Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Selection of Cortisol Concentration and Treatment Time
2.3. RNA and Protein Extraction
2.4. RT-qPCR
2.5. Oxygen Consumption Rate (OCR)
2.6. Western Blot
2.7. Statistical Analysis of Data
3. Results
3.1. Gene Expression Related to GR Activation Mechanism
3.2. Cell Metabolism Analysis Results
3.3. Gene Expression Related to Antioxidant Factors
3.4. Gene Expression Related to Apoptosis Factor
3.5. Expression of Cleaved Caspase-3 and Procaspase-3 Protein
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
References
- Swanson, J.C.; Morrow-Tesch, J. Cattle transport: Historical, research, and future perspectives. J. Anim. Sci. 2001, 79, E102–E109. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Chen, Y.; Arsenault, R.; Napper, S.; Griebel, P. Models and Methods to Investigate Acute Stress Responses in Cattle. Animals 2015, 5, 1268–1295. [Google Scholar] [CrossRef]
- Bomfim, G.F.; Merighe, G.K.F.; de Oliveira, S.A.; Negrao, J.A. Acute and chronic effects of cortisol on milk yield, the expression of key receptors, and apoptosis of mammary epithelial cells in Saanen goats. J. Dairy. Sci. 2022, 105, 818–830. [Google Scholar] [CrossRef]
- Dong, J.; Qu, Y.; Li, J.; Cui, L.; Wang, Y.; Lin, J.; Wang, H. Cortisol inhibits NF-κB and MAPK pathways in LPS activated bovine endometrial epithelial cells. Int. Immunopharmacol. 2018, 56, 71–77. [Google Scholar] [CrossRef]
- Dong, J.; Li, J.; Li, J.; Cui, L.; Meng, X.; Qu, Y.; Wang, H. The proliferative effect of cortisol on bovine endometrial epithelial cells. Reprod. Biol. Endocrinol. 2019, 17, 97. [Google Scholar] [CrossRef]
- Siddiqui, S.H.; Park, J.; Kang, D.; Khan, M.; Shim, K. Cortisol differentially affects the viability and myogenesis of mono- and co-cultured porcine gluteal muscles satellite cells and fibroblasts. Tissue Cell 2021, 73, 101615. [Google Scholar] [CrossRef] [PubMed]
- Fast, M.D.; Hosoya, S.; Johnson, S.C.; Afonso, L.O.B. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish. Shellfish. Immunol. 2008, 24, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Jang, S.W.; Kim, Y.R.; Na, G.R.; Park, J.H.; Choi, H.W. Comparative Analysis of Different Extracellular Matrices for the Maintenance of Bovine Satellite Cells. Animals 2024, 14, 3496. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Capelli, A.M.; Bruno, A.; Entrena Guadix, A.; Costantino, G. Unbinding Pathways from the Glucocorticoid Receptor Shed Light on the Reduced Sensitivity of Glucocorticoid Ligands to a Naturally Occurring, Clinically Relevant Mutant Receptor. J. Med. Chem. 2013, 56, 7003–7014. [Google Scholar] [CrossRef]
- Cai, L.; Qin, X.; Xu, Z.; Song, Y.; Jiang, H.; Wu, Y.; Ruan, H.; Chen, J. Comparison of Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and CCK-8 Method. ACS Omega 2019, 4, 12036–12042. [Google Scholar] [CrossRef]
- Dengler, W.A.; Schulte, J.; Berger, D.P.; Mertelsmann, R.; Fiebig, H.H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anti-Cancer Drugs 1995, 6, 522–532. [Google Scholar] [CrossRef]
- Heitzer, M.D.; Wolf, I.M.; Sanchez, E.R.; Witchel, S.F.; DeFranco, D.B. Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 2007, 8, 321–330. [Google Scholar] [CrossRef]
- Leventhal, S.M.; Lim, D.; Green, T.L.; Cantrell, A.E.; Cho, K.; Greenhalgh, D.G. Uncovering a multitude of human glucocorticoid receptor variants: An expansive survey of a single gene. BMC Genet. 2019, 20, 16. [Google Scholar] [CrossRef]
- Sathiyaa, R.; Vijayan, M.M. Autoregulation of glucocorticoid receptor by cortisol in rainbow trout hepatocytes. Am. J. Physiol.-Cell Physiol. 2003, 284, C1508–C1515. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, J.N.; Miesfeld, R.; Maler, B.A.; Yamamoto, K.R. Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol. Endocrinol. 1987, 1, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Kirschke, E.; Goswami, D.; Southworth, D.; Griffin, P.R.; Agard, D.A. Glucocorticoid Receptor Function Regulated by Coordinated Action of the Hsp90 and Hsp70 Chaperone Cycles. Cell 2014, 157, 1685–1697. [Google Scholar] [CrossRef] [PubMed]
- Manoli, I.; Alesci, S.; Blackman, M.R.; Su, Y.A.; Rennert, O.M.; Chrousos, G.P. Mitochondria as key components of the stress response. Trends Endocrinol. Metab. 2007, 18, 190–198. [Google Scholar] [CrossRef]
- Picard, M.; McEwen, B.S.; Epel, E.S.; Sandi, C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocr. 2018, 49, 72–85. [Google Scholar] [CrossRef]
- St-Pierre, J.; Buckingham, J.A.; Roebuck, S.J.; Brand, M.D. Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. J. Biol. Chem. 2002, 277, 44784–44790. [Google Scholar] [CrossRef]
- Espinoza, M.B.; Aedo, J.E.; Zuloaga, R.; Valenzuela, C.; Molina, A.; Valdés, J.A. Cortisol induces reactive oxygen species through a membrane glucocorticoid receptor in rainbow trout myotubes. J. Cell. Biochem. 2017, 118, 718–725. [Google Scholar] [CrossRef]
- You, J.-M.; Yun, S.-J.; Nam, K.N.; Kang, C.; Won, R.; Lee, E.H. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can. J. Physiol. Pharmacol. 2009, 87, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.S.; Belenghi, B.; Levine, A. Oxidative Stress Increased Respiration and Generation of Reactive Oxygen Species, Resulting in ATP Depletion, Opening of Mitochondrial Permeability Transition, and Programmed Cell Death. Plant Physiol. 2002, 128, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, D.G. Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem. Soc. Trans. 2009, 37 Pt 6, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Addabbo, F.; Montagnani, M.; Goligorsky, M.S. Mitochondria and Reactive Oxygen Species. Hypertension 2009, 53, 885–892. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Palmer, H.J.; Paulson, K.E. Reactive Oxygen Species and Antioxidants in Signal Transduction and Gene Expression. Nutr. Rev. 1997, 55, 353–361. [Google Scholar] [CrossRef]
- Kowaltowski, A.J.; Vercesi, A.E. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 1999, 26, 463–471. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis—The p53 network. J. Cell Sci. 2003, 116, 4077–4085. [Google Scholar] [CrossRef] [PubMed]
- Skulachev, V.P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 1998, 423, 275–280. [Google Scholar] [CrossRef]
- Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 2022, 69, 1633–1645. [Google Scholar] [CrossRef]
- Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology 2000, 7, 153–163. [Google Scholar] [CrossRef]
- Samali, A.; Nordgren, H.; Zhivotovsky, B.; Peterson, E.; Orrenius, S. A Comparative Study of Apoptosis and Necrosis in HepG2 Cells: Oxidant-Induced Caspase Inactivation Leads to Necrosis. Biochem. Biophys. Res. Commun. 1999, 255, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.M.R.; Delany, A.M.; Canalis, E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone 2001, 28, 484–490. [Google Scholar] [CrossRef]
- Xu, B.; Lang, L.-m.; Li, S.-Z.; Guo, J.-R.; Wang, J.-F.; Wang, D.; Zhang, L.-P.; Yang, H.-M.; Lian, S. Cortisol Excess-Mediated Mitochondrial Damage Induced Hippocampal Neuronal Apoptosis in Mice Following Cold Exposure. Cells 2019, 8, 612. [Google Scholar] [CrossRef] [PubMed]
Concentration | Time | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Con | 15 min | 30 min | 1 h | 2 h | 3 h | 24 h | ||
Con (0 ng/mL) | 100.00 ± 2.27 | 100.00 ± 2.41 A | 100.00 ± 7.25 | 100.00 ± 3.11 | 100.00 ± 8.66 A | 100.00 ± 5.92 A | 100.00 ± 7.62 A | |
5 ng/mL | 100.00 ± 2.27 abc | 90.80 ± 5.48 AB, bcd | 102.08 ± 3.35 ab | 108.67 ± 5.69 a | 78.47 ± 4.30 B, d | 85.35 ± 2.43 B, d | 87.30 ± 1.14 ABC, cd | 0.0003 |
10 ng/mL | 100.00 ± 2.27 a | 84.29 ± 6.18 BC, bc | 95.97 ± 3.43 ab | 95.32 ± 2.64 ab | 71.30 ± 6.81 B, c | 83.99 ± 1.78 B, bc | 74.98 ± 3.23 C, c | <0.0001 |
20 ng/mL | 100.00 ± 2.27 a | 73.53 ± 3.12 CD, b | 101.89 ± 3.30 a | 105.21 ± 6.84 a | 70.55 ± 4.39 B, b | 72.95 ± 2.80 CD, b | 76.49 ± 3.84 BC, b | <0.0001 |
30 ng/mL | 100.00 ± 2.27 a | 66.92 ± 1.98 D, bc | 104.44 ± 3.57 a | 103.01 ± 3.03 a | 62.36 ± 3.64 B, c | 79.09 ± 2.60 BC, b | 73.03 ± 5.89 C, bc | <0.0001 |
50 ng/mL | 100.00 ± 2.27 a | 69.60 ± 5.28 D, b | 98.80 ± 0.68 a | 96.48 ± 4.25 a | 78.20 ± 3.44 B, b | 69.97 ± 3.51 CD, b | 78.89 ± 2.94 BC, b | <0.0001 |
70 ng/mL | 100.00 ± 2.27 b | 64.45 ± 3.61 D, c | 115.06 ± 2.94 a | 92.46 ± 1.64 b | 63.24 ± 8.80 B, c | 63.26 ± 1.49 D, c | 89.92 ± 2.87 AB, b | <0.0001 |
p-value | <0.0001 | 0.0617 | 0.1321 | 0.0024 | <0.0001 | 0.0026 |
Concentration | Time | p Value | |||||
---|---|---|---|---|---|---|---|
Con | 15 min | 30 min | 1 h | 2 h | 3 h | ||
Con (0 ng/mL) | 1.00 ± 0.02 | 1.00 ± 0.05 A | 1.00 ± 0.05 | 1.00 ± 0.004 B | 1.00 ± 0.03 | 1.00 ± 0.07 A | |
5 ng/mL | 1.00 ± 0.02 ab | 0.79 ± 0.01 B, c | 0.93 ± 0.04 b | 1.1 ± 0.03 A, a | 1.06 ± 0.02 a | 0.68 ± 0.02 B, c | <0.0001 |
10 ng/mL | 1.00 ± 0.02 ab | 0.71 ± 0.11 B, c | 1 ± 0.04 ab | 0.9 ± 0.02 C, b | 1.13 ± 0.13 a | 0.95 ± 0.03 A, ab | 0.0034 |
30 ng/mL | 1.00 ± 0.02 b | 0.80 ± 0.02 B, c | 1 ± 0.04 b | 1.11 ± 0.02 A, ab | 1.16 ± 0.05 a | 1.05 ± 0.01 A, ab | 0.0002 |
70 ng/mL | 1.00 ± 0.02 ab | 0.68 ± 0.07 B, c | 0.99 ± 0.03 ab | 1.07 ± 0.03 AB, a | 0.89 ± 0.05 b | 1.01 ± 0.05 A, ab | <0.0001 |
p value | 0.03 | 0.72 | 0.0005 | 0.12 | 0.007 |
Gene Symbol | Accession Number | Primer Sequences (5′ to 3′) | Product Size (bp) |
---|---|---|---|
NR3C1 | XM_059887932.21 | F: ACTCACTGATGGACCCCAAG R: TCTCTCGACCAAGCACACTG | 78 |
HSP70 | NM_203322.3 | F: AGCAGGTGTGTAACCCCATC R: CAGGCAAGACCAAAGTCCAT | 181 |
HSP90AA1 | NM_001012670.2 | F: AGCCCTGAGAGACAACTCCA R: CGTACAGCAGGATGACCAGA | 152 |
SOD | NM_174615.2 | F: AGAGGCATGTTGGAGACCTG R: CAGCGTTGCCAGTCTTTGTA | 189 |
CAT | NM_001035386.2 | F: TGGGACCCAACTATCTCCAG R: AAGTGGGTCCTGTGTTCCAG | 178 |
GPX | NM_174076.3 | F: GGAGATCCTGAATTGCCTGA R: TTAGGGTCGGTCATGAGAGC | 174 |
p53 | NM_174201.2 | F: CCTCACCATCATCACACTGG R: GGTAGGCAGTGCTCGCTTAG | 178 |
BAX | NM_173894.1 | F: CTCCCCGAGAGGTCTTTTTC R: TCGAAGGAAGTCCAATGTCC | 176 |
Caspase-3 | NM_001077840 | F: TCTGGTACAGACGTGGATGC R: CCATGGCTTAGAAGCACACA | 173 |
GAPDH | NM_001034034.2 | F: GGGTCATCATCTCTGCACCT R: GGTCATAAGTCCCTCCACGA | 176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, L.; Yu, D.; Choi, H.; Kim, J.; Ban, J.; Shim, K.; Kang, D. Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol. Animals 2025, 15, 2847. https://doi.org/10.3390/ani15192847
Kim L, Yu D, Choi H, Kim J, Ban J, Shim K, Kang D. Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol. Animals. 2025; 15(19):2847. https://doi.org/10.3390/ani15192847
Chicago/Turabian StyleKim, Leecheon, Dongjin Yu, Hyunwoo Choi, Jongryun Kim, Junseok Ban, Kwanseob Shim, and Darae Kang. 2025. "Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol" Animals 15, no. 19: 2847. https://doi.org/10.3390/ani15192847
APA StyleKim, L., Yu, D., Choi, H., Kim, J., Ban, J., Shim, K., & Kang, D. (2025). Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol. Animals, 15(19), 2847. https://doi.org/10.3390/ani15192847