Okabe, Kanae Abe, Junko Watanabe, Yusuke Ochi, Kazuaki Hoshi, Shoko Saiwaki, Shuko Nojiri, Yuichi Fujimoto, Yukiko Namba, Yoko Tabe, Yasuo Urata and Kazuhisa Takahashi
Int. J. Mol. Sci. 2025, 26(19), 9583; https://doi.org/10.3390/ijms26199583 - 1 Oct 2025
Abstract
Noninvasive liquid biopsy for monitoring circulating tumor cells offers valuable insights for predicting therapeutic responses. We developed TelomeScan® (OBP-401), based on the detection of telomerase activity as a universal cancer cell marker and an indicator of the presence of viable circulating tumor [...] Read more.
Noninvasive liquid biopsy for monitoring circulating tumor cells offers valuable insights for predicting therapeutic responses. We developed TelomeScan® (OBP-401), based on the detection of telomerase activity as a universal cancer cell marker and an indicator of the presence of viable circulating tumor cells (CTCs) for patients with advanced non-small cell lung cancer (NSCLC). This system evaluated CTC subtypes characterized by programmed death ligand 1 (PD-L1), an immune checkpoint molecule, and vimentin, an epithelial–mesenchymal transition (EMT) marker, using a multi-fluorescent color microscope reader. The prognostic value and therapeutic responses were predicted by dynamically monitoring CTC counts in 79 patients with advanced NSCLC. The sensitivity and specificity values of TelomeScan® for PD-L1(+) cells (≥1 cell) were 75% and 100%, respectively, indicating high diagnostic accuracy. PD-L1(+) and EMT(+) in CTCs were detected in 75% and 12% of patients, respectively. Detection of PD-L1(+)CTCs and PD-L1(+)EMT(+) CTCs before treatment was associated with poor prognosis (p < 0.05). Monitoring of reducing and increasing PD-L1(+) CTC counts in two sequential samples (baseline, cycle 2 treatment) correlated significantly with partial response (p = 0.032) and progressive disease (p = 0.023), respectively. Monitoring PD-L1(+)CTCs by TelomeScan® will aid in anticipating responses or resistance to frontline treatments, optimizing precision medicine choices in patients with NSCLC. Full article
Show Figures

Figure 1

21 pages, 1169 KB  
Article
Impact of Nutritional Status on Clinical Outcomes of Patients Undergoing PRGF Treatment for Knee Osteoarthritis—A Prospective Observational Study
by Paola De Luca, Giulio Grieco, Simona Landoni, Eugenio Caradonna, Valerio Pascale, Enrico Ragni and Laura de Girolamo
Nutrients 2025, 17(19), 3134; https://doi.org/10.3390/nu17193134 - 30 Sep 2025
Abstract
Background: Osteoarthritis (OA) is a major global health issue, increasing with aging and obesity. Current therapies mainly address symptoms without modifying disease progression. Platelet-rich growth factor (PRGF) therapy has potential regenerative effects through high cytokines and growth factors, but the outcomes of these [...] Read more.
Background: Osteoarthritis (OA) is a major global health issue, increasing with aging and obesity. Current therapies mainly address symptoms without modifying disease progression. Platelet-rich growth factor (PRGF) therapy has potential regenerative effects through high cytokines and growth factors, but the outcomes of these therapies remain heterogeneous. This study explores the relationship between patient nutritional status, PRGF characteristics, and clinical outcomes in knee OA treatment. Methods: Baseline anthropometric, metabolic, and nutritional assessments of 41 patients with knee OA who underwent PRGF treatment were conducted. Blood samples were analyzed for metabolic and inflammatory markers. PRGF composition was assessed by protein content and extracellular vesicle (EV) markers. KOOS and VAS pain scores were collected at 2, 6, and 12 months. Responders improved KOOS by ≥10 points. An elastic-net regularized logistic model allowed the identification of the predictors of treatment response. Results: KOOS and VAS scores improved significantly at all follow-ups. At 2 months, the PRGF of responder patients showed higher PRGF G-CSF levels; at 12 months, increased CD49e and HLA-ABC expression. Higher BMI correlated with increased IL-6, IL-1ra, and resistin in PRGF samples. Hypercholesterolemic patients displayed altered EV profiles, with elevated levels of CD8 but reduced CD49e, HLA-ABC, CD42a, and CD31. Multivariate analysis identified BMI, biceps fold, fat percentage, red blood cell, platelet, and neutrophil counts as predictors of early response. Conclusions: Metabolic and immunological factors influence PRGF composition and clinical efficacy in knee OA. Baseline body composition and hematological parameters as key predictors of response, highlighting the potential of personalized PRGF therapy. Full article
22 pages, 3227 KB  
Article
Associations Between Regulatory Immune Cells, Thymus Cellular Remodeling, and Vascular Aging in Advanced Coronary Atherosclerosis: A Pilot Study
by Irina Kologrivova, Alexey Dmitriukov, Natalia Naryzhnaya, Olga Koshelskaya, Olga Kharitonova, Alexandra Vyrostkova, Elena Kravchenko, Ivan Stepanov, Sergey Andreev, Vladimir Evtushenko, Anna Gusakova, Oksana Ogurkova and Tatiana Suslova
Diagnostics 2025, 15(19), 2494; https://doi.org/10.3390/diagnostics15192494 - 30 Sep 2025
Abstract
Background/Objectives: Biological aging phenotypes in coronary artery disease (CAD) include coronary atherosclerosis, vascular aging, and endothelial dysfunction. The aim of the present study was to investigate the potential links between aging phenotypes, regulatory immune cells, and features of the thymus in patients with [...] Read more.
Background/Objectives: Biological aging phenotypes in coronary artery disease (CAD) include coronary atherosclerosis, vascular aging, and endothelial dysfunction. The aim of the present study was to investigate the potential links between aging phenotypes, regulatory immune cells, and features of the thymus in patients with CAD. Methods: A single-center, cross-sectional, comparative study was conducted. Patients were stratified according to the severity of coronary atherosclerosis: patients with a Gensini score ≥ 65 points and patients with a Gensini score < 65 points. Peripheral blood and thymus biopsy were obtained. Imaging flow cytometry, ELISA, and immunohistochemical analysis were used for analysis. Results: Thymic morphology ranged from total fatty involution to a preserved structure of the thymus (20–80% area in 31% of obtained samples) but was not associated with the severity of atherosclerosis. Meanwhile, patients with a Gensini score ≥ 65 had impaired thymus cellular composition compared to patients with a Gensini score < 65 points; increased frequency of CD8+ T lymphocytes and NK cells; and decreased frequency of CD4 + CD8+ T lymphocytes. In peripheral blood, the main determinants of a Gensini score ≥ 65 points were low absolute counts of eMDSCs and CD25low Tregs with FoxP3 nuclear translocation, while advanced vascular aging was associated with elevated eMDSC absolute counts. Advanced coronary atherosclerosis was also associated with decreased numbers of endothelial progenitor cells in circulation. Conclusions: Thymus dysfunction accompanies CAD progression and is manifested in changes in cellular composition rather than morphology. In CAD patients, MDSC and Treg lymphocytes are equally involved in the progression of coronary atherosclerosis, which is aggravated by the decreased regulatory potential of the endothelium. Vascular aging represents a distinct phenotype of biological aging in CAD patients, characterized by the expansion of eMDSCs. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Medical Management of Cardiovascular Diseases)
16 pages, 5726 KB  
Article
The LINC02381/let-7g-5p/THBS1 Signaling Axis Modulates Cellular Proliferative Activity in Osteosarcoma
by Jing Wang, Shuming Hou, Ning Kong, Jiashi Cao, Xiangzhi Ni, Cheng Peng, Pei Yang and Kunzheng Wang
Cancers 2025, 17(19), 3194; https://doi.org/10.3390/cancers17193194 - 30 Sep 2025
Abstract
Objective: This study aimed to elucidate the regulatory mechanisms of the long intergenic non-protein coding RNA 02381 (LINC02381)/microRNA-let-7g-5p (let-7g-5p)/thrombospondin 1 (THBS1) signaling axis in osteosarcoma (OS). Methods: The expression levels of LINC02381, let-7g-5p, [...] Read more.
Objective: This study aimed to elucidate the regulatory mechanisms of the long intergenic non-protein coding RNA 02381 (LINC02381)/microRNA-let-7g-5p (let-7g-5p)/thrombospondin 1 (THBS1) signaling axis in osteosarcoma (OS). Methods: The expression levels of LINC02381, let-7g-5p, and THBS1 were quantified in OS and adjacent normal tissues via reverse transcription quantitative polymerase chain reaction. Their correlations with clinicopathological features were analyzed. Expression patterns were further validated in OS cell lines (143B, U-2OS, Saos-2, MNNG-HOS, MG-63) and normal osteoblast cell line hFOB1.19. The molecular interaction between LINC02381 and let-7g-5p and the targeting relationship of let-7g-5p with THBS1 were verified via dual-luciferase reporter and RNA pull-down assays. Functional effects were assessed using cell counting kit-8, colony formation, Transwell migration, and xenograft tumor models. Results: Compared to adjacent normal tissues, LINC02381 and THBS1 were upregulated in OS tissues (fold change > 3.0, p < 0.001), while let-7g-5p was downregulated (fold change ≈ 0.038, p < 0.001). Similar expression trends were observed in U-2OS cells. Knockdown of LINC02381 or overexpression of let-7g-5p reduced cell proliferation, colony formation, migration, THBS1 expression, and tumor volume (p < 0.001). These inhibitory effects were partially reversed by let-7g-5p inhibitors, restoring cell viability and migration by approximately 70%. Mechanistically, LINC02381 functioned as a competing endogenous RNA (ceRNA), directly binding to let-7g-5p and mitigating its suppression of THBS1. Conclusions:LINC02381 promotes OA progression by acting as a ceRNA for let-7g-5p, thereby upregulating THBS1 expression. This signaling axis represents a potential therapeutic target for OS. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

16 pages, 3569 KB  
Article
Boosting Probiotic Biomass of Lactobacillus acidophilus CCFM137 Through pH-Stat Morphological Control and Medium Optimization
by Shao-Quan Yan, Yang-Yang Shi, Rui Yang, Rui Li, Feng Hang and Hao Zhang
Fermentation 2025, 11(10), 564; https://doi.org/10.3390/fermentation11100564 - 30 Sep 2025
Abstract
The fermentation performance of Lactobacillus acidophilus is constrained by factors such as low cell density and fastidious nutritional and environmental requirements, which greatly limit its industrial-scale applications. This study aimed to develop an efficient fermentation condition for L. acidophilus CCFM137 through systematic optimization [...] Read more.
The fermentation performance of Lactobacillus acidophilus is constrained by factors such as low cell density and fastidious nutritional and environmental requirements, which greatly limit its industrial-scale applications. This study aimed to develop an efficient fermentation condition for L. acidophilus CCFM137 through systematic optimization of both culture medium and environmental parameters, thereby enabling high-yield industrial-scale production of this strain. An optimized medium was developed, consisting of glucose (30 g/L), YEP FM503 (35 g/L), sodium acetate (5 g/L), ammonium citrate (2 g/L), K2HPO4 (2 g/L), MgSO4·7H2O (0.1 g/L), MnSO4·H2O (0.05 g/L), L-cysteine hydrochloride (0.5 g/L), and Tween 80 (1 mL/L), to achieve a viable cell count of 1.95 × 109 CFU/mL, representing a 9.42-fold increase over that of standard MRS broth. Subsequent pH-stat fermentation trials in a 100 L fermenter using the optimized medium revealed morphological and growth characteristics of the strain in variable pH-stat environments. Optimal performance was observed under pH-stat 4.5 rather than the more commonly used 5.7, achieving maximum viable cell counts of 3.37 × 109 CFU/mL, accompanied by a transformation of cell morphology toward shorter rod-shaped structures, as well as an increase in substrate utilization rate, cell recovery rate and lyophilization survival rate. The fermentation performance and cellular morphology of L. acidophilus CCFM137 were enhanced by both nutrient composition and pH environment. These results showed that this strategy has potential for application in high cell density fermentation of L. acidophilus CCFM137. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

15 pages, 803 KB  
Article
Mechanical and Antimicrobial Evaluation of Chitosan-Coated Elastomeric Orthodontic Modules
by Lucía Gabriela Beltrán-Novelo, Fernando Javier Aguilar-Pérez, Myriam Angélica De La Garza-Ramos, Arturo Abraham Cienfuegos-Sarmiento, José Rubén Herrera-Atoche, Martha Gabriela Chuc-Gamboa, Jacqueline Adelina Rodríguez-Chávez and Juan Valerio Cauich-Rodríguez
Dent. J. 2025, 13(10), 447; https://doi.org/10.3390/dj13100447 - 29 Sep 2025
Abstract
Background/Objectives: Orthodontic appliances disrupt oral biofilm homeostasis, leading to an increase in plaque and disease risk. Elastomeric modules (EMs) promote bacterial growth due to their material composition. Surface coatings have been developed to reduce bacterial colonization. We evaluated the mechanical, antimicrobial, and [...] Read more.
Background/Objectives: Orthodontic appliances disrupt oral biofilm homeostasis, leading to an increase in plaque and disease risk. Elastomeric modules (EMs) promote bacterial growth due to their material composition. Surface coatings have been developed to reduce bacterial colonization. We evaluated the mechanical, antimicrobial, and cell viability properties of a chitosan coating for EMs. Methods: EMs were coated with chitosan (CS) and chitosan-glutaraldehyde (CS-GTA) to assess antimicrobial and cell viability. Uncoated EMs were used as a control. These surface-coated modules were characterized and analyzed with Fourier transform infrared (FTIR) and Raman spectroscopy, and tensile testing. Antibacterial activity was assessed by colony-forming units (CFU) counts after incubation. Cell viability was tested with gingival fibroblasts using the MTT assay. ANOVA, Tukey, Kolmogorov–Smirnov, and Kruskal–Wallis tests were used for statistical analysis. Results: Raman spectra of the chitosan coatings showed characteristic molecular vibration bands. ANOVA revealed a significant difference in mechanical properties between the materials and between the control and the CS-GTA groups, confirmed by the Tukey post hoc test. No significant difference was observed between the groups in the Yield Stress test. All the coated groups showed reduced CFU counts in the antibacterial assay. The average cell viability of the coated groups was 85% and 89%. Conclusions: We synthesized CS and GTA-cross-linked chitosan coatings. The coatings did not affect the mechanical properties of the elastomeric modules. The chitosan and glutaraldehyde-cross-linked CS coatings inhibited bacterial growth. No significant differences were observed in antibacterial activity between the CS and the GTA-crosslinked chitosan coatings. Full article
19 pages, 4558 KB  
Article
The Prognostic Immune and Nutritional Index as a Predictor of Survival in Resected Non-Small Cell Lung Cancer
by Soomin An, Sehyun Kim, Wankyu Eo and Sookyung Lee
Medicina 2025, 61(10), 1763; https://doi.org/10.3390/medicina61101763 - 29 Sep 2025
Abstract
Background and Objectives: The prognostic immune and nutritional index (PINI), derived from serum albumin levels and absolute monocyte counts, has demonstrated prognostic value in gastrointestinal cancers. However, its role in non-small cell lung cancer (NSCLC) remains unclear. This study assessed the prognostic [...] Read more.
Background and Objectives: The prognostic immune and nutritional index (PINI), derived from serum albumin levels and absolute monocyte counts, has demonstrated prognostic value in gastrointestinal cancers. However, its role in non-small cell lung cancer (NSCLC) remains unclear. This study assessed the prognostic utility of the PINI for overall survival (OS) in patients with stage I–IIIA NSCLC undergoing curative-intent resection. Methods: This was a retrospective cohort study that included 522 patients. Cox proportional hazards models were used to evaluate the association between PINI and OS along with clinical and hematologic variables. Model performance was assessed using the concordance index (C-index), integrated area under the curve (iAUC), continuous net reclassification improvement (cNRI), integrated discrimination improvement (IDI), nomogram construction, and calibration curves. Results: In the multivariate analysis, the PINI remained an independent predictor of OS, along with age, American Society of Anesthesiologists physical status, stage, pleural invasion, and the modified Shine–Lal index. The full model (FM), incorporating all these variables, outperformed the baseline model (BM) that was based solely on stage (C-index: 0.841 vs. 0.692; iAUC: 0.804 vs. 0.663; both p < 0.001). Compared with the intermediate model (IM), which included all FM variables except the PINI, the FM demonstrated modest but statistically significant improvements (C-index: 0.841 vs. 0.820, p = 0.012; iAUC: 0.804 vs. 0.793, p = 0.001). At 3- and 5-year time points, the FM still yielded superior risk reclassification over the BM and IM, as indicated by improvements in IDI and cNRI. A nomogram based on the FM showed good calibration with the observed survival outcomes. Conclusions: The PINI is an independent and clinically meaningful prognostic biomarker in patients with stage I–IIIA NSCLC undergoing curative surgery. Incorporating the PINI into the BM or IM improved risk discrimination and reclassification, supporting its potential use in personalized prognostic assessment. However, external validation is warranted. Full article
(This article belongs to the Special Issue Insights and Advances in Cancer Biomarkers)
Show Figures

Figure 1

14 pages, 2310 KB  
Article
Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol
by Leecheon Kim, Dongjin Yu, Hyunwoo Choi, Jongryun Kim, Junseok Ban, Kwanseob Shim and Darae Kang
Animals 2025, 15(19), 2847; https://doi.org/10.3390/ani15192847 - 29 Sep 2025
Abstract
Transportation, environmental changes, and overcrowding can induce short-term stress in livestock, leading to physiological imbalances even within a short period. Cortisol is a stress-response hormone and its concentration in the blood can rapidly fluctuate depending on the individual and situation. This study evaluated [...] Read more.
Transportation, environmental changes, and overcrowding can induce short-term stress in livestock, leading to physiological imbalances even within a short period. Cortisol is a stress-response hormone and its concentration in the blood can rapidly fluctuate depending on the individual and situation. This study evaluated the short-term effects of cortisol by applying blood cortisol concentrations that mimicked the normal and stress-induced levels observed in Korean native cattle (Hanwoo) to the culture medium of Hanwoo muscle stem cells (HWSC). Treatments were designed with five cortisol concentrations (0, 5, 10, 30, and 70 ng/mL) and four treatment times (0.5, 1, 2, and 3 h), based on the CCK-8 and viable cell count results. The expression levels of cortisol receptor-related genes (NR3C1, HSP70, and HSP90AA1) increased and reached a peak at 30 min post-treatment. After 30 min, the expression of these genes gradually decreased. However, in the case of HSP70, expression tended to increase again after 3 h of treatment. This could be seen as the regulation of cortisol inflow into the HWSC. Upon examining the oxidative effects of cortisol on superoxide dismutase 1 (SOD1), glutathione peroxidase (GPX), catalase (CAT), and oxygen consumption rate (OCR), the expression of antioxidant factors increased and peaked at 30 min of treatment. Following this peak, their levels generally began to decrease. However, in the 70 ng/mL group, the expression of these factors remained at a high level compared to the control group even after 30 min. In addition, the cellular respiration index and ATP production increased as the treatment prolonged, regardless of the concentration, as shown by the OCR analysis. These results can be considered a phenomenon corresponding to the accumulation of oxidative by products, such as Reactive Oxygen Species (ROS), caused by cortisol. The gene expression of apoptosis factors (p53, BAX, Caspase-3) temporarily increased at 30 min but then decreased. Caspase-3 protein activity was elevated at 30 min in the 70 ng/mL group, which later reduced. These results suggested that short-term cortisol administration had no effect on apoptosis in muscle cell culture. Therefore, the study findings elucidating the effects of short-term cortisol treatment on HWSC suggest that short-term stress may not have a significant negative effect on Hanwoo muscle. However, as this study was limited to muscle stem cells derived from Hanwoo, further investigation is required to determine whether the observed responses are consistent across different species and in vivo environments. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

Back to TopTop