Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,413)

Search Parameters:
Keywords = cell–extracellular matrix interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1813 KB  
Review
Sweet Surprises: Decoding Tumor-Associated Glycosylation in Cancer Progression and Therapeutic Potential
by Eileena F. Giurini, Sam G. Pappas and Kajal H. Gupta
Cells 2026, 15(3), 233; https://doi.org/10.3390/cells15030233 - 26 Jan 2026
Abstract
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant [...] Read more.
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant glycosylation often results in the modification of glycoconjugate structures, leading to alterations in cell surface architecture that disrupt cellular homeostasis and signaling pathways. These changes can enhance tumor cell proliferation, invasion, and metastasis by modulating cell adhesion, receptor activation, and intracellular communication. Beyond its direct impact on cancer cells, tumor-associated glycosylation plays a pivotal role in shaping the tumor microenvironment. Aberrant glycan structures influence immune cell infiltration by altering antigen presentation and immune checkpoint interactions, contributing to immune evasion. Additionally, these modifications regulate angiogenesis by affecting endothelial cell function and promoting the formation of aberrant vasculature, which supports tumor growth and metastasis. Glycosylation also mediates tumor–stroma interactions, influencing extracellular matrix remodeling and fibroblast activation, further enhancing cancer progression. This interplay between cancer-associated glycan modifications and their functional roles in tumorigenesis presents a promising therapeutic approach. Unlike conventional treatments, glycan-targeting therapies confer high tumor specificity, operate independently of canonical immune checkpoint targets, and help mitigate immune cell exhaustion. This review explores commonly dysregulated glycan motifs implicated in tumorigenesis and delves into their mechanistic contributions to cancer pathogenesis. We then highlight emerging opportunities for therapeutic intervention, including the development of glycan-targeted therapies and biomarker-driven strategies for cancer diagnosis and treatment. We also outline where glycan-targeted agents (e.g., desialylating biologics, glycomimetics, and anti-glycan mAbs) can complement checkpoint blockade and potentially overcome immune escape. Full article
Show Figures

Figure 1

27 pages, 10800 KB  
Article
Integrative RNA-Seq and TCGA-BRCA Analyses Highlight the Role of LINC01133 in Triple-Negative Breast Cancer
by Leandro Teodoro Júnior, Henrique César de Jesus-Ferreira, Mari Cleide Sogayar and Milton Yutaka Nishiyama-Jr.
Biomedicines 2026, 14(2), 268; https://doi.org/10.3390/biomedicines14020268 - 24 Jan 2026
Viewed by 60
Abstract
Background: Triple-negative breast cancers (TNBCs) are among the most aggressive breast tumors, due not only to the absence of clinically functional biomarkers used in other molecular subtypes, but also their marked heterogeneity and pronounced migratory and invasive behavior. The search for new molecules [...] Read more.
Background: Triple-negative breast cancers (TNBCs) are among the most aggressive breast tumors, due not only to the absence of clinically functional biomarkers used in other molecular subtypes, but also their marked heterogeneity and pronounced migratory and invasive behavior. The search for new molecules of interest for risk prediction, diagnosis and therapy stems from the class of long non-coding RNAs (lncRNAs), which often display context-dependent (“dual”) functions and tissue specificity. Among them, lncRNA LINC01133 stands out for its dysregulation across cancer, although its molecular role in TNBC remains unclear. Methods: In the present study, we used the human TNBC cell line Hs578T to generate a cell panel comprising the parental line (Hs578T_wt), the control line (Hs578T_ctr), and the LINC01133 knockout line (Hs578T_ko). Subsequently, we performed bulk RNA-Seq to identify KO-associated Differentially Expressed Genes (DEGs) using ko_vs_ctr as the primary contrast. Functional interpretation was achieved by Over-Representation Analysis (ORA) using Gene Ontology. We then conducted a comparative patient-cohort analysis using TCGA-BRCA Basal-like/TNBC cases (TCGA/BRCA n = 1098; Basal-like/TNBC n = 199), classified with the AIMS algorithm, and evaluated concordance between KO-associated signatures and patient tumor expression patterns via trend-based analyses across the LINC01133 expression levels and associated genes. Results: A total of 265 KO-dominant DEGs were identified in Hs578T_ko, reflecting transcriptional changes consistent with tumor progression, with enrichment of pathways associated with LINC01133 knockout including cell adhesion, cell–cell interactions, epithelial–mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling. The main DEGs included ITIH5, GLUL, CACNB2, PDX1, ASPN, PTGER3, MFAP4, PI15, EPHB6, and CPA3 with additional candidates, such as KAZN and the lncRNA gene SSC4D, which have been implicated in migration/invasion, ECM remodeling, or signaling across multiple tumor contexts. Translational analyses in TCGA-BRCA basal-like tumors suggested a descriptive association in which lower LINC01133 levels were accompanied by shifts in the expression trends of genes linked to ECM/EMT programs and modulation of genes related to cell adhesion and protease inhibition. Conclusions: These results suggest a transcriptional model in which LINC01133 is associated with TNBC-related gene expression programs in a concentration-dependent manner, with loss of LINC01133 being associated with a transcriptomic shift toward pro-migratory/ECM remodeling signatures. While functional validation is required to establish causality, these data support LINC01133 as a molecule of interest in breast cancer research. Full article
(This article belongs to the Special Issue Bioinformatics Analysis of RNA for Human Health and Disease)
Show Figures

Figure 1

21 pages, 4085 KB  
Review
Bridging Osteoimmunology and Regenerative Therapy: The Role of MSCs and Extracellular Vesicles
by Itziar Álvarez-Iglesias, Alice Colombo, Luis Gil-de-Gómez, Daniel García-Sánchez, Alberto González-González and Flor M. Pérez-Campo
Int. J. Mol. Sci. 2026, 27(3), 1155; https://doi.org/10.3390/ijms27031155 - 23 Jan 2026
Viewed by 76
Abstract
Bone homeostasis and regeneration depend on tightly regulated interactions between skeletal cells and the immune system within the bone microenvironment. Disruption of this crosstalk by ageing, chronic inflammation, or systemic disease contributes to osteoporosis, inflammatory bone loss, and impaired fracture healing. Osteoimmunology has [...] Read more.
Bone homeostasis and regeneration depend on tightly regulated interactions between skeletal cells and the immune system within the bone microenvironment. Disruption of this crosstalk by ageing, chronic inflammation, or systemic disease contributes to osteoporosis, inflammatory bone loss, and impaired fracture healing. Osteoimmunology has reframed bone biology as an immune-regulated process, highlighting mesenchymal stem cells (MSCs) as central coordinators of bone-immune communication. Beyond their differentiation capacity, MSCs act primarily through paracrine mechanisms, releasing a secretome composed of soluble factors and extracellular vesicles (EVs) that modulate immune responses, regulate osteoblast and osteoclast activity, promote angiogenesis, and support extracellular matrix remodelling. MSC-derived EVs have emerged as key nanoscale mediators that transfer bioactive cargo to target cells in a context-dependent manner, enabling precise regulation of osteoimmune processes. This review summarises current knowledge on the role of MSCs in osteoimmunology, with a focus on how their secretome and EVs integrate immune modulation with bone regeneration. We discuss the mechanisms underlying MSC-mediated regulation of innate and adaptive immune cells, examine emerging cell-free therapeutic strategies based on secretome and EV delivery, and outline the main challenges that must be addressed to advance these approaches towards clinical application. Full article
Show Figures

Figure 1

22 pages, 5760 KB  
Article
Polylactide/Polycaprolactone Nanofiber Scaffold Enhances Primary Cortical Neuron Growth
by Valeriia S. Shtol, Anastasiia D. Tsareva, Kirill A. Arsentiev, Sophia P. Konovalova, Suanda A. Tlimahova, Dmitry V. Klinov, Dimitri A. Ivanov and Pavel E. Musienko
Polymers 2026, 18(2), 294; https://doi.org/10.3390/polym18020294 - 21 Jan 2026
Viewed by 124
Abstract
Spinal cord injury (SCI) remains a major clinical challenge due to the limited regenerative capacity of the central nervous system (CNS). Effective scaffolds for repair must combine mechanical compatibility with host tissue, controlled degradation matching the time course of regeneration, and microarchitectural features [...] Read more.
Spinal cord injury (SCI) remains a major clinical challenge due to the limited regenerative capacity of the central nervous system (CNS). Effective scaffolds for repair must combine mechanical compatibility with host tissue, controlled degradation matching the time course of regeneration, and microarchitectural features that promote neuronal survival. Electrospun nanofibrous scaffolds mimic the structural and mechanical features of the extracellular matrix, providing critical cues for neuronal adhesion and glial modulation in neural regeneration. Here, we fabricated biodegradable poly(lactic acid)/poly(ε-caprolactone) (PLA/PCL) scaffolds using a dichloromethane/tetrahydrofuran (DCM/THF) solvent system to induce surface porosity via solvent-driven phase separation. The DCM/THF solvent system formulation produced nanofibers with porous surfaces and increased area for cell interaction. PLA/PCL scaffolds showed a Young’s modulus of ~26 MPa and sustained degradation, particularly under oxidative conditions simulating the post-injury microenvironment. In vitro, these scaffolds enhanced neuronal density up to fivefold and maintained ~80% viability over 10 days in primary neuron–glia cultures. Morphometric analysis revealed that DCM/THF-based scaffolds supported astrocytes with preserved process complexity and reduced circularity, indicative of a less reactive morphology. In contrast, scaffolds fabricated with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) displayed reduced bioactivity and promoted morphological features associated with astrocyte reactivity, including cell rounding and process retraction. These findings demonstrate that solvent-driven control of scaffold microarchitecture is a powerful strategy to enhance neuronal integration and modulate glial morphology, positioning DCM/THF-processed PLA/PCL scaffolds as a promising platform for CNS tissue engineering. Full article
Show Figures

Graphical abstract

17 pages, 1238 KB  
Review
The Genetic Landscape of Androgenetic Alopecia: Current Knowledge and Future Perspectives
by Aditya K. Gupta, Daniel J. Dennis, Vasiliki Economopoulos and Vincent Piguet
Biology 2026, 15(2), 192; https://doi.org/10.3390/biology15020192 - 21 Jan 2026
Viewed by 129
Abstract
Androgenetic alopecia (AGA) is the most common cause of progressive hair thinning in adults and has traditionally been viewed as an androgen-driven inherited condition. Genomic research now demonstrates that AGA is a complex polygenic disorder involving multiple biological pathways, including androgen signaling, hair [...] Read more.
Androgenetic alopecia (AGA) is the most common cause of progressive hair thinning in adults and has traditionally been viewed as an androgen-driven inherited condition. Genomic research now demonstrates that AGA is a complex polygenic disorder involving multiple biological pathways, including androgen signaling, hair follicle development, cell survival, and extracellular matrix remodeling. Genome-wide association studies have identified numerous susceptibility loci, revealing that follicle miniaturization arises from interacting molecular mechanisms rather than a single pathogenic process. Genetic risk and predictive value vary across populations, with many loci identified in European cohorts showing limited transferability to other ancestries, highlighting the need for more diverse genetic studies. In women, genetic studies remain underpowered, and emerging data suggest partially distinct risk architecture compared with male AGA. Pharmacogenetic findings indicate that genetic variation may influence response to commonly used therapies, although no markers are currently validated for routine clinical use. Advances in single-cell and multi-omic approaches are improving understanding of how genetic risk translates into follicular dysfunction, supporting the development of more personalized and mechanism-based treatment strategies. Full article
Show Figures

Figure 1

21 pages, 3116 KB  
Review
The Role of Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in the Tumor Microenvironment and Their Impact on Ovarian Cancer Survival and Therapy
by Alena A. McQuarter, Joseph Cruz, Celina R. Yamauchi, Mariem Chouchen, Cody S. Carter, Tonya J. Webb and Salma Khan
Curr. Oncol. 2026, 33(1), 59; https://doi.org/10.3390/curroncol33010059 - 19 Jan 2026
Viewed by 283
Abstract
Ovarian cancer is the deadliest gynecologic cancer, mainly because it is often diagnosed late and resists standard treatments. The tumor microenvironment (TME) plays a major role in disease progression and therapy failure. Two key components of the TME, cancer-associated fibroblasts (CAFs) and tumor-associated [...] Read more.
Ovarian cancer is the deadliest gynecologic cancer, mainly because it is often diagnosed late and resists standard treatments. The tumor microenvironment (TME) plays a major role in disease progression and therapy failure. Two key components of the TME, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), create conditions that facilitate tumor growth and immune evasion. CAFs are highly diverse and originate from sources like fibroblasts and stem cells. They support cancer by remodeling the extracellular matrix, promoting angiogenesis, and releasing cytokines and growth factors that aid tumor survival. TAMs, which are usually in an M2 state, also promote metastasis and suppress immune responses by secreting immunosuppressive molecules. Together, CAFs and TAMs interact with cancer cells to activate pathways such as the TGF-β, IL-6, and PI3K/AKT pathways, which drive resistance to therapy. New treatments aim to block these interactions by targeting CAFs and TAMs through depletion, reprogramming, or pathway inhibition, often combined with immunotherapy. Advances such as single-cell sequencing and spatial transcriptomics now enable more precise identification of CAF and TAM subtypes, enabling more targeted therapies. This review summarizes their roles in epithelial ovarian cancer and explores how targeting these cells could improve outcomes. Full article
Show Figures

Figure 1

43 pages, 2780 KB  
Review
Molecular and Immune Mechanisms Governing Cancer Metastasis, Including Dormancy, Microenvironmental Niches, and Tumor-Specific Programs
by Dae Joong Kim
Int. J. Mol. Sci. 2026, 27(2), 875; https://doi.org/10.3390/ijms27020875 - 15 Jan 2026
Viewed by 258
Abstract
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, [...] Read more.
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, long-term survival, and eventual outgrowth are examined, with a focus on how tumor-intrinsic programs interact with extracellular matrix (ECM) remodeling, angiogenesis, and immune regulation. Gene networks that sustain tumor-cell plasticity and invasion are described, including EMT-linked transcription factors such as SNAIL and TWIST, as well as broader transcriptional regulators like SP1. Also, how epigenetic mechanisms, such as EZH2 activity, DNA methylation, chromatin remodeling, and noncoding RNAs, lock in pro-metastatic states and support adaptation under therapeutic pressure. Finally, proteases and matrix-modifying enzymes that physically and biochemically reshape tissues, including MMPs, uPA, cathepsins, LOX/LOXL2, and heparinase, are discussed for their roles in releasing stored growth signals and building permissive niches that enable seeding and colonization. In parallel, immune-evasion strategies that protect circulating and newly seeded tumor cells are discussed, including platelet-mediated shielding, suppressive myeloid populations, checkpoint signaling, and stromal barriers that exclude effector lymphocytes. A major focus is metastatic dormancy, cellular, angiogenic, and immune-mediated, framed as a reversible survival state regulated by stress signaling, adhesion cues, metabolic rewiring, and niche constraints, and as a key determinant of late relapse. Tumor-specific metastatic programs across mesenchymal malignancies (osteosarcoma, chondrosarcoma, and liposarcoma) and selected high-burden cancers (melanoma, hepatocellular carcinoma, glioblastoma, and breast cancer) are highlighted, emphasizing shared principles and divergent organotropisms. Emerging therapeutic strategies that target both the “seed” and the “soil” are also discussed, including immunotherapy combinations, stromal/ECM normalization, chemokine-axis inhibition, epigenetic reprogramming, and liquid-biopsy-enabled minimal residual disease monitoring, to prevent reactivation and improve durable control of metastatic disease. Full article
(This article belongs to the Special Issue Molecular Mechanism Involved in Cancer Metastasis)
Show Figures

Figure 1

26 pages, 6754 KB  
Article
Akhirin Functions as an Innate Immune Barrier to Preserve Neurogenic Niche Homeostasis During Mouse Brain Development
by Mikiko Kudo, Tenta Ohkubo, Taichi Sugawara, Takashi Irie, Jun Hatakeyama, Shigehiko Tamura, Kenji Shimamura, Tomohiko Wakayama, Naoki Matsuo, Kinichi Nakashima, Takahiro Masuda and Kunimasa Ohta
Cells 2026, 15(2), 151; https://doi.org/10.3390/cells15020151 - 14 Jan 2026
Viewed by 256
Abstract
Neurogenesis is tightly regulated by complex interactions among neural stem and progenitor cells (NSCs/NPCs), blood vessels, microglia, and extracellular matrix components within the neurogenic niche. In the embryonic brain, NSCs reside along the ventricular surface, where cerebrospinal fluid (CSF) directly regulates their proliferation. [...] Read more.
Neurogenesis is tightly regulated by complex interactions among neural stem and progenitor cells (NSCs/NPCs), blood vessels, microglia, and extracellular matrix components within the neurogenic niche. In the embryonic brain, NSCs reside along the ventricular surface, where cerebrospinal fluid (CSF) directly regulates their proliferation. Here, we identify Akhirin (AKH) as a critical regulator that preserves the integrity of the NSC niche during mouse brain development. At embryonic day 14.5, AKH is secreted and enriched at the apical surface of choroid plexus epithelial cells and the ventricular lining. Loss of AKH leads to increases the inflammatory cytokine expression in the CSF and disrupts NSC niche homeostasis. Furthermore, AKH is cleaved upon inflammatory stimulation, and its LCCL domain directly binds bacteria, thereby preventing their spread. These findings reveal that AKH functions as a protective barrier molecule within the developing neurogenic niche, providing immune protection and preserving NSC niche homeostasis during periods when the innate immune defenses are still immature. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

18 pages, 13816 KB  
Article
Synergistic Overexpression of Sox9, TGFβ1, and Col II Induces Functional Chondrogenesis in hUC-MSCs Using a 3D Culture Approach
by Shumaila Khalid, Sobia Ekram, Faiza Ramzan, Asmat Salim and Irfan Khan
Organoids 2026, 5(1), 3; https://doi.org/10.3390/organoids5010003 - 14 Jan 2026
Viewed by 134
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess the potential for chondrogenic differentiation, offering a promising alternative source for cartilage regeneration. To address the limited availability and expansion capacity of autologous chondrocytes, we investigated the effect of co-overexpression of Sox9, TGFβ1, and type [...] Read more.
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess the potential for chondrogenic differentiation, offering a promising alternative source for cartilage regeneration. To address the limited availability and expansion capacity of autologous chondrocytes, we investigated the effect of co-overexpression of Sox9, TGFβ1, and type II collagen (Col II) on the chondrogenic differentiation of hUC-MSCs using both 2D and 3D pellet culture systems. Following transfection, the cells exhibited a chondrocyte-like morphology and a marked downregulation of the stemness marker Stro-1. After 21 days in a 3D pellet culture system, the cells formed cartilage-like tissue characterized by the strong expression of chondrocyte-specific genes (Sox9, TGFβ1, Col II, Aggrecan) along with the significant secretion of sulfated glycosaminoglycans (sGaGs). These effects were attributed to enhanced cell–cell contact and extracellular matrix interactions promoted by the 3D environment. Our findings suggest that genetically modified hUC-MSCs cultured in a 3D pellet system represent a robust in vitro model for cartilage regeneration, with potential applications in transplantation and drug toxicity screening. Full article
Show Figures

Figure 1

27 pages, 2116 KB  
Review
Functional Hydrogels in Bone Tissue Engineering: From Material Design to Translational Applications
by Francesco Maria Petraglia, Sabrina Giordano and Angelo Santoro
Biologics 2026, 6(1), 2; https://doi.org/10.3390/biologics6010002 - 12 Jan 2026
Viewed by 405
Abstract
Bone tissue engineering offers a promising alternative to autografts and allografts for treating critical bone defects. Hydrogels, three-dimensional hydrophilic polymer networks, have emerged as leading scaffold materials due to their ability to mimic native extracellular matrix properties while providing tunable biocompatibility, biodegradability, mechanical [...] Read more.
Bone tissue engineering offers a promising alternative to autografts and allografts for treating critical bone defects. Hydrogels, three-dimensional hydrophilic polymer networks, have emerged as leading scaffold materials due to their ability to mimic native extracellular matrix properties while providing tunable biocompatibility, biodegradability, mechanical characteristics, and high water content, enabling nutrient transport and cell viability. These scaffolds can be loaded with bioactive cues, including growth factors, peptides, and nanoparticles, and can deliver stem cells, supporting localised and sustained bone regeneration. Recent advances in hydrogel design have improved osteoinductivity and osteoconductivity through controlled physical, chemical, and mechanical properties, and sophisticated fabrication strategies such as 3D bioprinting and nanostructuring. This review provides a comprehensive overview of hydrogel-based scaffolds for bone tissue engineering, discussing material types, bioactive factor delivery, host tissue interactions, including immune modulation and osteogenic differentiation, and the latest preclinical and clinical applications. Finally, we highlight the remaining challenges and critical design requirements for developing next-generation hydrogels that integrate structural integrity with biological functionality. Full article
Show Figures

Figure 1

19 pages, 2891 KB  
Article
Reference Gene Validation for Quantitative PCR Analysis in 2D and 3D AML12 Hepatocyte Models
by Zhenya Ivanova, Valeria Petrova, Betina Todorova, Toncho Penev and Natalia Grigorova
Biomedicines 2026, 14(1), 150; https://doi.org/10.3390/biomedicines14010150 - 11 Jan 2026
Viewed by 208
Abstract
Background/Objectives: Advanced 3D cell culture techniques enhance the physiological relevance of in vitro models, while supporting the 3Rs principles (Reduction, Refinement, and Replacement) of animal experimentation. In this context, 3D collagen-based systems mimic key extracellular matrix properties, enabling more accurate cellular organization [...] Read more.
Background/Objectives: Advanced 3D cell culture techniques enhance the physiological relevance of in vitro models, while supporting the 3Rs principles (Reduction, Refinement, and Replacement) of animal experimentation. In this context, 3D collagen-based systems mimic key extracellular matrix properties, enabling more accurate cellular organization and phenotype. However, changes in culture dimensionality can affect RT-qPCR reference gene stability, underscoring the need for careful validation when combining 2D and 3D systems. Methods: AML12 cells were cultured for 7 days under different 2D and collagen-based 3D conditions. The expression stability of nine candidate housekeeping genes was systematically evaluated using established algorithms (BestKeeper, NormFinder, geNorm, RefFinder, and ΔCt method), followed by inter-group statistical and correlation analyses of raw Ct values. Albumin gene expression was used as a target gene. Results: Although all candidate genes initially met acceptable variability thresholds, a stepwise, exclusion-based analysis revealed distinct performance differences. Hprt, Ppia, and Actb emerged as the most stable, showing no intra-group variability or interaction with Albumin expression. Nevertheless, Ywhaz and Rplp0, despite their high stability, were compromised by significant correlation with Albumin. Furthermore, Ywhaz showed significant downregulation under 3D culture conditions. B2M, Gapdh, 18S, and Hmbs exhibited increased variability, likely reflecting metabolic and microenvironmental heterogeneity associated with prolonged 2D cultivation of AML12 cells. Conclusions: Overall, this study highlights the importance of context-dependent, exclusion-based reference gene validation when comparing 2D and 3D models, and demonstrates a new approach for reliable gene expression normalization in complex in vitro culture systems. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

23 pages, 2109 KB  
Review
Fibroblasts as Immunological Sentinels in Cutaneous Inflammation: A Review
by Taihao Quan
J. Clin. Med. 2026, 15(2), 556; https://doi.org/10.3390/jcm15020556 - 9 Jan 2026
Viewed by 410
Abstract
Fibroblasts, traditionally viewed primarily as structural cells responsible for extracellular matrix production and tissue architecture, have emerged as important immunomodulatory players in inflammation. These cells actively participate in inflammatory processes through multiple mechanisms: recognizing and responding to inflammatory stimuli, producing diverse inflammatory mediators, [...] Read more.
Fibroblasts, traditionally viewed primarily as structural cells responsible for extracellular matrix production and tissue architecture, have emerged as important immunomodulatory players in inflammation. These cells actively participate in inflammatory processes through multiple mechanisms: recognizing and responding to inflammatory stimuli, producing diverse inflammatory mediators, and engaging in complex interactions with various immune cells. This review explores the multifaceted immunomodulatory functions of fibroblasts, including their capacity to sense inflammatory signals, secrete inflammatory mediators, modulate immune cell behavior, and establish a pro-inflammatory microenvironment. Understanding the dynamic role of fibroblasts in inflammatory processes provides insights into inflammatory pathology and may inform the development of novel therapeutic strategies targeting fibroblast-mediated immune modulation. Full article
(This article belongs to the Special Issue Skin Disease and Inflammation)
Show Figures

Figure 1

20 pages, 10383 KB  
Article
Metabolic Syndrome-Driven Changes in Cardiac Lymphatic Endothelium: mRNA Expression and Emerging Questions
by Ewa Jankowska-Steifer, Anna Ratajska, Aleksandra Flaht-Zabost, Dorota Magdalena Radomska-Leśniewska, Iwona Badurek, Ewelina Kiernozek, Aneta Moskalik, Barbara Majchrzak, Mateusz Bartkowiak, Krzysztof Bartkowiak, Bogdan Ciszek, Marek Kujawa and Justyna Niderla-Bielinska
Pathophysiology 2026, 33(1), 4; https://doi.org/10.3390/pathophysiology33010004 - 9 Jan 2026
Viewed by 176
Abstract
Background/Objectives: Metabolic syndrome (MetS) conditions lead to structural and functional alterations in cardiomyocytes, microvasculature, and extracellular matrix (ECM), leading to myocardial fibrosis and impaired diastolic function. Cardiac lymphatic vessels (LVs) are increasingly recognized as key regulators of myocardial homeostasis, yet their response [...] Read more.
Background/Objectives: Metabolic syndrome (MetS) conditions lead to structural and functional alterations in cardiomyocytes, microvasculature, and extracellular matrix (ECM), leading to myocardial fibrosis and impaired diastolic function. Cardiac lymphatic vessels (LVs) are increasingly recognized as key regulators of myocardial homeostasis, yet their response to MetS remains poorly understood. Therefore, we aimed to investigate transcriptional changes in cardiac lymphatic endothelial cells (LECs) in db/db mice, a well-established model of MetS. Methods: Using flow cytometry-sorted LECs and RT-PCR, we analyzed mRNA expression of genes involved in lymphangiogenesis, metabolism, mechanotransduction, immune cell trafficking, and ECM interactions. Results: Our findings show the transcriptional plasticity of cardiac LECs in response to MetS. Conclusions: Although our study is limited by the lack of protein-level validation and functional assays, our approach provides a broader interpretative framework and identifies potential directions for future research, including functional studies and pathway-specific investigations of the identified genes to assess their impact on lymphatic flow and cardiac function. Understanding LEC responses to metabolic stress may uncover novel therapeutic targets for heart failure associated with MetS. Full article
Show Figures

Graphical abstract

13 pages, 2195 KB  
Case Report
First Whole-Genome Sequencing Analysis of Tracheobronchopathia Osteochondroplastica with Critical Vocal Cord Involvement: Proposing a Novel Pathophysiological Model
by Yeonhee Park, Joo-Eun Lee, Mi Jung Lim, Hyeong Seok Kang and Chaeuk Chung
Diagnostics 2026, 16(2), 210; https://doi.org/10.3390/diagnostics16020210 - 9 Jan 2026
Viewed by 195
Abstract
Background: Tracheobronchopathia osteochondroplastica (TO) is a rare benign disorder characterized by submucosal cartilaginous and osseous nodules of the tracheobronchial tree, typically sparing the posterior membranous wall. Involvement of the vocal cords is exceedingly rare and may result in critical airway obstruction. The [...] Read more.
Background: Tracheobronchopathia osteochondroplastica (TO) is a rare benign disorder characterized by submucosal cartilaginous and osseous nodules of the tracheobronchial tree, typically sparing the posterior membranous wall. Involvement of the vocal cords is exceedingly rare and may result in critical airway obstruction. The underlying genetic and molecular mechanisms of TO remain largely unexplored. Case presentation: We report a rare case of TO extending from the vocal cords to the bronchi in a 76-year-old man who initially presented with pneumonia and later developed acute respiratory failure due to severe airway narrowing, necessitating emergency tracheostomy. Bronchoscopy and computed tomography revealed diffuse calcified nodules involving the anterior and lateral airway walls, including the subglottic region. Histopathology demonstrated chronic inflammatory cell infiltration with squamous metaplasia. To explore the molecular basis of this condition, whole-genome sequencing (WGS) was performed using peripheral blood samples—the first such application in TO. WGS identified 766 germline mutations (including 27 high-impact variants) and 66 structural variations. Candidate genes were implicated in coagulation and inflammation (KNG1), arachidonic acid metabolism and extracellular matrix remodeling (PLA2G4D), ciliary dysfunction and mineralization (TMEM67), vascular calcification (CDKN2B-AS1), smooth muscle function (MYLK4), abnormal calcification (TRPV2, SPRY2, BAZ1B), fibrotic signaling (AHNAK2), and mucosal barrier integrity (MUC12/MUC19). Notably, despite systemic germline mutations, calcification was restricted to the airway. Conclusions: This case highlights that TO with vocal cord involvement can progress beyond a benign course to cause life-threatening airway obstruction. Integrating clinical, histological, and genomic findings, we propose a novel pathophysiological model in which systemic genetic susceptibility interacts with local immune cell infiltration and fibroblast-driven extracellular matrix remodeling, resulting in airway-restricted dystrophic calcification. This first genomic characterization of TO provides new insights into its pathogenesis and suggests that multi-omics approaches may enable future precision medicine strategies for this rare airway disease. Full article
(This article belongs to the Special Issue Respiratory Diseases: Diagnosis and Management)
Show Figures

Figure 1

14 pages, 680 KB  
Review
Liver Fibrosis: Current Treatments, Bottlenecks, and Future Prospects for Translational Medicine
by Dileep G. Nair and Ralf Weiskirchen
Sci 2026, 8(1), 9; https://doi.org/10.3390/sci8010009 - 7 Jan 2026
Viewed by 311
Abstract
Liver fibrosis is a common pathological result of chronic hepatic injury caused by various factors, such as viral hepatitis, alcohol-induced liver disease, and metabolic dysfunction-associated steatohepatitis (MASH). It is characterized by an excessive deposition of extracellular matrix, which disrupts the architecture of the [...] Read more.
Liver fibrosis is a common pathological result of chronic hepatic injury caused by various factors, such as viral hepatitis, alcohol-induced liver disease, and metabolic dysfunction-associated steatohepatitis (MASH). It is characterized by an excessive deposition of extracellular matrix, which disrupts the architecture of the liver and can lead to cirrhosis, liver failure, and hepatocellular carcinoma. Globally, nearly 10% of the population has significant fibrosis, with its prevalence increasing with age, obesity, and metabolic syndrome. Despite its significant clinical impact, early detection of liver fibrosis is still limited due to insufficient diagnostic technologies and low public awareness. The increasing burden of MASH emphasizes the urgent need for scalable therapeutic strategies. Currently, liver transplantation is the only definitive treatment, but it is limited by donor shortages and the need for lifelong immunosuppression. However, fibrosis is now recognized as a dynamic and potentially reversible process if the underlying cause is addressed. This shift in understanding has prompted efforts to develop pharmacological agents that target hepatic stellate cell activation, immune system interactions, and metabolic dysfunction. Advances in organoid platforms, multi-omics, and non-invasive diagnostics are accelerating translational research in this area. This review aims to synthesize current knowledge about the molecular drivers of fibrosis, bottlenecks in the current anti-fibrotic drug discovery process, and emerging therapeutic approaches to inform precision medicine strategies and reduce the global burden of chronic liver disease. Full article
Show Figures

Figure 1

Back to TopTop