Metabolic Syndrome-Driven Changes in Cardiac Lymphatic Endothelium: mRNA Expression and Emerging Questions
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Lymphatic Endothelial Cell Isolation by Flow Cytometry Sorting
2.3. RT-PCR Analysis
2.4. Immunofluorescence Staining and Confocal Microscopic Analysis
2.5. The Use of Graphics Preparation
3. Results
3.1. mRNA Analysis Shows Alteration in mRNA Expression for Selected Genes in LVs Endothelial Cells
3.2. Immunoconfocal Analysis of Lymphatic Vessel Shapes and Phenotypic Alterations
4. Discussion
4.1. Mechanosensation and Mechanotransduction of Lymphatic Vessels and Matrix Stiffness
4.2. Fatty Acid β-Oxidation as a Metabolic Driver of LEC
4.3. CPT1a and EndoMT in Cardiac Lymphatics
4.4. LV Rarefaction, Oxidative Stress, and Apoptosis
4.5. Immune Cell Trafficking and LEC Dysregulation in MetS Heart
5. Conclusions, Limitations of the Study and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACKR2 | atypical chemokine receptor 2 |
| ACTA2 | Actin 2/smooth muscle actin |
| Bax | BCL2 Associated X |
| Bcl2 | B-cell CLL/lymphoma 2 |
| BEC | Blood vascular Endothelial Cells |
| CCL2 | C-C motif chemokine ligand 2 |
| CCL21 | Chemokine (C-C motif) ligand 21 |
| CEACAM1 | Carcinoembryonic antigen-related cell adhesion molecule 1 |
| CPT1A | Carnitine Palmitoyltransferase 1A |
| CX3CL1 | chemokine (C-X3-C motif) ligand 1 |
| ECM | Extracellular Matrix |
| EndoMT | Endothelial-to-mesenchymal transition |
| eNOS | endothelial nitric oxide synthase |
| FAO | Fatty Acid β-Oxidation |
| Fbn1 | fibrillin-1 |
| FGF2 | Fibroblast growth factor 2 |
| Foxc2 | Forkhead box protein C2 |
| FOXO1 | Forkhead Box O1 |
| FSS | fluid shear stress |
| GATA2 | GATA-binding factor 2 |
| HF | Heart Failure |
| HFpEF | Heart Failure with Preserved Ejection Fraction |
| HUVECs | human umbilical vein endothelial cells |
| ICAM-1 | intercellular adhesion molecule 1 |
| KLF2 | Krüppel-like Factor 2 |
| LEC | Lymphatic Endothelial Cells |
| LV | Lymphatic Vessels |
| LYVE1 | Lymphatic vessel endothelial hyaluronan receptor 1 |
| MetS | Metabolic Syndrome |
| MI | myocardial infarction |
| MMP2 | Metalloproteinase 2 |
| mTORC2 | Mechanistic target of rapamycin complex 2 |
| PDGFRβ | Platelet-derived growth factor receptor beta |
| PDPN | Podoplanin |
| PI3K | phosphatidylinositol 3-kinase |
| PROX1 | Prospero Homeobox 1 |
| PTEN | phosphatase and tensin homolog deleted on chromosome ten |
| Reln | Reelin |
| ROS | Reactive oxygen species |
| Sdc4 | Syndecan 4 |
| Snail1 | Snail family transcriptional repressor-1 |
| Snail2 | Snail family transcriptional repressor-2 |
| TGF-β | Transforming growth factor beta |
| VANGL2 | VANGL planar cell polarity protein 2 |
| VCAM-1 | vascular cell adhesion molecule 1 |
| VE-cadherin | Vascular endothelial cadherin |
| VEGF-C | Vascular endothelial growth factor C |
| VEGFR3 | Vascular endothelial growth factor receptor 3 |
| α-SMA | α-smooth muscle actin |
References
- Xu, Z.; Lu, Q.; Chen, L.; Ruan, C.; Bai, Y.; Zou, Y.; Ge, J. Role of Lymphangiogenesis in Cardiac Repair and Regeneration. Methodist DeBakey Cardiovasc. J. 2023, 19, 37–46. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, X.; Wu, Z.; Qu, B.; Yuan, M.; Xing, Y.; Song, Y.; Wang, Z. Lymphatic vessel: Origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Pigeot, I.; Ahrens, W. Epidemiology of metabolic syndrome. Pflug. Arch. 2025, 477, 669–680. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, S.; Liu, Z.; Yuan, J.; Ren, H.; Tan, H.; Guo, Y.; Jiang, X. Metabolic syndrome, left ventricular diastolic dysfunction and heart failure with preserved ejective fraction. Front. Endocrinol. 2025, 16, 1544908. [Google Scholar] [CrossRef]
- Tran, V.; De Silva, T.M.; Sobey, C.G.; Lim, K.; Drummond, G.R.; Vinh, A.; Jelinic, M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front. Pharmacol. 2020, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Brakenhielm, E.; Gonzalez, A.; Diez, J. Role of Cardiac Lymphatics in Myocardial Edema and Fibrosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Itkin, M.; Gurevich, A. Unveiling the Impact of Cardiac Lymphatic Pathology on Diastolic Dysfunction and Therapeutic Potential of Lymphangiogenesis. JACC Basic Transl. Sci. 2023, 8, 973–975. [Google Scholar] [CrossRef]
- Chen, H.; Charlat, O.; Tartaglia, L.A.; Woolf, E.A.; Weng, X.; Ellis, S.J.; Lakey, N.D.; Culpepper, J.; Moore, K.J.; Breitbart, R.E.; et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996, 84, 491–495. [Google Scholar] [CrossRef]
- Demarco, V.G.; Ford, D.A.; Henriksen, E.J.; Aroor, A.R.; Johnson, M.S.; Habibi, J.; Ma, L.; Yang, M.; Albert, C.J.; Lally, J.W.; et al. Obesity-related alterations in cardiac lipid profile and nondipping blood pressure pattern during transition to diastolic dysfunction in male db/db mice. Endocrinology 2013, 154, 159–171. [Google Scholar] [CrossRef]
- Faita, F.; Di Lascio, N.; Rossi, C.; Kusmic, C.; Solini, A. Ultrasonographic Characterization of the db/db Mouse: An Animal Model of Metabolic Abnormalities. J. Diabetes Res. 2018, 2018, 4561309. [Google Scholar] [CrossRef]
- Flaht-Zabost, A.; Czarnowska, E.; Jankowska-Steifer, E.; Niderla-Bielińska, J.; Żera, T.; Moskalik, A.; Bartkowiak, M.; Bartkowiak, K.; Tomczyk, M.; Majchrzak, B.; et al. Lymphatic Vessel Remodeling in the Hearts of Ang II-Treated Obese db/db Mice as an Integral Component of Cardiac Remodeling. Appl. Sci. 2024, 14, 8675. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Fopiano, K.A.; Jalnapurkar, S.; Davila, A.C.; Arora, V.; Bagi, Z. Coronary Microvascular Dysfunction and Heart Failure with Preserved Ejection Fraction-implications for Chronic Inflammatory Mechanisms. Curr. Cardiol. Rev. 2022, 18, e310821195986. [Google Scholar] [CrossRef] [PubMed]
- Norden, P.R.; Kume, T. The Role of Lymphatic Vascular Function in Metabolic Disorders. Front. Physiol. 2020, 11, 404. [Google Scholar] [CrossRef]
- Montenegro-Navarro, N.; Garcia-Baez, C.; Garcia-Caballero, M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat. Commun. 2023, 14, 8389. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Balint, L.; Jakus, Z. Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int. J. Mol. Sci. 2021, 22, 3955. [Google Scholar] [CrossRef] [PubMed]
- Angeli, V.; Lim, H.Y. Biomechanical control of lymphatic vessel physiology and functions. Cell. Mol. Immunol. 2023, 20, 1051–1062. [Google Scholar] [CrossRef]
- Mahamud, M.R.; Geng, X.; Ho, Y.C.; Cha, B.; Kim, Y.; Ma, J.; Chen, L.; Myers, G.; Camper, S.; Mustacich, D.; et al. GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through miR-126. Development 2019, 146, dev184218. [Google Scholar] [CrossRef]
- Harris, N.R.; Nielsen, N.R.; Pawlak, J.B.; Aghajanian, A.; Rangarajan, K.; Serafin, D.S.; Farber, G.; Dy, D.M.; Nelson-Maney, N.P.; Xu, W.; et al. VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circ. Res. 2022, 130, 5–23. [Google Scholar] [CrossRef]
- Abdelilah-Seyfried, S.; Ola, R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J. Clin. Investig. 2024, 134, e172843. [Google Scholar] [CrossRef]
- Kataru, R.P.; Baik, J.E.; Park, H.J.; Ly, C.L.; Shin, J.; Schwartz, N.; Lu, T.T.; Ortega, S.; Mehrara, B.J. Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Sci. Signal. 2021, 14, eabc0836. [Google Scholar] [CrossRef] [PubMed]
- Cimini, M.; Kishore, R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front. Physiol. 2021, 12, 667278. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.; Rossi, A.; Solito, R.; Sacchi, G.; Agliano, M.; Gerli, R. Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc. Res. 2002, 64, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Gabbrielli, E.; Villano, M.; Messina, M.; Ferrara, F.; Weber, E. Human microvascular lymphatic and blood endothelial cells produce fibrillin: Deposition patterns and quantitative analysis. J. Anat. 2010, 217, 705–714. [Google Scholar] [CrossRef]
- Danussi, C.; Spessotto, P.; Petrucco, A.; Wassermann, B.; Sabatelli, P.; Montesi, M.; Doliana, R.; Bressan, G.M.; Colombatti, A. Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol. Cell. Biol. 2008, 28, 4026–4039. [Google Scholar] [CrossRef]
- Crocco, P.; Vecchie, D.; Gopalkrishna, S.; Dato, S.; Passarino, G.; Young, M.E.; Nagareddy, P.R.; Rose, G.; De Luca, M. Syndecan-4 as a genetic determinant of the metabolic syndrome. Diabetol. Metab. Syndr. 2023, 15, 156. [Google Scholar] [CrossRef]
- Wang, Y.; Baeyens, N.; Corti, F.; Tanaka, K.; Fang, J.S.; Zhang, J.; Jin, Y.; Coon, B.; Hirschi, K.K.; Schwartz, M.A.; et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development 2016, 143, 4441–4451. [Google Scholar] [CrossRef]
- Alderfer, L.; Russo, E.; Archilla, A.; Coe, B.; Hanjaya-Putra, D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J. 2021, 35, e21498. [Google Scholar] [CrossRef]
- Wong, B.W.; Wang, X.; Zecchin, A.; Thienpont, B.; Cornelissen, I.; Kalucka, J.; Garcia-Caballero, M.; Missiaen, R.; Huang, H.; Bruning, U.; et al. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature 2017, 542, 49–54. [Google Scholar] [CrossRef]
- Simeroth, S.; Yu, P. The role of lymphatic endothelial cell metabolism in lymphangiogenesis and disease. Front. Cardiovasc. Med. 2024, 11, 1392816. [Google Scholar] [CrossRef] [PubMed]
- Teuwen, L.A.; Geldhof, V.; Carmeliet, P. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev. Biol. 2019, 447, 90–102. [Google Scholar] [CrossRef]
- Liang, K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front. Pharmacol. 2023, 14, 1160440. [Google Scholar] [CrossRef]
- Cifarelli, V.; Appak-Baskoy, S.; Peche, V.S.; Kluzak, A.; Shew, T.; Narendran, R.; Pietka, K.M.; Cella, M.; Walls, C.W.; Czepielewski, R.; et al. Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nat. Commun. 2021, 12, 3350. [Google Scholar] [CrossRef]
- Ma, W.; Gil, H.J.; Liu, X.; Diebold, L.P.; Morgan, M.A.; Oxendine-Burns, M.J.; Gao, P.; Chandel, N.S.; Oliver, G. Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance. Sci. Adv. 2021, 7, eabe7359. [Google Scholar] [CrossRef] [PubMed]
- Piera-Velazquez, S.; Li, Z.; Jimenez, S.A. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am. J. Pathol. 2011, 179, 1074–1080. [Google Scholar] [CrossRef]
- Alvandi, Z.; Bischoff, J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2357–2369. [Google Scholar] [CrossRef] [PubMed]
- Gasperini, P.; Espigol-Frigole, G.; McCormick, P.J.; Salvucci, O.; Maric, D.; Uldrick, T.S.; Polizzotto, M.N.; Yarchoan, R.; Tosato, G. Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent signaling. Cancer Res. 2012, 72, 1157–1169. [Google Scholar] [CrossRef]
- Singh, A.; Bhatt, K.S.; Nguyen, H.C.; Frisbee, J.C.; Singh, K.K. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int. J. Mol. Sci. 2024, 25, 6180. [Google Scholar] [CrossRef]
- Rosa, I.; Romano, E.; Fioretto, B.S.; El Aoufy, K.; Bellando-Randone, S.; Matucci-Cerinic, M.; Manetti, M. Lymphatic Endothelial-to-Myofibroblast Transition: A Potential New Mechanism Underlying Skin Fibrosis in Systemic Sclerosis. Cells 2023, 12, 2195. [Google Scholar] [CrossRef]
- Yoshimatsu, Y.; Watabe, T. Emerging roles of inflammation-mediated endothelial-mesenchymal transition in health and disease. Inflamm. Regen. 2022, 42, 9. [Google Scholar] [CrossRef]
- Wei, W.F.; Zhou, H.L.; Chen, P.Y.; Huang, X.L.; Huang, L.; Liang, L.J.; Guo, C.H.; Zhou, C.F.; Yu, L.; Fan, L.S.; et al. Cancer-associated fibroblast-derived PAI-1 promotes lymphatic metastasis via the induction of EndoMT in lymphatic endothelial cells. J. Exp. Clin. Cancer Res. 2023, 42, 160. [Google Scholar] [CrossRef] [PubMed]
- Karaman, S.; Buschle, D.; Luciani, P.; Leroux, J.C.; Detmar, M.; Proulx, S.T. Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis 2015, 18, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hegarty, K.; Lin, F.; Chang, J.L.; Abdalla, A.; Dhanabalan, K.; Solomevich, S.O.; Song, W.; Roder, K.; Yao, C.; et al. Endothelial Cpt1a Inhibits Neonatal Hyperoxia-Induced Pulmonary Vascular Remodeling by Repressing Endothelial-Mesenchymal Transition. Adv. Sci. 2025, 12, e2415824. [Google Scholar] [CrossRef] [PubMed]
- Pakhira, S.; Roy, S.S. Altered fatty acid oxidation via CPT1A promotes epithelial-to-mesenchymal transition in ovarian cancer. FEBS J. 2025, 292, 6283–6306. [Google Scholar] [CrossRef]
- Park, C.W.; Kim, H.W.; Lim, J.H.; Yoo, K.D.; Chung, S.; Shin, S.J.; Chung, H.W.; Lee, S.J.; Chae, C.B.; Kim, Y.S.; et al. Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS axis in db/db mice. Diabetes 2009, 58, 2666–2676. [Google Scholar] [CrossRef]
- Xie, Q.; Shang, T.Y.; Feng, S.; Zhan, R.C.; Liang, J.; Fan, M.G.; Zhang, L.; Liu, J. Hypoxia Inhibits Proliferation of Human Dermal Lymphatic Endothelial Cells via Downregulation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 Expression. Curr. Med. Sci. 2021, 41, 1192–1197. [Google Scholar] [CrossRef]
- Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H. CVD and Oxidative Stress. J. Clin. Med. 2017, 6, 22. [Google Scholar] [CrossRef]
- Ilkun, O.; Boudina, S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: An update on antioxidant therapies. Curr. Pharm. Des. 2013, 19, 4806–4817. [Google Scholar] [CrossRef]
- Hossain, L.; Gomes, K.P.; Yang, X.; Liu, E.; Du Toit, J.; von der Weid, P.Y.; Gibson, S.B. Vascular Endothelial Growth Factor C (VEGF-C) Sensitizes Lymphatic Endothelial Cells to Oxidative-Stress-Induced Apoptosis through DNA Damage and Mitochondrial Dysfunction: Implications for Lymphedema. Int. J. Mol. Sci. 2024, 25, 7828. [Google Scholar] [CrossRef]
- Niimi, K.; Kohara, M.; Sedoh, E.; Fukumoto, M.; Shibata, S.; Sawano, T.; Tashiro, F.; Miyazaki, S.; Kubota, Y.; Miyazaki, J.I.; et al. FOXO1 regulates developmental lymphangiogenesis by upregulating CXCR4 in the mouse-tail dermis. Development 2020, 147, dev181545. [Google Scholar] [CrossRef]
- Ogunsina, O.; Banerjee, R.; Knauer, L.A.; Yang, Y. Pharmacological inhibition of FOXO1 promotes lymphatic valve growth in a congenital lymphedema mouse model. Front. Cell Dev. Biol. 2022, 10, 1024628. [Google Scholar] [CrossRef]
- Serafin, D.S.; Harris, N.R.; Balint, L.; Douglas, E.S.; Caron, K.M. Proximity interactome of lymphatic VE-cadherin reveals mechanisms of junctional remodeling and reelin secretion. Nat. Commun. 2024, 15, 7734. [Google Scholar] [CrossRef]
- Henri, O.; Pouehe, C.; Houssari, M.; Galas, L.; Nicol, L.; Edwards-Levy, F.; Henry, J.P.; Dumesnil, A.; Boukhalfa, I.; Banquet, S.; et al. Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction. Circulation 2016, 133, 1484–1497; discussion 1497. [Google Scholar] [CrossRef]
- Pu, Z.; Shimizu, Y.; Hayashi, T.; Che, Y.; Suzuki, J.; Tsuzuki, K.; Narita, S.; Shibata, R.; Calvert, J.W.; Murohara, T. Cardiac Lymphatic Insufficiency Leads to Diastolic Dysfunction via Myocardial Morphologic Change. JACC Basic Transl. Sci. 2023, 8, 958–972. [Google Scholar] [CrossRef] [PubMed]
- Sawa, Y.; Ueki, T.; Hata, M.; Iwasawa, K.; Tsuruga, E.; Kojima, H.; Ishikawa, H.; Yoshida, S. LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J. Histochem. Cytochem. 2008, 56, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Jackson, D.G. The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J. Cell Sci. 2013, 126, 5259–5270. [Google Scholar] [CrossRef]
- Bottcher, J.P.; Beyer, M.; Meissner, F.; Abdullah, Z.; Sander, J.; Hochst, B.; Eickhoff, S.; Rieckmann, J.C.; Russo, C.; Bauer, T.; et al. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat. Commun. 2015, 6, 8306. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Sun, T.; Dong, Z.; Lu, F.; Li, B. The interplay between lymphatic vessels and macrophages in inflammation response. FASEB J. 2024, 38, e23879. [Google Scholar] [CrossRef]
- Niderla-Bielinska, J.; Sciezynska, A.; Moskalik, A.; Jankowska-Steifer, E.; Bartkowiak, K.; Bartkowiak, M.; Kiernozek, E.; Podgorska, A.; Ciszek, B.; Majchrzak, B.; et al. A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. Int. J. Mol. Sci. 2021, 22, 2197. [Google Scholar] [CrossRef]
- Lee, K.M.; Danuser, R.; Stein, J.V.; Graham, D.; Nibbs, R.J.; Graham, G.J. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density. EMBO J. 2014, 33, 2564–2580. [Google Scholar] [CrossRef]
- Gowhari Shabgah, A.; Jadidi-Niaragh, F.; Mohammadi, H.; Ebrahimzadeh, F.; Oveisee, M.; Jahanara, A.; Gholizadeh Navashenaq, J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front. Immunol. 2022, 13, 861931. [Google Scholar] [CrossRef]
- Astarita, J.L.; Acton, S.E.; Turley, S.J. Podoplanin: Emerging functions in development, the immune system, and cancer. Front. Immunol. 2012, 3, 283. [Google Scholar] [CrossRef]
- Sadhukhan, R.; Leung, J.W.C.; Garg, S.; Krager, K.J.; Savenka, A.V.; Basnakian, A.G.; Pathak, R. Fractionated radiation suppresses Kruppel-like factor 2 pathway to a greater extent than by single exposure to the same total dose. Sci. Rep. 2020, 10, 7734. [Google Scholar] [CrossRef] [PubMed]
- SenBanerjee, S.; Lin, Z.; Atkins, G.B.; Greif, D.M.; Rao, R.M.; Kumar, A.; Feinberg, M.W.; Chen, Z.; Simon, D.I.; Luscinskas, F.W.; et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 2004, 199, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, Y.; Ding, Y.; Luo, S.; Zheng, X.; Wu, X.; Liu, Z.; Ilyas, I.; Chen, S.; Han, S.; et al. The zinc finger transcription factor, KLF2, protects against COVID-19 associated endothelial dysfunction. Signal Transduct. Target. Ther. 2021, 6, 266. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kaur, R.; Kumari, P.; Pasricha, C.; Singh, R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta 2023, 548, 117487. [Google Scholar] [CrossRef]






| Cellular Pathways | Increased mRNA Expression in db/db Mice | No Differences in mRNA Expressions Between db/db and Control Mice |
|---|---|---|
| Mechanosensation and mechanotransduction, matrix stiffness | GATA2, KLF2, PTEN, PDPN, Emillin1, Sdc-4 | VE-cadherin, claudin-5, MMP2 |
| EndoMT | CPT1A | Snail1, Snail2, Acta2, claudin 5 |
| Fatty acid β-oxidation | CPT1A | CD36 |
| Lymphatic vessel rarefaction, oxidative stress, and apoptosis | Reln, emilin1 | CEACAM1, Bcl2, Bax, FOXO1, Fbn1, VE-cadherin |
| Immune cell trafficking | KLF2, CCL21, VCAM-1, PDPN | NOS3, ICAM-1, CX3CL1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jankowska-Steifer, E.; Ratajska, A.; Flaht-Zabost, A.; Radomska-Leśniewska, D.M.; Badurek, I.; Kiernozek, E.; Moskalik, A.; Majchrzak, B.; Bartkowiak, M.; Bartkowiak, K.; et al. Metabolic Syndrome-Driven Changes in Cardiac Lymphatic Endothelium: mRNA Expression and Emerging Questions. Pathophysiology 2026, 33, 4. https://doi.org/10.3390/pathophysiology33010004
Jankowska-Steifer E, Ratajska A, Flaht-Zabost A, Radomska-Leśniewska DM, Badurek I, Kiernozek E, Moskalik A, Majchrzak B, Bartkowiak M, Bartkowiak K, et al. Metabolic Syndrome-Driven Changes in Cardiac Lymphatic Endothelium: mRNA Expression and Emerging Questions. Pathophysiology. 2026; 33(1):4. https://doi.org/10.3390/pathophysiology33010004
Chicago/Turabian StyleJankowska-Steifer, Ewa, Anna Ratajska, Aleksandra Flaht-Zabost, Dorota Magdalena Radomska-Leśniewska, Iwona Badurek, Ewelina Kiernozek, Aneta Moskalik, Barbara Majchrzak, Mateusz Bartkowiak, Krzysztof Bartkowiak, and et al. 2026. "Metabolic Syndrome-Driven Changes in Cardiac Lymphatic Endothelium: mRNA Expression and Emerging Questions" Pathophysiology 33, no. 1: 4. https://doi.org/10.3390/pathophysiology33010004
APA StyleJankowska-Steifer, E., Ratajska, A., Flaht-Zabost, A., Radomska-Leśniewska, D. M., Badurek, I., Kiernozek, E., Moskalik, A., Majchrzak, B., Bartkowiak, M., Bartkowiak, K., Ciszek, B., Kujawa, M., & Niderla-Bielinska, J. (2026). Metabolic Syndrome-Driven Changes in Cardiac Lymphatic Endothelium: mRNA Expression and Emerging Questions. Pathophysiology, 33(1), 4. https://doi.org/10.3390/pathophysiology33010004

