Impact of Tissue Decay on Drying Kinetics, Moisture Diffusivity, and Microstructure of Bell Pepper and Strawberry
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Fresh Sample Preparation and Characterization
2.2.1. Samples for Thermogravimetric Analyzer Drying Evaluation
2.2.2. Yeast and Mold Load Determination
2.3. Accelerated Decay Sample Preparation
2.4. Precision Drying with a Thermogravimetric Analyzer
2.5. Determination of Effective Moisture Diffusivity
2.6. Microstructural Characterization of Fresh and Decayed Tissues
2.7. Statistical Analysis
3. Results and Discussions
3.1. Drying Rates
3.2. Effective Moisture Diffusivity
3.3. ESEM Micrographs and Micro-CT Scan
3.4. Microbial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Pinegar, L.; Immonen, J.; Powell, K.M. Conversion of food waste to renewable energy: A techno-economic and environmental assessment. J. Clean. Prod. 2023, 385, 135741. [Google Scholar] [CrossRef]
- United Nations Environment Programme. The Global Food Waste Problem: Food Waste Index Report 2024; United Nations Environment Programme: Nairobi, Kenya, 2024; Available online: https://www.unep.org/resources/publication/food-waste-index-report-2024 (accessed on 1 September 2025).
- U.S. Environmental Protection Agency (EPA). Food: Material-Specific Data. 2025; Last Updated 13 February 2025. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/food-material-specific-dat (accessed on 1 September 2025).
- David, E.C.; Faour-Klingbeil, D. Impact of food waste on society, specifically at retail and foodservice levels in developed and developing Countries. Foods 2024, 3, 2098. [Google Scholar] [CrossRef] [PubMed]
- California Legislature. Senate Bill No. 1383 (SB 1383): Short-Lived Climate Pollutant Reduction. An Act to Amend Sections 39730.5 and 42652 of the Public Resources Code, Relating to Organic Waste. 2016. Available online: http://www.leginfo.ca.gov/pub/15-16/bill/sen/sb_1351-1400/sb_1383_bill_20160919_chaptered.htm (accessed on 1 September 2025).
- U.S. EPA. 2025; 2019 Wasted Food Report Estimates of Generation and Management of Wasted Food in the United States in 2019. EPA 530-R-23-005. Available online: https://www.epa.gov/system/files/documents/2024-04/2019-wasted-food-report_508_opt_ec_4.23correction.pdf (accessed on 1 September 2025).
- McBride, M. Turning Food Waste into Feed: Benefits and Trade-Offs for Nature, Blog Posts. 2021. Available online: https://www.worldwildlife.org/blogs/sustainability-works/posts/turning-food-waste-into-feed-benefits-and-trade-offs-for-nature (accessed on 10 September 2025).
- Dou, Z.; Dierenfeld, E.S.; Wang, X.; Chen, X.; Gerald, C.; Shurson, D. A critical analysis of challenges and opportunities for upcycling food waste to animal feed to reduce climate and resource burdens. Resour. Conserv. Recycl. 2024, 203, 107418. [Google Scholar] [CrossRef]
- ReFED. From Surplus to Solutions: 2025 ReFED U.S. Food Waste Report. ReFED. 2025. Available online: https://refed.org/downloads/refed-us-food-waste-report-2025.pdf (accessed on 10 September 2025).
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.S. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Salemdeeb, R.; Zu Ermgassen, E.K.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef]
- Truong, L.; Morash, D.; Liu, Y.; King, A. Food waste in animal feed with a focus on use for broilers. Int. J. Recycl. Org. Waste Agric. 2019, 8, 417–429. [Google Scholar] [CrossRef]
- Torok, V.A.; Luyckx, K.; Lapidge, S. Human food waste to animal feed: Opportunities and challenges. Anim. Prod. Sci. 2021, 62, 1129–1139. [Google Scholar] [CrossRef]
- Khairuddin, D.; Ghafar, S.N.; Hassan, S.N. Food waste type and moisture content influence on the Hermetia illucens (L.), (Diptera: Stratiomyidae) Larval Development and Survival. Earth Environ. Sci. 2022, 1022, 012076. [Google Scholar] [CrossRef]
- Noori, A.W.; Royen, M.J.; Medveďová, A.; Haydary, J. Drying of food waste for potential use as animal feed. Sustainability 2022, 14, 5849. [Google Scholar] [CrossRef]
- Zeng, Z.; Han, C.; Wang, Q.; Yuan, H.; Zhang, X.; Li, B. Analysis of drying characteristic, effective moisture diffusivity and energy, exergy and environment performance indicators during thin layer drying of tea in a convective-hot air dryer. Front. Sustain. Food Syst. 2024, 8, 1371696. [Google Scholar] [CrossRef]
- Feng, H.; Tang, J.; John Dixon-Warren, S. Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis. Dry. Technol. 2000, 18, 1183–1199. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Li, H. Determination of effective moisture diffusivity and drying kinetics of biomass using a thermogravimetric analyzer. Bioresour. Technol. 2012, 107, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Palma-Salgado, S.; Ku, K.-M.; Dong, M.; Nguyen, T.H.; Juvik, J.A.; Feng, H. Adhesion and removal of E. coli K12 as affected by leafy green produce epicuticular wax composition, surface roughness, produce and bacterial surface hydrophobicity, and sanitizers. Int. J. Food Microbiol. 2020, 334, 108834. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Method 934.06 (Moisture in Dried Fruits). In Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 1984. [Google Scholar]
- Williamson, K.; Pao, S.; Dormedy, E.; Phillips, T.; Nikolich, G.; Li, L. Microbial evaluation of automated sorting systems in stone fruit packinghouses during peach packing. Int. J. Food Microbiol. 2018, 285, 98–102. [Google Scholar] [CrossRef]
- Argenta, L.C.; de Freitas, S.T.; Mattheis, J.P.; Vieira, M.J.; Ogoshi, C. Characterization and quantification of postharvest losses of apple fruit stored under commercial conditions. HortScience 2021, 56, 608–616. [Google Scholar] [CrossRef]
- Saarniit, K.; Lang, H.; Kuldjärv, R.; Laaksonen, O.; Rosenvald, S. The stability of phenolic compounds in fruit, berry, and vegetable purees based on accelerated shelf-life testing methodology. Foods 2023, 12, 1777. [Google Scholar] [CrossRef]
- Koukouch, A.; Idlimam, A.; Asbik, M.; Sarh, B.; Izrar, B.; Bostyn, S.; Bah, A.; Ansari, O.; Zegaoui, O.; Amine, A. Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste. Renew. Energy 2017, 101, 565–574. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Schössler, K.; Jäger, H.; Knorr, D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Eng. 2012, 108, 103–110. [Google Scholar] [CrossRef]
- Kahraman, O.; Malvandi, A.; Vargas, L.; Feng, H. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 2021, 73, 105510. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Delali, K.I.; Chen, O.; Wang, W.; Yi, L.; Deng, L.; Zeng, K. Evaluation of yeast isolates from kimchi with antagonistic activity against green mold in citrus and elucidating the action mechanisms of three yeast: P. kudriavzevii, K. marxianus, and Y. lipolytica. Postharvest Biol. Technol. 2021, 176, 111495. [Google Scholar] [CrossRef]
- Huang, D.; Yang, P.; Tang, X.; Luo, L.; Sunden, B. Application of infrared radiation in the drying of food products. Trends Food Sci. Technol. 2021, 110, 765–777. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of food waste as animal feed: A step towards sustainable food waste management and circular bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- Khalida, A.; Arumugam, V.; Abdullah, L.C.; Abd, L. Dehydrated food waste for composting: An overview. Sci. Technol. 2022, 30, 2933–2960. [Google Scholar] [CrossRef]
- Leonard, B. Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks; DIANE Publishing: Collingdale, PA, USA, 2003. [Google Scholar]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed]
- Vargas Lopez, L.A. Use of Ultrasonication, Thermogravimetric Analysis and Newly Developed Hot-Air Drying Platform for Evaluation and Optimization of Drying Processes of Agricultural Materials. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2018. [Google Scholar]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a potential biological agent in plant disease protection and yield improvement—A short review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Prawiranto, K.; Defraeye, T.; Derome, D.; Bühlmann, A.; Hartmann, S.; Verboven, P.; Nicolai, B.; Carmeliet, J. Impact of drying methods on the changes of fruit microstructure unveiled by X-ray micro-computed tomography. RCS Adv. 2019, 19, 10606–10624. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Yeasts. In Fungi and Food Spoilage; Springer International Publishing: Cham, Switzerland, 2022; pp. 465–503. [Google Scholar]
- Choi, E.J.; Park, H.W.; Yang, H.S.; Chun, H.H. Effects of combined treatment with ultraviolet-C irradiation and grape seed extract followed by supercooled storage on microbial inactivation and quality of dongchimi. LWT Food Sci. Technol. 2017, 85, 110–120. [Google Scholar] [CrossRef]
Sample | Yeast (Mean ± SD log CFU/g) | Mold (Mean ± SD log CFU/g) |
---|---|---|
Bell pepper day 1 | 1.3 ± 0.2 | ND * |
Bell pepper day 7 | 4.8 ± 0.01 | 4.1 ± 0.03 |
Strawberry day 1 | ND * | 3.6 ± 0.08 |
Strawberry day 4 | 4.7 ± 0.36 | 4.9 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma-Salgado, S.; Vargas, L.; Rababah, T.M.; Feng, H. Impact of Tissue Decay on Drying Kinetics, Moisture Diffusivity, and Microstructure of Bell Pepper and Strawberry. Foods 2025, 14, 3401. https://doi.org/10.3390/foods14193401
Palma-Salgado S, Vargas L, Rababah TM, Feng H. Impact of Tissue Decay on Drying Kinetics, Moisture Diffusivity, and Microstructure of Bell Pepper and Strawberry. Foods. 2025; 14(19):3401. https://doi.org/10.3390/foods14193401
Chicago/Turabian StylePalma-Salgado, Sindy, Luis Vargas, Taha M. Rababah, and Hao Feng. 2025. "Impact of Tissue Decay on Drying Kinetics, Moisture Diffusivity, and Microstructure of Bell Pepper and Strawberry" Foods 14, no. 19: 3401. https://doi.org/10.3390/foods14193401
APA StylePalma-Salgado, S., Vargas, L., Rababah, T. M., & Feng, H. (2025). Impact of Tissue Decay on Drying Kinetics, Moisture Diffusivity, and Microstructure of Bell Pepper and Strawberry. Foods, 14(19), 3401. https://doi.org/10.3390/foods14193401