Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = cavity damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3446 KiB  
Article
Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
by Shahid Hussain, Xinlong Feng, Arafat Hussain and Ahmed Bakhet
Fractal Fract. 2025, 9(7), 445; https://doi.org/10.3390/fractalfract9070445 - 4 Jul 2025
Viewed by 431
Abstract
We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (0<α<1) with mixed finite element methods (P1b–P1 and [...] Read more.
We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (0<α<1) with mixed finite element methods (P1b–P1 and P2P1) for spatial discretization of velocity and pressure. This approach addresses the key challenges of fractional models, including nonlocality and memory effects, while maintaining stability in the presence of the nonlinear damping term γ|u|r2u, for r2. We prove unconditional stability for both semi-discrete and fully discrete schemes and derive optimal error estimates for the velocity and pressure components. Numerical experiments validate the theoretical results. Convergence tests using exact solutions, along with benchmark problems such as backward-facing channel flow and lid-driven cavity flow, confirm the accuracy and reliability of the method. The computed velocity contours and streamlines show close agreement with analytical expectations. This scheme is particularly effective for capturing anomalous diffusion in Newtonian and turbulent flows, and it offers a strong foundation for future extensions to viscoelastic and biological fluid models. Full article
Show Figures

Figure 1

23 pages, 5318 KiB  
Article
Noise Testing of the Conveyor Trough Sprocket and Surface Noise Reduction Performance Evaluation of the Cavity Structure in a Combine Harvester
by Jianpeng Jing, Hongyan Sun, Runzhi Liang, Shuren Chen, Zhong Tang, Xiaoying He and Yuxuan Chen
Agriculture 2025, 15(12), 1299; https://doi.org/10.3390/agriculture15121299 - 17 Jun 2025
Viewed by 564
Abstract
This study investigates noise detection and damping-based noise mitigation strategies for cavity structures, with a specific focus on addressing noise issues in the conveyor trough of combine harvesters. Despite its practical significance, research on the noise generation mechanisms, transmission paths, and control measures [...] Read more.
This study investigates noise detection and damping-based noise mitigation strategies for cavity structures, with a specific focus on addressing noise issues in the conveyor trough of combine harvesters. Despite its practical significance, research on the noise generation mechanisms, transmission paths, and control measures for conveyor troughs remains limited, particularly under varying operational conditions. To bridge this gap, this work integrates experimental measurements with numerical simulations to systematically analyze and optimize the noise reduction performance of the conveyor trough. Noise measurements were conducted using the sound intensity method, revealing sound pressure levels in the range of 93–95 dB. Frequency spectrum analysis identified key noise sources and dominant frequency components. Finite element analysis (FEA) and vibration modal testing were performed to uncover critical noise-inducing factors, including chain meshing impacts and structural resonances. Based on these findings, a damping optimization strategy was proposed by incorporating constrained damping layers to attenuate vibration and reduce noise in targeted frequency bands. The effectiveness of this approach was validated through multiple coherence analysis, which confirmed significant suppression of structural vibration noise in the 0–500 Hz range, while experimental results showed that the optimized conveyor trough structure achieved a maximum reduction of 0.4071 dB in continuous equivalent A-weighted sound pressure under load conditions. This research provides a comprehensive methodology for noise control and structural optimization of conveyor trough systems, offering valuable theoretical and practical insights for enhancing the operational comfort and environmental performance of combine harvesters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 16712 KiB  
Article
Large-Eddy Simulation of Flows Past an Isolated Lateral Semi-Circular Cavity
by Yiqing Gong, Yun Xu, Jingqiao Mao, Jie Dai, Lei He, Hao Zhang and Qianshun Xu
J. Mar. Sci. Eng. 2025, 13(5), 859; https://doi.org/10.3390/jmse13050859 - 25 Apr 2025
Viewed by 364
Abstract
Lateral cavities along coastlines strongly influence sedimentary morphology and ecological processes by modifying local flow dynamics. This study employed high-resolution large-eddy simulation to investigate flow structures and momentum exchange mechanisms in a semi-circular lateral cavity driven by longshore currents. Model validation against experimental [...] Read more.
Lateral cavities along coastlines strongly influence sedimentary morphology and ecological processes by modifying local flow dynamics. This study employed high-resolution large-eddy simulation to investigate flow structures and momentum exchange mechanisms in a semi-circular lateral cavity driven by longshore currents. Model validation against experimental data confirmed the LES’s capability to capture both recirculating flow and turbulent structures accurately. The impact of Reynolds number was examined across three cases (Re = 12,000, 17,000, and 22,000). From Re = 12,000 to 17,000, a significant upstream shift of the primary vortex core occurred, accompanied by stronger shear layer turbulence and intensified secondary vortices. Between Re = 17,000 and 22,000, the flow features stabilized, indicating a transition toward quasi-equilibrium. These changes enhanced vertical momentum transfer and turbulence production within the cavity. Spectral analysis revealed dominant KH frequencies governing periodic momentum exchange and indicating a transition from viscosity-damped upstream turbulence to fully developed shedding downstream. Full article
Show Figures

Figure 1

21 pages, 3901 KiB  
Article
A Scenario for Origin of Global 4 mHz Oscillations in Solar Corona
by Li Xue, Chengliang Jiao and Lixin Zhang
Universe 2025, 11(1), 14; https://doi.org/10.3390/universe11010014 - 9 Jan 2025
Viewed by 695
Abstract
We establish a spherically symmetric model of solar atmosphere, which consists of the whole chromosphere and low corona below the 1.25 solar radius. It is a hydrodynamic model with heating in the chromosphere through an artificial energy flux. We performed a series of [...] Read more.
We establish a spherically symmetric model of solar atmosphere, which consists of the whole chromosphere and low corona below the 1.25 solar radius. It is a hydrodynamic model with heating in the chromosphere through an artificial energy flux. We performed a series of simulations with our model and found oscillations with a peak frequency of ∼4 mHz in the power spectrum. We confirmed that this resulted from the p-mode excited in the transition region and amplified in a resonant cavity situated in the height range ∼4×1032×104 km. This result is consistent with global observations of Alfvénic waves in corona and can naturally explain the observational ubiquity of 4mHz without the difficulty of the p-mode passing through the acoustic-damping chromosphere. We also confirmed that acoustic shock waves alone cannot heat the corona to the observed temperature, and found mass upflows in the height range ∼7×1037×104 km in our model, which pumped the dense and cool plasma into the corona and might be the mass supplier for solar prominences. Full article
Show Figures

Figure 1

14 pages, 34977 KiB  
Article
Experimental Study on Submerged Nozzle Damping Characteristics of Solid Rocket Motor
by Xinyan Li, Zhenglong Chen, Xiaosi Li, Bo Xu and Shengnan Wang
Aerospace 2024, 11(9), 759; https://doi.org/10.3390/aerospace11090759 - 16 Sep 2024
Cited by 2 | Viewed by 1759
Abstract
Acoustic instabilities in solid rocket motors (SRMs) can lead to severe performance deterioration and structural damage. Nozzle damping accounts for the main acoustic dissipation source, and it is highly dependent on geometric parameters and operating conditions. This study experimentally investigated the acoustic damping [...] Read more.
Acoustic instabilities in solid rocket motors (SRMs) can lead to severe performance deterioration and structural damage. Nozzle damping accounts for the main acoustic dissipation source, and it is highly dependent on geometric parameters and operating conditions. This study experimentally investigated the acoustic damping characteristics of submerged nozzles in SRMs, focusing on the effects of submerged cavity dimensions, nozzle convergent angle, throat-to-port area ratio, and mean pressure variations on the longitudinal instability. The steady-state wave decay method was used to quantify the acoustic damping, and a designed rotary valve system was employed to introduce periodic pressure oscillations in the high-pressure combustion chamber. The results revealed that a larger submerged cavity would reduce the nozzle damping efficiency, with the elimination of the submerged cavity enhancing the nozzle decay coefficient magnitude by 41.9%. Furthermore, increasing the nozzle convergent angle was found to amplify acoustic wave reflection, thereby diminishing damping performance. A linear inverse relationship was observed between the throat-to-port area ratio and the decay coefficient, with a 125% increase in the ratio resulting in a 24.3% reduction in the decay coefficient. Interestingly, despite the formation of complex vortices in the submerged cavity, the mean pressure variation presented negligible effects on acoustic damping characteristics, and its damping performance is similar to a simple nozzle without a cavity. These findings provide valuable experimental data for predicting the stability of a solid rocket motor with a submerged nozzle and offer insights into the optimization of submerged nozzle designs for higher acoustic damping in SRMs. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 2243 KiB  
Article
The Association of Chronic Pulmonary Aspergillosis and Chronic Pulmonary Histoplasmosis with MDR-TB Patients in Indonesia
by Noni N. Soeroso, Lambok Siahaan, Selfi Khairunnisa, Raden Ajeng Henny Anggriani, Aida Aida, Putri C. Eyanoer, Elvita R. Daulay, Erlina Burhan, Anna Rozaliyani, Ronny Ronny, Robiatul Adawiyah, David W. Denning and Retno Wahyuningsih
J. Fungi 2024, 10(8), 529; https://doi.org/10.3390/jof10080529 - 29 Jul 2024
Cited by 6 | Viewed by 2358
Abstract
In Indonesia, 2.4% of all new tuberculosis patients had multi-drug resistant disease (MDR-TB); an estimated 24,000 incidences. Historical case series of MDR-TB described a high frequency of cavitation and poor prognosis. The diagnosis of chronic pulmonary aspergillosis (CPA) relies on raised levels of [...] Read more.
In Indonesia, 2.4% of all new tuberculosis patients had multi-drug resistant disease (MDR-TB); an estimated 24,000 incidences. Historical case series of MDR-TB described a high frequency of cavitation and poor prognosis. The diagnosis of chronic pulmonary aspergillosis (CPA) relies on raised levels of Aspergillus IgG antibodies, and detectable Histoplasma IgG antibodies are suspicious for chronic pulmonary histoplasmosis (CPH). We investigated whether MDR-TB patients might have concurrent CPH or CPA. This was a cross-sectional study with 50 MDR-TB patients. ELISA was used to detect Histoplasma IgG antibodies and lateral flow assay was used to detect Aspergillus IgG/IgM antibodies. Several other possible disease determinants were assessed by multivariate analysis. Of the 50 MDR-TB patients, 14 (28%) and 16 (32%) had positive Histoplasma or Aspergillus serology; six patients (12%) had dual antibody reactivity. Radiological abnormalities in positive patients included diffuse or local infiltrates, nodules, consolidation, and apical cavities, consistent with CPH and CPA. Patients with detectable fungal antibodies tended to have worse disease, and 4 of 26 (15.3%) died in the first 5 months of dual infection (p = 0.11 compared with no deaths in those with only MDR-TB). The criteria for the diagnosis of CPH and CPA were fulfilled in those with moderately and far advanced disease (13 of 14 or 93%) and 12 of 16 (75%), respectively. Damp housing was the only determinant associated with Histoplasma antibodies (PR 2.01; 95%CI 0.56–7.19), while pets were associated with the Aspergillus antibody (PR 18.024; 95%CI 1.594–203.744). CPA or CPH are probably frequent in MDR-TB patients in Indonesia and may carry a worse prognosis. Full article
(This article belongs to the Special Issue Epidemiology of Invasive Mycosis in the Hospital)
Show Figures

Figure 1

15 pages, 5786 KiB  
Article
Numerical Investigations of Static and Dynamic Characteristics of a Novel Staggered Labyrinth Seal with Semi-Elliptical Structure
by Shebin Yan, Zhifeng Ye, Dezhao Wang, Huihao Su and Wenjie Zhou
Lubricants 2024, 12(5), 169; https://doi.org/10.3390/lubricants12050169 - 10 May 2024
Cited by 2 | Viewed by 1386
Abstract
In order to optimize sealing performance, a novel labyrinth seal with semi-elliptical teeth (SET) structure is proposed in this paper, which includes semi-elliptical teeth and a series of cavities. The simulation results calculated by the numerical methods are compared with the experimental and [...] Read more.
In order to optimize sealing performance, a novel labyrinth seal with semi-elliptical teeth (SET) structure is proposed in this paper, which includes semi-elliptical teeth and a series of cavities. The simulation results calculated by the numerical methods are compared with the experimental and theoretical results, and static and dynamic characteristics of the novel SET structure are further investigated. The numerical simulations of labyrinth seals with the SET structure demonstrate high accuracy and reliability, with a maximum relative error of less than 6% as compared to experimental results, underscoring the validity of the model. Notably, leakage rates are directly influenced by pressure drop and axial offset, with optimal sealing achieved at zero axial displacement. The direct damping coefficient increases as the pressure drop increases while the other dynamic coefficients decrease. Additionally, the stability results show that the novel SET structure exhibits higher stability for positive axial offsets. The novel model and corresponding results can provide a meaningful reference for the study of sealing structure and coupled vibration in the field of fluid machinery. Full article
Show Figures

Figure 1

17 pages, 3794 KiB  
Article
Stretch Causes cffDNA and HMGB1-Mediated Inflammation and Cellular Stress in Human Fetal Membranes
by Justin Gary Padron, Chelsea A. Saito Reis, Po’okela K. Ng, Nainoa D. Norman Ing, Hannah Baker, Kamalei Davis, Courtney Kurashima and Claire E. Kendal-Wright
Int. J. Mol. Sci. 2024, 25(10), 5161; https://doi.org/10.3390/ijms25105161 - 9 May 2024
Viewed by 1291
Abstract
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of [...] Read more.
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy. Full article
Show Figures

Figure 1

19 pages, 9912 KiB  
Article
Blasting Vibration Control and Signal Analysis of Adjacent Existing Deterioration Tunnels
by Wenxiang Xu, Jianjun Shi and Hao Zhang
Appl. Sci. 2024, 14(5), 2212; https://doi.org/10.3390/app14052212 - 6 Mar 2024
Cited by 2 | Viewed by 1197
Abstract
Building a new tunnel adjacent to an existing tunnel has become a common means of transformation in engineering. Existing tunnels are prone to some deterioration, such as cavities and cracks under long-term traffic load. This kind of deterioration tunnel is prone to collapsing [...] Read more.
Building a new tunnel adjacent to an existing tunnel has become a common means of transformation in engineering. Existing tunnels are prone to some deterioration, such as cavities and cracks under long-term traffic load. This kind of deterioration tunnel is prone to collapsing under the action of blasting. Therefore, the vibration caused by blasting should be strictly controlled. Based on the reconstruction project of the Bo Jiling Tunnel, this paper puts forward the method of mechanical cutting in a central position combined with an ordinary detonator to reduce blasting vibrations. ANSYS/LS-DYNA version 19.2, was used to simulate two conditions of full-section blasting and central mechanical cutting blasting. By comparing the stress and velocity of the existing tunnel, the damping effect of mechanical cutting blasting is analyzed. Via field experiments, the superiority of the mechanical cutting method in reducing blasting vibration is further discussed. At the same time, the relationship between the main vibration frequency and the peak velocity of the existing deterioration tunnel is obtained by wavelet packet analysis of the field experimental data. The frequency band energy distribution in each direction of vibration velocity is also obtained. The results show that the central mechanical cutting increases the blasting free surface, and the mechanical cutting method reduces the vibration velocity by 36.3%. The third frequency band (31.25~46.875 Hz) is the most concentrated, which is the dominant frequency band of the signal. The novelty of this paper is to propose mechanical cutting of the central hole instead of traditional blasting for existing deterioration tunnels. The feasibility of this method is verified by numerical simulation and field tests. The relationship between peak vibration velocity, band energy, and tunnel frequency is clarified, which can better control blasting vibration and ensure the safety of existing deterioration tunnels. Full article
Show Figures

Figure 1

12 pages, 5471 KiB  
Article
Investigating the Role of Stator Slot Indents in Minimizing Flooded Motor Fluid Damping Loss
by Didem Tekgun and Burak Tekgun
Machines 2023, 11(12), 1088; https://doi.org/10.3390/machines11121088 - 14 Dec 2023
Cited by 1 | Viewed by 1710
Abstract
This research examines how fluid damping loss affects the operation of a two-pole, 5.5 HP (4 kW) induction machine (IM) within the context of different slot opening configurations developed for downhole water pump applications. Since these motors operate with their cavities filled with [...] Read more.
This research examines how fluid damping loss affects the operation of a two-pole, 5.5 HP (4 kW) induction machine (IM) within the context of different slot opening configurations developed for downhole water pump applications. Since these motors operate with their cavities filled with fluid, the variations in fluid viscosity and density, compared to air, result in the occurrence of damping losses. Furthermore, this loss can be attributed to the motor’s stator and rotor surface geometry, as the liquid within the motor cavity moves unrestrictedly within the motor housing. This study involves the examination of the damping loss in a 24-slot IM under different stator slot indentations. The investigation utilizes computational fluid dynamics (CFD) finite element analysis (FEA) and is subsequently validated through experiments. The aim of this work is to emphasize the significance of fluid damping loss in submerged machines. Results reveal that the damping loss exceeds 8% of the motor output power when the stator surface has indentations, and it diminishes to 3.2% of the output power when a custom wedge structure is employed to eliminate these surface indentations. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

11 pages, 2871 KiB  
Article
Real-Time Exploration on Buildup Dynamics of Diode-Pumped Passively Mode-Locked Nd:YVO4 Laser with SESAM
by Pin-Wen Cheng, Yu-Hsin Hsu, Xiu-Wei Chang, Hsing-Chih Liang and Yung-Fu Chen
Photonics 2023, 10(7), 826; https://doi.org/10.3390/photonics10070826 - 15 Jul 2023
Viewed by 1901
Abstract
The buildup dynamics of diode-pumped passively mode-locked solid-state laser is thoroughly explored using the real-time measurement with temporal sampling rate of up to 40 GHz. A concise cavity is developed to ensure the transient dynamics purely arising from the gain medium and saturable [...] Read more.
The buildup dynamics of diode-pumped passively mode-locked solid-state laser is thoroughly explored using the real-time measurement with temporal sampling rate of up to 40 GHz. A concise cavity is developed to ensure the transient dynamics purely arising from the gain medium and saturable absorber. Experimental results reveal that the laser output in the buildup process exhibits numerous passively Q-switched pulses followed with a damped relaxation oscillation prior to the stable mode locking. Furthermore, it is confirmed that the laser output has already displayed single clean mode-locked pulses inside the first several Q-switched envelopes before stepping into the stage of relaxation oscillation. The present real-time exploration is expected to provide important information for practical applications with temporal modulation of the pump intensity. Full article
(This article belongs to the Special Issue Lasers and Dynamic of Systems)
Show Figures

Figure 1

24 pages, 11486 KiB  
Article
Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior
by Mihaela Jana Țuculină, Adela Nicoleta Staicu, Maria Cristina Munteanu, Cristian Niky Cumpătă, Bogdan Dimitriu, Ana Maria Rîcă, Maria Cristina Beznă, Dragoș Laurențiu Popa, Alexandru Dan Popescu and Tiberiu Țîrcă
J. Funct. Biomater. 2023, 14(7), 354; https://doi.org/10.3390/jfb14070354 - 5 Jul 2023
Cited by 3 | Viewed by 6731
Abstract
The restoration of class II cavities is predominantly carried out with composite materials. Due to the high failure rate in restoring this type of cavity, composite materials with much-improved properties and new application techniques have been promoted. The study aimed to analyze the [...] Read more.
The restoration of class II cavities is predominantly carried out with composite materials. Due to the high failure rate in restoring this type of cavity, composite materials with much-improved properties and new application techniques have been promoted. The study aimed to analyze the mechanical behavior of several topical composite materials (nanocomposites, nanohybrids and ormocer) using different application techniques. In a lower second molar, a class II occlusal cavity was prepared. As filling materials, we used the following combinations: Admira Fusion and Admira Fusion Flow, Grandio and Grandio Flow, Filtek Supreme XT and Filtek Supreme Flow. These were applied using a snow plow, injection molded and Bichacho techniques. Three-dimensional scanning of the molar with the prepared cavity was performed, and then scanning of each layer of added composite material was performed, obtaining three-dimensional models. The virtual molar models were analyzed with software specific to the finite element analysis method, where their physical-mechanical properties were entered and assigned to the components of the virtual molar. Simulations at high forces specific to bruxism were then carried out and analyzed, and compared. The values of displacements and strain, for all six analyzed situations, are relatively small (range from 5.25 × 10−6–3.21 × 10−5 for displacement, 6.22 × 10−3–4.34 × 10−3 for strain), which validates all three methods and the materials used. As far as the stress values are concerned, they are similar for all methods (250–300 MPa), except for the snow plow and injection-molded techniques using Grandio and Grandio Flow composites, where the maximum von Mises stress value was more than double (approximately 700 MPa). When using the combination of Grandio and Grandio Flow materials, the 1 mm thickness of the fluid composite layer was found to have a major influence on occlusal forces damping as opposed to 0.5 mm. Therefore, the Bichacho technique is indicated at the expense of the snow plow and injection-molded techniques. The composite materials used by us in this study are state-of-the-art, with clear indications for restoring cavities resulting from the treatment of carious lesions. However, their association and application technique in the case of Class II cavities is of clinical importance for resistance to masticatory forces. Full article
(This article belongs to the Special Issue Recent Advances in Dental Resin Composites)
Show Figures

Figure 1

16 pages, 9058 KiB  
Article
Analysis of Vibration-Damping Characteristics and Parameter Optimization of Cylindrical Cavity Double-Plate Phononic Crystal
by Chunsheng Song, Qi Yang, Xuechun Xiong, Rui Yin, Bo Jia, Yaru Liang and Haining Fang
Materials 2023, 16(13), 4605; https://doi.org/10.3390/ma16134605 - 26 Jun 2023
Cited by 3 | Viewed by 1858
Abstract
For the application of low-frequency vibration damping in industry, a cylindrical cavity double-layer plate-type local resonance phononic crystal structure is proposed to solve low-frequency vibration in mechanical equipment. Initially, using COMSOL 5.4 software, the bending wave band gap is calculated in conjunction with [...] Read more.
For the application of low-frequency vibration damping in industry, a cylindrical cavity double-layer plate-type local resonance phononic crystal structure is proposed to solve low-frequency vibration in mechanical equipment. Initially, using COMSOL 5.4 software, the bending wave band gap is calculated in conjunction with elastic dynamics theory and the BOLOCH theorem to be 127–384 Hz. Then the mechanism of bending wave gap is analyzed by combining element mode shape and an equivalent model. Subsequently, the bending vibration transmission characteristics of the crystal plate are explained, and the vibration-damping characteristics are illustrated in combination with the time–frequency domain. An experimental system is constructed to verify the vibration-damping properties of crystal plates; the experimental results and simulation results are verified with each other. Finally, the element structural parameters are optimized using the RSM. Fifty-four sets of experiments are designed based on six structural factors and three levels, and the expressions between the bending wave band gap and six structural factors are obtained. Combining the particle swarm algorithm, the optimization is performed with the band gap width as the target. This method is shown to be more accurate than the commonly used interior point method. The structure of cylindrical-cavity-type phononic crystal and the parameter optimization method proposed in this paper provide a certain reference for the design of local-resonance-type phononic crystal. Full article
(This article belongs to the Special Issue Recent Progress in Functional Materials and Their Applications)
Show Figures

Figure 1

21 pages, 7812 KiB  
Article
A Hybrid Damper with Tunable Particle Impact Damping and Coulomb Friction
by Muhammad Ayaz Akbar, Wai-On Wong and Emiliano Rustighi
Machines 2023, 11(5), 545; https://doi.org/10.3390/machines11050545 - 11 May 2023
Cited by 14 | Viewed by 3852
Abstract
A particle impact damper (PID) dissipates the vibration energy of a structure through impacts within the damper. The PID is not commonly used in practice mainly because of its low damping-to-mass ratio and the difficulty in achieving its optimal design due to its [...] Read more.
A particle impact damper (PID) dissipates the vibration energy of a structure through impacts within the damper. The PID is not commonly used in practice mainly because of its low damping-to-mass ratio and the difficulty in achieving its optimal design due to its nonlinear characteristics. In contrast, a Coulomb friction damper (FD) can offer a higher damping force-to-mass ratio than other dampers, but it is also difficult to be controlled precisely due to its nonlinear characteristics and excessive frequency sensitivity regarding the resonant frequency. This paper examines a hybrid damper by combining a particle impact damper and a Coulomb friction damper (PID + FD) theoretically and experimentally. A theoretical model of the proposed damper is developed and tested numerically on a single-degree-of-freedom (SDOF) structure. The predicted results are validated by experimental tests on a prototype of the proposed damper. The damping force provided by the FD in the prototype can be varied by adjusting the normal force applied through a compression spring, while the vibration energy dissipation by the PID can be varied by changing the cavity size of the PID. A parametric analysis of the proposed hybrid damper has been performed. The proposed hybrid damper can reduce the maximum vibration amplitude of the SDOF primary structure by 66% and 43% compared with using the FD and PID only. The proposed damper is found to be effective over a wide range of excitation frequencies. Furthermore, the proposed hybrid damper achieves a similar vibration suppression performance to the traditional tuned mass damper (TMD) of a similar mass ratio. The proposed damper does not require an optimally tuned natural frequency and damping, unlike the TMD, and therefore it does not have the detuning problem associated with the TMD. In addition, the performance of the proposed damper is tested and compared with the TMD for random earthquake excitation data. Consequently, the proposed hybrid damper may be a simpler and better alternative to the TMD in passive vibration control applications. Full article
(This article belongs to the Special Issue Advanced Technologies in Vibration Control Methods)
Show Figures

Figure 1

15 pages, 883 KiB  
Article
Modeling of MEMS Transducers with Perforated Moving Electrodes
by Karina Šimonová and Petr Honzík
Micromachines 2023, 14(5), 921; https://doi.org/10.3390/mi14050921 - 24 Apr 2023
Cited by 2 | Viewed by 1557
Abstract
Microfabricated electroacoustic transducers with perforated moving plates used as microphones or acoustic sources have appeared in the literature in recent years. However, optimization of the parameters of such transducers for use in the audio frequency range requires high-precision theoretical modeling. The main objective [...] Read more.
Microfabricated electroacoustic transducers with perforated moving plates used as microphones or acoustic sources have appeared in the literature in recent years. However, optimization of the parameters of such transducers for use in the audio frequency range requires high-precision theoretical modeling. The main objective of the paper is to provide such an analytical model of a miniature transducer with a moving electrode in the form of a perforated plate (rigid elastically supported or elastic clamped at all boundaries) loaded by an air gap surrounded by a small cavity. The formulation for the acoustic pressure field inside the air gap enables expression of the coupling of this field to the displacement field of the moving plate and to the incident acoustic pressure through the holes in the plate. The damping effects of the thermal and viscous boundary layers originating inside the air gap, the cavity, and the holes in the moving plate are also taken into account. The analytical results, namely, the acoustic pressure sensitivity of the transducer used as a microphone, are presented and compared to the numerical (FEM) results. Full article
(This article belongs to the Special Issue Micromachined Acoustic Transducers for Audio-Frequency Range)
Show Figures

Figure 1

Back to TopTop